ME 120: Counting Time with Arduino Variables Gerald Recktenwald
October 18, 2021 gerry@pdx.edu

1 Introduction

Suppose you had a program that needed to keep track of time for weeks or months. You would
not be able to directly measure those large time intervals with the built-in millis() function in
Arduino UNO!. Recall that the Arduino millis() function returns the current value of the system
clock in milliseconds.

The problem is that the number of milliseconds grows quickly. For example, 1 minute is equiv-
alent to 60000 milliseconds, which exceeds the largest value that can be stored in an int variable.

S 51 illis S
1 minute x 60 be.conds X 000 milliseconds = 60000 milliseconds
1 minute 1 second

Recall that an Arduino int can take values between 32768 and +32767, as indicated in Table 1.

2 Range Limits for Integers

Table 1 shows the ranges of values that can be stored in the four types of integer variables used
in an Arduino program. The range of each variable type puts limits on the maximum number of
milliseconds that can be stored.

Table 2 provides one way of visualizing how the number of milliseconds grows with the size of
time intervals you might want to measure. The second through fourth columns of Table 2 show the
number of seconds, milliseconds and microseconds? for the time intervals in the first column.

For example, suppose you are monitoring the temperature and other environmental variables at
a remote site. The experiment runs unattended for weeks. If you were using the built-in millis
function to track the time for each measurement, and if you wanted to have your program run
unattended for 30 days, you would need a variable that could store (or at least compute with)
time values up to 2.59 x 10° milliseconds. Checking the ranges for integer variables in Table 1, you
conclude that you would need to use an unsigned int to hold the values of milliseconds returned
by the millis () function.

Exercise: Shade the cells in Table 2 to indicate the smallest variable type that can hold each of
the numerical values in the seconds, milliseconds and microseconds columns.

3 Real Time Clock

Given the problems of counting milliseconds, the recommended way to keep track of large time
intervals is to use a device called a real time clock (RTC). There are several RTC products for
Arduino and other microcontrollers. When provided with a battery power source, RTC devices can
track large time intervals even when the microcontroller has lost power. The software libraries that
accompany RTC devices also have features (usually supported in hardware) for tracking calendar
dates and compensating for leap years.

IWith some careful computation and integer math, you could count the seconds, minutes, hours and days, but to
do that you would have to keep track of when the value returned by millis() exceeded the storage ability of a single
variable

2The Arduino micros() function returns the value of the system clock in microseconds.

ME 120 :: Counting time

Table 1: Ranges for integer variables

Variable type Minimum value Maximum value
int —32768 32767
unsigned int 0 65535
long —2,147,483, 648 2,147,483, 648
unsigned long 0 4,294,967, 295

Table 2: Time values expressed in seconds, milliseconds and microseconds.

Time interval Seconds Milliseconds Microseconds

1 minute 60 60000 6.00 x 107

5 minute 300 300000 3.00 x 10%
30 minutes 1800 1.80 x 106 1.80 x 10°
1 hour 3600 3.60 x 10° 3.60 x 10°

5 hours 18000 1.80 x 107 1.80 x 1010

12 hours 43200 4.32 x 107 4.32 x 1010
1 day 86400 8.64 x 107 8.64 x 1010

7 days 604800 6.05 x 108 6.05 x 10
30 days 2.59 x 10 2.59 x 10° 2.59 x 1012
90 days 7.78 x 106 7.78 x 10 7.78 x 10'2
6 months 1.56 x 107 1.56 x 100 1.56 x 1013
1year 3.15x107 3.15x 100 3.15 x 103

5 years 1.58 x 108 1.58 x 10! 1.58 x 10

ME 120 :: Counting time 3

4 Solution to the exercise on page 1

Table 3 is a variation on Table 2, using shading to indicate which variable type is suitable for storing
the value of the time intervals measured in seconds, milliseconds and microseconds. The Key at the
bottom of Table 2 shows the relation between the cell shading and the variable type. For example,
the value of 60000 in the first row under the Milliseconds column is shaded yellow because 1 minute
of milliseconds could be stored in a unsigned int, which has an upper limit of 65535.

Note that there are many time intervals not represented in Table 3. The purpose of the exercise is
to give a qualitative sense of the limits of using integer values to count time in seconds, milliseconds
and microseconds.

Table 3: Time values expressed in seconds, milliseconds and microseconds, with cells shaded according
to the smallest integer type that can represent the value of the time interval in the first column.

Time interval Seconds Milliseconds Microseconds

1 minute 60 60000 6.00 x 107

5 minute 300 300000 3.00 x 10%
30 minutes 1800 1.80 x 106 1.80 x 10°
1 hour 3600 3.60 x 108 3.60 x 10°

5 hours 18000 1.80 x 107 1.80 x 1019

12 hours 43200 4.32 % 107 4.32 x 1010
1 day 86400 8.64 x 107 8.64 x 1010

7 days 604800 6.05 x 10% 6.05 x 101
30 days 2.59 x 106 2.59 x 10° 2.59 x 1012
90 days 7.78 x 106 7.78 x 10° 7.78 x 1012
6 months 1.56 x 107 1.56 x 101 1.56 x 103
1year 3.15x 107 3.15x 100 3.15x 1013

5 years 1.58 x 108 1.58 x 10" 1.58 x 104

Key:
Cell color Smallest suitable variable type
int
unsigned int
long

unsigned long
Too large for unsigned long

