
ME 120: Arduino Programming

Arduino Programming Part 3

ME 120
Mechanical and Materials Engineering

Portland State University

ME 120: Arduino Programming

Overview

Variable Declarations
Variable Assignments
Built-in I/O functions

See on-line reference:
http://arduino.cc/en/Reference/HomePage

2

http://arduino.cc/en/Reference/HomePage

ME 120: Arduino Programming

Variables in Arduino programs

3

ME 120: Arduino Programming

Variables are containers

A variable has a name and a type
int LED_pin = 12;

Common types:
int, unsigned int
long, unsigned long
float

char
byte

4

type name

Variable names:
Start with a letter (a-z, A-Z, _)
Can contain numbers
Cannot contain +, -, =, /, *

see https://www.arduino.cc/reference/en/#variables

ME 120: Arduino Programming

Basic types of variable
Three basic categories of variables

❖ integers: int and long
❖ floating point values: float and double on some boards
❖ character strings: char, String

Integers
❖ No fractional part. Examples: 1, 2, 23, 0, –50213
❖ Used for counting and return values from some built-in functions
❖ Integer arithmetic results in truncation to integers

Floating point numbers
❖ Non-zero fractional parts. Examples 1.234, –2.728, 4.329 x 10–4

❖ Large range of magnitudes
❖ Floating point arithmetic does not truncate, but has round-off

6

ME 120: Arduino Programming

–32768

–215 215 – 1

+32767

0

216 – 1

65535

int numberline

unsigned int numberline

0

int Integer types

7

int integer in the range –32,768 to 32,767
unsigned int positive integer in the range 0 to 65,535

See http://arduino.cc/en/Reference/Int and http://arduino.cc/en/Reference/Long

http://arduino.cc/en/Reference/int
http://arduino.cc/en/Reference/Long

ME 120: Arduino Programming

–2,147,483,648

–231 231 – 1

+2,147,483,647

0

232 – 1

4,294,967,295

long numberline

unsigned long numberline

0

long Integer types

8

long integer in the range –2,147,483,648 to 2,147,483,647
unsigned long positive integer in the range 0 to 4,294,967,295

See http://arduino.cc/en/Reference/Int and http://arduino.cc/en/Reference/Long

http://arduino.cc/en/Reference/int
http://arduino.cc/en/Reference/Long

ME 120: Arduino Programming

Floating point types

9

float values with approximately seven significant digits in the range ±(1.80
x10–38 to 3.40 x 1038)

double values with approximately thirteen significant digits in the range ±(2.2
x10–308 to 1.80 x 10308)

There is no double on an Arduino UNO. On an UNO, a double is the
same as a float. On more advanced microcontroller boards, the double
type has the range indicated above.

The Adafruit Feather nRF52840 Sense has built-in support for single
precision floating point arithmetic, i.e. variables of type “float”

See http://arduino.cc/en/Reference/Float and http://arduino.cc/en/Reference/Double

http://arduino.cc/en/Reference/Float
http://arduino.cc/en/Reference/long

ME 120: Arduino Programming

Declaring and assigning values

Declarations are necessary. Assignments are optional.

Note:
❖ Integer values do not use decimal points
❖ Floating point values can use “e” notation

‣ 1.23e5 is equal to 1.23 x 105

‣ DO NOT write x = 1.23*10^5, use x = 1.23e5 instead

10

int n; // single declaration
int i,j,k,n; // multiple declaration
int i=5; // single declaration and assignment
int i=5, j=2; // multiple declaration and assignment

float x;
float x,y,z;
float x=0.0, y=-1.23e5; // assignment with ”e” notation

ME 120: Arduino Programming

Use = to assign values

The equals sign is the assignment operator
❖ The statement x = 3 assigns a value of 3 to x.

‣ The actual operation involves storing the value 3 in the memory location
that is reserved for x.

❖ The equals sign does not mean that x and 3 are the same!

Symbolically you can replace x = 3 with x ← 3.

11

ME 120: Arduino Programming

Assigning values

Consider the following sequence of statements
x = 3;

y = x;

x = 5;

The preceding statements are executed in sequence.
❖ The last assignment determines the value stored in x.
❖ There is no ambiguity in two “x = ” statements:

‣ x = 3 stores the value of 3 into the memory location named x
‣ x = 5 replaces the 3 stored in x with a new value, 5.

12

ME 120: Arduino Programming

What are the values of n and z at the end of the following sequences of
statements?

Test your understanding

13

int i,j,k,n;

i = 2;
j = 3;
k = i + 2*j;
n = k – 5;

int i,j,k,n;

i = 2;
j = 3;
n = j – i;
n = n + 2;

int n;
float x,y,z;

x = 2.0;
y = 3.0;
z = y/x;
n = z;

n = ? n = ? z = ?
n = ?

ME 120: Arduino Programming

What are the values of n and z at the end of the following sequences of
statements?

The n = n + 2; statement shows why it is helpful to think of the equal sign as a
left facing arrow.
You can mentally replace n = n + 2; with n ← n + 2;

Test your understanding

14

int i,j,k,n;

i = 2;
j = 3;
k = i + 2*j;
n = k – 5;

int i,j,k,n;

i = 2;
j = 3;
n = j – i;
n = n + 2;

int n;
float x,y,z;

x = 2.0;
y = 3.0;
z = y/x;
n = z;

ME 120: Arduino Programming

Integer arithmetic

We have to understand the rules of numerical computation used by Arduino
hardware (and computers, in general).

Integer arithmetic always produces integers

What values are stored in i and j?

15

int i,j;
i = (2/3)*4;
j = i + 2;

ME 120: Arduino Programming

Integer arithmetic

We have to understand the rules of numerical computation used by Arduino
hardware (and computers, in general).

Integer arithmetic always produces integers

What values are stored in i and j?
Answer: i ← 0, j ← 2

16

int i,j;
i = (2/3)*4;
j = i + 2;

ME 120: Arduino Programming

Integer arithmetic

Integer arithmetic always produces integers

What values are stored in i and j?
Answer: i ← 2, j ← 4

17

int i,j;
i = (2.0/3.0)*4.0;
j = i + 2;

ME 120: Arduino Programming

Review Preceding Slides on Integer arithmetic

Code A:

What values are stored in i and j?
Answer: i ← 0, j ← 2

Code B:

What values are stored in i and j?
Answer: i ← 2, j ← 4

18

int i,j;
i = (2.0/3.0)*4.0;
j = i + 2;

int i,j;
i = (2/3)*4.0;
j = i + 2;

ME 120: Arduino Programming

Floating point arithmetic

Floating point arithmetic preserves the fractional part of numbers, but it does
so approximately

What values are stored in y and z?

19

float w,x,y,z;
w = 3.0;
x = 2.0;
y = w/x;
z = y – 1.5;

ME 120: Arduino Programming

Floating point arithmetic

Floating point arithmetic preserves the fractional part of numbers, but it does
so approximately

What values are stored in y and z?
Answer: y ← 1.5, z ← 0

20

float w,x,y,z;
w = 3.0;
x = 2.0;
y = w/x;
z = y – 1.5;

ME 120: Arduino Programming

Floating point arithmetic

Consider this alternate test*

21

float w,x,y,z;
w = 4.0/3.0;
x = w - 1;
y = 3*x;
z = 1 - y;

*See, e.g. C. Moler, Numerical Computing in MATLAB, 2004, SIAM, p. 38

ME 120: Arduino Programming

Floating point arithmetic

Consider this alternate test*

which produces x = 0.333 and y = 1.000 and z = –1.19e-7
z is not exactly zero because of roundoff

22

float w,x,y,z;
w = 4.0/3.0;
x = w - 1;
y = 3*x;
z = 1 - y;

*See, e.g. C. Moler, Numerical Computing in MATLAB, 2004, SIAM, p. 38

ME 120: Arduino Programming

Global and local variables

23

int LED_pin = 13;

void setup() {
pinMode(LED_pin, OUTPUT);

}

void loop() {
digitalWrite(LED_pin, HIGH);
delay(1000);
digitalWrite(LED_pin, LOW);
delay(1000);

}

In this sketch, LED_pin is a global
variable, accessible to other
functions in the file

void setup() {
int LED_pin = 13;
pinMode(LED_pin, OUTPUT);

}

void loop() {
digitalWrite(LED_pin, HIGH);
delay(1000);
digitalWrite(LED_pin, LOW);
delay(1000);

}

In this sketch, LED_pin is a local
variable in the setup function.
LED_pin is not accessible to the
code in the loop function. This sketch
will not compile. It will not run.

In general, it is wise to avoid global variables unless it is absolutely necessary. In this example,
LED_pin must be accessible to both setup and loop, so it must be a global variable.

ME 120: Arduino Programming

Code Interlude:

Getting messages from the Arduino board
in the Serial Monitor

24

ME 120: Arduino Programming

Use these commands for serial communication with the
host computer

Serial.begin(speed)
❖ Initializes the Serial port at specified speed. Typical speed is 9600

Serial.print(value)
❖ Sends value to the serial port
❖ value can be a single number or a character string
❖ No newline after value is sent

Serial.println(value)
❖ Sends value to the serial port
❖ value can be a single number or a character string
❖ Add a newline after value is sent

25See https://www.arduino.cc/reference/en/language/functions/communication/serial/print/

https://www.arduino.cc/reference/en/language/functions/communication/serial/print/

ME 120: Arduino Programming

Wait for the USB connection

Early Arduino boards had simpler USB interfaces
❖ On an Arduno UNO, opening the Serial Monitor would reset the connection
❖ Later boards, e.g. Feather nRF52840 Sense, provide full USB support, which

slightly complicates use of the Serial Monitor

On the Feather nRF52840 Sense, you establish a Serial monitor connection
with two lines of code

The value of nnnn must be the same as the setting in the Serial Monitor.
Typically we use Serial.begin(9600) or Serial.begin(115200)

26

Serial.begin(nnnn); // Set the baud rate for serial communication
while (!Serial) yield(); // Wait for serial port to connect

ME 120: Arduino Programming

Sample Serial Monitor Window

27

Uncheck to stop text from scrolling.
Not recommended unless you need to
temporarily copy data.

Allowable baud rates
for communication
between Arduino and PC

Output from Serial.print()
and Serial.println() appears here

ME 120: Arduino Programming

Demonstrate Serial.print and Serial.println

28

// File: demoSerialMonitor.ino
//
// Show how to use the Serial Monitor and demonstrate different
// behaviors of printing from setup() and loop()

void setup() {

Serial.begin(115200);
while (!Serial) yield(); // Wait for Serial port to connect

Serial.print("Here"); // Message could be on one line. See loop()
Serial.print(" in ");
Serial.println(" setup()");

}

void loop() {

Serial.println("Here in loop()");
delay(2000); // Slow down printing

}

ME 120: Arduino Programming

Measure the time for USB start-up

29

// File: demoSerialStartupTime.ino
//
// Measure the time to wait for the USB connection after the start of
// an Arduino sketch. Waiting for the USB to start is necessary for
// Arduino boards with full USB support. Without waiting, the first
// few messages to the Serial Monitor will be lost.
//
// This code simply times how long it takes the Serial object to
// return a non-null response. The while (!Serial) yield(); code
// should be included after the Serial.begin() for all Arduino boards
// with full USB support, e.g. the Feather nRF52840 Sense.
//
void setup() {

unsigned long tstart, tready; // storage for timing data

tstart = millis(); // start time
Serial.begin(115200); // Initiate Serial object
while (!Serial) yield(); // Wait for USB to start
tready = millis(); // stop time

Serial.print("Time waiting for USB start-up = ");
Serial.print(tready - tstart);
Serial.println(" milliseconds");

}

void loop() { } // Empty on purpose

ME 120: Arduino Programming

Codes to demonstrate integer and floating-
point arithmetic

30

ME 120: Arduino Programming

Integer arithmetic

31

// File: int_test.ino
//
// Demonstrate truncation with integer arithmetic

void setup() {
int i,j;

Serial.begin(9600);
while (!Serial) yield(); // Wait for USB port to initialize

// -- First example: Right hand side uses integer math and truncation
// occurs before the result is stored in variable i
i = (2/3)*4; // result of evaluating (2/3) is zero
j = i + 2;
Serial.println("First test");
Serial.print(i); Serial.print(" "); Serial.println(j);

// -- Second example: Right hand side used floating point. No truncation
// occurs until the result is store in variable i
i = (2.0/3.0)*4.0; // result of evaluating (2.0/3.0) is 0.6666667
j = i + 2;
Serial.println("Second test");
Serial.print(i); Serial.print(" "); Serial.println(j);

}

void loop() {} // Loop does nothing. Code in setup() is executed only once

ME 120: Arduino Programming

Floating point arithmetic: test 1

32

// File: float_test.ino
//
// Demonstrate floating point arithmetic computations that happen to
// have no obvious rounding errors. That DOES NOT always happen
//
// Use two-parameter form of Serial.print. The second parameter specifies
// the number of digits in value sent to the Serial Monitor

void setup() {
float w,x,y,z;

Serial.begin(9600);
while (!Serial) delay(10); // Wait for USB port to initialize

// -- Computations that return results that you would expect; No rounding
w = 3.0;
x = 2.0;
y = w/x;
z = y - 1.5;
Serial.println("Floating point arithmetic test");
Serial.print(w,8); Serial.print(" ");
Serial.print(x,8); Serial.print(" ");
Serial.print(y,8); Serial.print(" ");
Serial.print(z,8); Serial.print(" ");
Serial.println(z*1.0e7,8);

}

void loop() {} // Loop does nothing. Code in setup() is executed only once

ME 120: Arduino Programming

Floating point arithmetic: test 2

33

// File: float_test_2.ino
//
// Demonstrate well-known round-off error problem with floating point arithmetic
// See, e.g., Cleve Moler, Numerical Computing in MATLAB, p. 38
//
// Use two-parameter form of Serial.print. The second parameter specifies
// the number of digits in value sent to the Serial Monitor

void setup() {
float w,x,y,z;

Serial.begin(9600);
while (!Serial) delay(10); // Wait for USB port to initialize

// -- Computations that show rounding
w = 4.0/3.0;
x = w - 1;
y = 3*x;
z = 1 - y;
Serial.println("\nFloating point arithmetic test 2");
Serial.print(w,8); Serial.print(" ");
Serial.print(x,8); Serial.print(" ");
Serial.print(y,8); Serial.print(" ");
Serial.print(z,8); Serial.print(" ");
Serial.println(z*1.0e7,8);

}

void loop() {} // Loop does nothing. Code in setup() is executed only once

