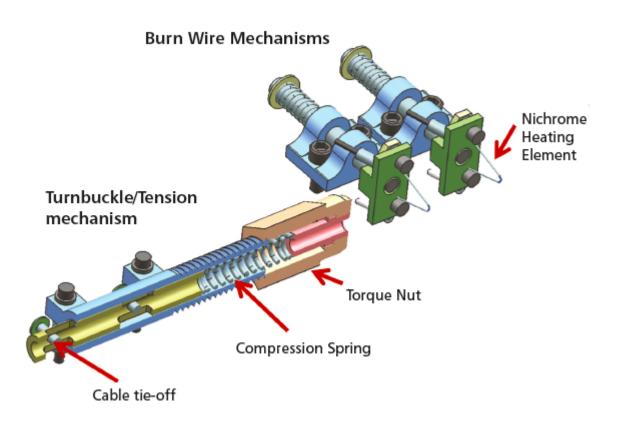
Modeling Power Requirements of a Burnwire Release Mechanism

Gerald Recktenwald Portland State University

February 19, 2018


ME 492: Simple Models for Conceptual Design

Overview

- Motivation
 - \triangleright Models in conceptual Design
 - \triangleright Burnwire case study
- Thermal model equations
- Sample results

Models in Conceptual Design

- Simple models are cheap and fast
- Predict, don't hack
- Guide design thinking
 - ▷ Identify performance boundaries
 - ▷ Identify sensitive parameters
 - ▷ Identify promising parameter combinations early optimization
- Provide checks on more complex models

Credit: Launch Tie-Down and Release Mechanism for CubeSat Spacecraft NASAs Jet Propulsion Laboratory, Pasadena, California, NASA Tech Briefs, JUNE 1, 2016, MECHANICAL & FLUID SYSTEMS

https://www.techbriefs.com/component/content/article/tb/techbriefs/mechanics-and-machinery/24810

Energy equation for the burn wire

$$mc\frac{dT}{dt} = P - Q \qquad (1$$

The electrical power input is

$$P = I^2 R = \frac{V^2}{R} \qquad (2)$$

where

$$R = \frac{\rho_e L}{A_c} \tag{3}$$

- m mass of the wire
- c specific heat of the wire material
- T temperature of the wire
- t time
- P electrical power input
- Q heat loss to the ambient
- *I* current flowing through the wire
- R electrical resistance of the wire
- V voltage across the ends of the wire.
- ho_e electrical resistivity of wire material
- *L* length of the wire for voltage drop
- $A_c = (\pi/4)d_w^2$, cross-sectional area of the wire with diameter d_w .

Define the heating rate

$$H = \frac{T_f - T_i}{\Delta t} \tag{4}$$

Assume Q = 0, then the energy equation simplifies to

$$H = \frac{P}{mc} \tag{5}$$

Model for voltage: Substitute
$$P = \frac{V^2}{R}$$

$$H = \frac{P}{mc} = \frac{V^2}{R\rho_m c A_c L} = \frac{V^2}{\frac{\rho_e L}{A_c}\rho_m c A_c L} = \frac{V^2}{\rho_e \rho_m c L^2}$$
(6)

Solve for \boldsymbol{V}

$$V = L\sqrt{Hc\rho_m\rho_e}.$$
(7)

Model for current: Substitute $P = I^2 R$

$$H = \frac{P}{mc} = \frac{I^2 R}{\rho_m A_c L} = \frac{I^2 \frac{\rho_e L}{A_c}}{\rho_m c A_c L} = \frac{I^2 \rho_e}{\rho_m c A_c^2} = \frac{16}{\pi^2} \frac{I^2 \rho_e}{\rho_m c d_w^4}$$
(8)

Solve for I

$$I = \frac{\pi}{4} d_w^2 \sqrt{\frac{\rho_m}{\rho_e} Hc} \tag{9}$$

Model for power: Substitute P = VI with V from Equation (7) and I from Equation (9)

$$P = VI = L\sqrt{Hc\rho_m\rho_e} \frac{\pi}{4} d_w^2 \sqrt{\frac{\rho_m}{\rho_e}Hc} = \frac{\pi}{4} d_w^2 LHc\rho_m$$
(10)

Model Summary

$$V = L\sqrt{Hc\rho_m\rho_e}.$$

$$I = \frac{\pi}{4} d_w^2 \sqrt{\frac{\rho_m}{\rho_e} H c}$$

$$P = \frac{\pi}{4} d_w^2 L H c \rho_m$$

Model Heating Rate Estimates

Heating rate

melt time	10 s
Ti	-150 °C
Tmelt (low)	200 °C
Tmelt (high)	300 °C
Heating rate (low)	35 °C/s
leating rate (high)	45 °C/s

Heating rate values -- table values are H (C/s)

	Time (s)		
Tmelt	10	1	0.1
180	33	330	3300
200	35	350	3500
250	40	400	4000
300	45	450	4500
350	50	500	5000

Nichrome
8400 kg/m ³
$1 \times 10^{-6} \ \Omega \cdot m$
$1.5 \times 10^{-6} \ \Omega \cdot \mathrm{m}$
8400 $J/kg/K$

Voltage limits -- table values are voltages

	H (°C/s) =				
L (cm)	10	50	150	300	500
2	0.12	0.27	0.48	0.67	0.87
4	0.25	0.55	0.95	1.35	1.74
6	0.37	0.82	1.43	2.02	2.61
8	0.49	1.10	1.90	2.69	3.48
10	0.61	1.37	2.38	3.37	4.35
12	0.74	1.65	2.86	4.04	5.22

Current limits -- table values are currents

		H (C/s)	=			
AWG	d(m)	10	50	150	300	500
24	5.110E-04	1.26	2.82	4.88	6.91	8.92
26	4.050E-04	0.79	1.77	3.07	4.34	5.60
28	3.210E-04	0.50	1.11	1.93	2.73	3.52
30	2.540E-04	0.31	0.70	1.21	1.71	2.20
32	2.019E-04	0.20	0.44	0.76	1.08	1.39
36	1.270E-04	0.08	0.17	0.30	0.43	0.55
40	7.874E-05	0.03	0.07	0.12	0.16	0.21

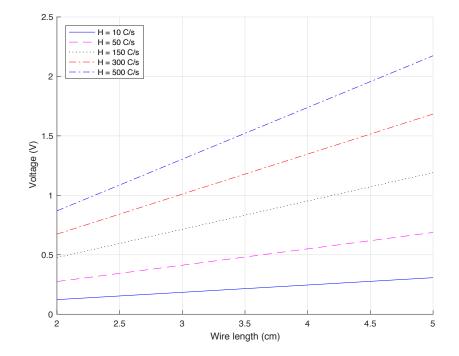


Figure 1: Voltage as a function of wire length.

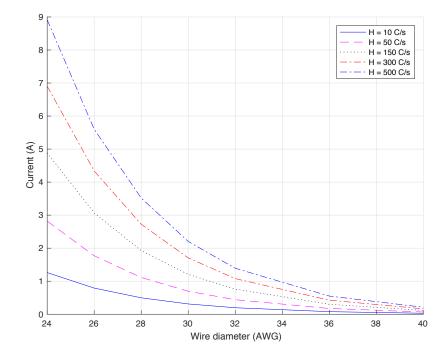


Figure 2: Current as a function of wire diameter.

Figure 3: Power consumption as a function of wire length and diameter at $H = 50 \,^{\circ}\text{C/s}$.