Design of a Hot Glue Pot for First Year Engineering Lab

Gerald Recktenwald <u>gerry@pdx.edu</u> February 2018

Problem/opportunity: Design a device to keep hot glue in a molten state for dipping

Project Objective Statement

Buy or design, fabricate and test a small (8-12 oz.) pot for melting hot glue (~121°F) for a prototyping cost of \$300 by 8 June 2018.

Client/Market Requirements

Primary requirements

- 1. Safe
- 2. Melts glue quickly
- 3. Auto startup/shutdown
- 4. Cleanable
- 5. Adjustable temperature, but not by ordinary user
- 6. User controls: On/Off, light(s) to indicate activity
- 7. Economical

External Search

Darice 115-62 40W \$7.30 one temperature shallow

Surebonder 805 4" dia \$9.41 one temperature shallow

External Search

Brentwood 6" Electric Skillet Adjustable, large footprint \$11.68

Hold Heet Electric glue pot One temperature \$135

External Search

Hamilton Beach 33101 Party Dipper Fixed temperature, doesn't melt glue \$17.99

Summary of benchmarking

Product	Source	Price	e	Pro/con	Features	Amazon ratiı	N rating
Darice 115-62 40W	Amazon	\$	7.30	small, shallow	one temperature	3.3/5	57
Surebonder 805 4" dia. Glue skillet	Amazon	\$	9.41	small, shallow	Fixed temperature	3.6/5	31
Surebonder 802 7" dia electric glue skillet	Amazon	\$	35.99	too large? shallow	Temperature control 40W 380F max temperature	4.1/5	61
Brentwood 6" Electric Skillet Model SK-45	Amazon	\$	11.68	too large? shallow	Ajustable temperature	3.2/5	174
Hold Heet Electric Glue Pot (1 Quart)	Amazon	\$	134.99	too large?	Fixed thermostat Removable glue pot Designed for woodworking	5/5	1
Hamilton Beach 33101 Party Dipper Food Warmer	Amazon	\$	17.99	Doesn't mel	t Fixed temperature	4.1/5	333

External Search: Cartridge Heaters

Next Thermal Cartridge heaters

National Plastic Heater, Sensor & Control inc.

ME 492: Hot glue pot design

Preliminary Engineering Model:

How fast can it heat up?

Staring of Heater for 1tot Glue Pot Assume that the glue pot is made of a highly conductive metal 4- do ----> Goal is to heat the metal from Ti to Ty in a desived time h internal st. The average heating vale is annthat 10/ $Q = \frac{mc(T_{+} - T_{i})}{\Delta t} \quad (1)$ $\mathcal{V} = \frac{\pi}{4} \left(d_0^2 - d_1^2 \right) \left(h - b \right)$ m = pV = mass of metal V= volume of metal C = specific heat of metal + # 200 Tf = final temperature = = steady operating T $= \frac{\pi}{4} d_0^2 h - \frac{\pi}{4} d_1^2 (h-b)$ Ti = mitral temperature At = time it takes glue pot to heat up

ME 492: Hot glue por design

Preliminary Engineering Model:

How fast can it heat up?

Example: Schodule 40 Aluminum pipe, nominal 1.25 mch the operating

$$d_0 = 1.66 \text{ mch} = 4.216 \text{ cm}$$

 $d_1 = 1.38 \text{ mch} = 3.505 \text{ cm}$
chuose $b = 0.25 \text{ mch} = 0.6355 \text{ cm}$, $h = 2.5 \text{ mch} = 6.35 \text{ cm}$
 $\mathcal{V} = \frac{4}{4} \left[(4.216 \times 10^2 \text{ m})^2 (6.35 \times 10^2 \text{ m}) - (3.505 \times 10^2 \text{ m})^2 (6.35 \times 10^2 \text{ cm}) \right]$
 4.266×10^{-5}
 $\mathcal{V} = 3.35 \times 10^{-5} \text{ m}^3$
 $M = \left(2700 \frac{\text{kg}}{\text{m}^3} \right) \left(3.35 \times 10^{-5} \text{ m}^5 \right) = 0.0905 \text{ kg}$ (919)

Preliminary Engineering Model:

How fast can it heat up?

$$\frac{2}{\sqrt{2}}$$
Sizering of 14aden for Hot Glue Pot (continued)

$$dt = 10mm = 600 \text{ s}$$

$$T_{i} = 20^{\circ}\text{C}$$

$$T_{f} = 135^{\circ}\text{C} \qquad (low temperature hot glue melter at 121°C)$$

$$Q = (0.0905 \text{ kg})(896 \frac{J}{\text{kgC}})(\frac{150 - 20°C}{(600°S)})$$

$$Q \approx 15W$$

$$Misteral use At = 5 \text{ mm} = 300 \text{ s} \implies Q \approx 30W$$

$$Use DC Parren$$

$$Q = \frac{\sqrt{2}}{R} \qquad 12V \qquad R = \frac{\sqrt{2}}{Q} = \frac{144\sqrt{2}}{30W} = 4.8.52$$

ME 492: Hot glue pot design

Preliminary Engineering Model

 \bigcirc

Heater_sizing_hot_glue_pot.xlsx

ME 122 Design Problem Size the heater for a new hot glue melting pot

Formulas Heater power = $Q = m^*c^*(Tf - Ti)/delta_t$ Mass of metal = $m = rho^*V$ Volume of metal = $V = (pi/4)^*(h^*do^2 - (h-b)^*di^2)$

Properties of 6061-T6 Aluminum from http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA6061t6

rho	2.7 g/cm^3	2700 kg/m^3
с	0.896 kJ/kg/C	896 J/kg/C
Glue melting par	rameters	
Ti	20 C	initial temperature = room temperature
Tf	130 C	operating temperature = 10C + melting point of low temp hot glue, which is approx 121 C
deltat	10 min	https://www.hotmelt.com/blog/high-temp-hot-melt-vs-low-temp-hot-melt
Standard sizes fo	or Alum https://	www.onlinemetals.com/merchant.cfm?id=73&step=2
Schedule	40:	
Nomin: do	o di	
1.25"	1.66	1.38
1.5 incl	1.9	1.61
do (inː di (in) h 1.66 1.38	(in) b (in) 2.5	V (in^3) V (m^3) m (kg) Q (W) 0.25 2.04525536 3.35157E-05 0.0904924X 14.9

Conceptual Prototypes

Concept Sketches

unheated, sloped hid Safety 3 cleaning

- mminute heat loss - mminute heat loss - mminute - surface temperature of exposed surfaces

- well thickness, t

- D - DH/D

D kt

- Hg = depth of glue - Heater design Analysis : heat up time

18

Mmmal Cotpont base

ME 492: Hot glue pc