
ME 491 Joystick Control of DC Motors
November 2017 Gerald Recktenwald
v: November 7, 2017 gerry@pdx.edu

Introduction

This document describes the use of a joystick as input to a motor controller board. Figure 1 shows
the block diagram of the system. A joystick with x-y motion and a momentary button provide input
to an Arduino (or similar) microcontroller. The microcontroller supplies logic signals and power for
the logic circuits of a TB6612 dual half-bridge motor controller. The output of the half-bridge is a
PWM signal that controls the speed and direction of two DC motors.

Power from the motors comes from a separate supply (Vm) with a common ground shared by the
Arduino. The TB6612 controller can work with supply voltages in the range 4.5 ≤ Vm ≤ 13.5 VDC.
For small motors, the +5V supply of the Arduino may be sufficient for Vm, so that an external
supply may not be necessary. As a demonstration for ME 491, two DC motors are powered from
the +5V supply on an Arduino Uno board.

The emphasis of this document is on the translation of the analog signals from the joystick to
the speed and direction of the two DC motors. The TB6612 motor controller is described only in
terms of the logic pins necessary to affect the desired response of the motors. The logic signals
to the TB6612 are managed by a small library (MMEmotor) that simplifies the Arduino code. A
sample Arduino program is presented that demonstrates how the block diagram in Figure 1 can be
implemented.

A TB6612 can also be configured to drive a single stepper motor. Refer to the tutorial on the
Adafruit web site1 for a wiring guide and sample code using the Arduino Stepper library2. The
stepper motor configuration is not discussed in this document.

The system described in this paper uses the operator of the joystick as the feedback control
system. In other words, the software running on the Arduino is just an open-loop control system.
To implement a feedback control system some source of measurement error, such as the desired
position of an actuator or desired speed of the motor would be necessary. Feedback control is not
defined in this document.

1https://learn.adafruit.com/adafruit-tb6612-h-bridge-dc-stepper-motor-driver-breakout
2https://www.arduino.cc/en/Reference/Stepper

Arduino

Joystick

Vcc

x
y
button

Vm

GND

GND

Logic

TB6612
Motor A

Motor B

Figure 1: Block diagram for the joystick control of two DC motors.

ME 491 :: DC motor control via joystick 2

PWMA

AIN2

AIN1

STBY

BIN1

BIN2

PWMB

GND

VM

VCC

GND

A01

A02

B02

B01

GND

Sparkfun TB6612 Breakout Board

Figure 2: Top and bottom views of the Sparkfun TB6612 breakout board used in the joystick demon-
stration apparatus. Photographs are from https://www.sparkfun.com/products/9457.
Annotations are added to the image on the left.

Table 1: Pin definitions for the TB6612 breakout board used in the joystick demonstration apparatus for
controlling two brushed, DC motors. Valid alternatives exist for different pin numbers and wire
colors. AO1, AO2, BO1 and BO2 are outputs from the TB6612 to DC motors A and B, and
hence, do not have Arduino pins. One of the ground pins on the TB6612 is not connected,
though for high current applications the ground pins serve as heat dissipation paths, so it
should be connected.

Board
label

Arduino
pin

Wire
color

Board
label

Arduino
pin

Wire
color

VM 5V red PWMA 10 green

BCC 5V red AIN2 9 yellow

GND GND black AIN1 8 blue

AO1 NA red STBY 7 white

AO2 NA black BIN1 5 blue

BO2 NA red BIN2 4 yellow

BO1 NA black PWMB 3 green

GND GND black GND GND not used

ME 491 :: DC motor control via joystick 3

Figure 3: Photograph of the Adafruit joystick board, from www.adafruit.com. On the left of the
image, 5 input/output pads with labels, Vcc, Xout, Yout, Sel and GND are visible. Vcc and
GND are for DC power compatible with the analog inputs of the microcontroller, e.g., 3.3 VDC
or 5 VDC. Xout and Yout are the potentiometer outputs, which are connected to analog input
channels of the microcontroller. Sel is the momentary output button, which is connected to
one of the interrupt channels on the microcontroller.

Motor Controller Board

Figure 2 shows the top and bottom of the TB6612 breakout board from Sparkfun3. The Adafruit
version of the board looks different, but has the same pins (in a different physical layout) and the
same functionality4. The TB6612 is a dual half-bridge motor driver that can supply up to 1A to
each of two brushed DC motors.

Table 1 is the wiring for the demonstration board for ME 491. Different pin assignments and
(of course) wire colors are feasible. However, the pin assignments in Table 1 must match the code
in Listing 2.

Joystick

Figure 3 is a photograph of an inexpensive ($5 USD) joystick from Adafruit5. Similar products are
available from other vendors6. The key feature is that the joystick provides input control in two
directions that we will call x and y. The directions correspond to the motion of the joystick and do
not necessarily require the output to be assigned to a physical direction. In fact, direction x in this
system is used to set the speed and rotation direction of Motor A and direction y is used to set the
speed and rotation direction of Motor B.

The joystick has two potentiometers that have wipers moved by the knob. One potentiometer
produces a control signal in the x direction. The other potentiometer produces a control signal in
the y direction. The knob has springs that return the potentiometers to a center or neutral position
when no lateral force is applied to the top of the knob. Typically the neutral position is associated
with x = 0 and y = 0. The knob can be displaced in either the +x or −x direction while being
simultaneously displaced in the +y or −y direction.

3https://www.sparkfun.com/products/9457
4https://www.adafruit.com/product/2448
5https://www.adafruit.com/product/512
6See https://www.sparkfun.com/products/9760 and https://www.amazon.com/dp/B00WH89RTS/

ME 491 :: DC motor control via joystick 4

Each potentiometer has a single output line that is connected to an analog input channel. The
output is a voltage between GND and Vcc. The Arduino code reads the analog input to obtain the
magnitude and direction of the control signals that are determined by the knob position.

Find Voltage Output in the Neutral Position

When the joystick knob is in the neutral position, the x- and y-direction potentiometers are
nominally in the middle of their range. When digitized on the analog input channel of an Arduino
Uno, the potentiometer reading would be roughly half of the 10-bit input range, or a value of
511. However, when the knob is in the neutral position, the analog input values are unlikely to be
exactly 511 due to physical and electrical imperfections. A simple calibration can correct for the
deviation from the midpoint of the analog input scale. Remember that both the x and y channels
are independent, so when we refer to the analog input scale, we can mean either x or y inputs.

To calibrate the joystick, connect it in the final circuit configuration, i.e., use the circuit with
the TB6612 and any other components. Run the simple Arduino code in Listing 1 to read and
print the values on the analog input lines corresponding to the x and y axis of the joystick. During
calibration keep the joystick knob in the neutral position. Record the output values for the two
analog input channels.

The calibration experiment gives the values on the analog input channels when the joystick
knob in the neutral position. Considering that the joystick allows motion in the forward and reverse
direction, the neutral position corresponds to x = 0 and y = 0, even though both potentiometers
are in the nominal middle of their range. The calibration values for the x- and y-directions are likely
to be different.

Define the Deadband

We cannot assume that analog input value will be equal to the calibration values for x = 0 and
y = 0 every time the knob is released to the neutral position. Small variations in the input signal are
due to noise and drift, and because the potentiometer may not return to the same physical position
every time the knob is released. To accomodate variations in the analog signal corresponding to
the neutral position, we introduce a deadband range of analog input values that we consider to be
equivalent to neutral.

// File: joystick_calibration.ino

void setup() {

Serial.begin(9600);

}

void loop() {

int xinput=0, yinput=1, xpot, ypot;

xpot = AnalogRead(xinput);

ypot = AnalogRead(yinput);

Serial.print(xpot); Serial.print(" "); Serial.println(ypot);

}

Listing 1: Simple Arduino code to print analog input values corresponding to the joystick in the neutral
position. Note that this code can be also useful as a check on the circuit for the joystick.

ME 491 :: DC motor control via joystick 5

Amin

– Smin

Smin

Amax

– Smax

Smax

S+

S–

zlow znom zhigh

0

deadband

Analog input scale

PW
M

 o
ut

pu
t s

ca
le

Figure 4: Nomenclature for mapping analog input values from the joystick (potentiometer) to the 8-bit
PWM signals used to control motor speed. Motor direction is determined by the S+ and S−
parts of the mapping.

The deadband is a range around the neutral position of the knob that we consider to be zero
output from the joystick. There are separate deadbands for the x- and y-direction potentiometers.
Suppose the analog input reading on the x-direction pot is 502 (on a 10-bit scale). Then we might
specify the deadband as 10 units on either size of 502, i.e., a reading in the range 492 ≤ p ≤ 512 is
considered to be zero. Therefore, the calibration experiment gives us the nominal values of analog
input signals corresponding to x = 0 and y = 0, and we choose a range of input values slightly to
account for variations in the signal. The size of the deadband is somewhat arbitrary. A smaller (±5
units), or larger (±15 units) may also work.

Map Analog Input to PWM Output

The joystick provides a control signal from the user. Direction of each motor is controlled by logical
lines on the input of the TB6612. Speed of each motor is controlled by the PWM signals input to
the TB6612. The MMEmotor library provides a programming interface to manage the logical lines
and PWM levels. In this section we describe how to map the joystick inputs to the desired motor
control outputs. Figure 4 and Table 2 define nomenclature used in that task.

Figure 4 is a diagram that shows how the deadband and analog input range are used to compute
the motor speed setting from the reading of the analog input. Table 2 defines variables appearing in
Figure 4. We use those variables to map the analog inputs from the joystick to PWM outputs sent
to the TB6612 motor control board. Note that mapping is the same for both x and y directions.

In addition to the deadband for the potentiometer input, the motors exhibit their own deadband
behavior. A small, brushed, DC motor will not turn unless the PWM duty cycle is above a threshold
that we call Smin (minimum speed). It makes sense to map the deadband limits of the potentiometer
to the value of Smin, since any smaller value of the duty cycle will not result in motion of the motor.

We also define Smax (maximum speed) as the upper limit of the duty cycle for the PWM signal
to the motor controller. Unlike Smin, which is due to the physical limitations of the motor, Smax is

ME 491 :: DC motor control via joystick 6

Table 2: Definition of parameters used to map the joystick potentiometers to the PWM duty cycle that
controls motor speed. Refer to Figure 4 for a graphical interpretation of these parameters.

Parameter
Range
or value Comment

Amin 0 Minimum 10-bit integer value for the analog input
range. Constant.

Amax 1023 Maximum 10-bit integer value for the analog input
range. Constant.

Smin 0 ≤ Smin < Smax Minimum value of the duty cycle. Smin is the small-
est value of the duty cycle that causes the motor to
rotate.

Smax ≤ 255 Maximum value of the duty cycle. Smax is used to
limit maximum motor speed, if that is desired.

znom ≈ 511 Nominal value of analog input when the joystick
knob is in the neutral position. znom is the analog
input value for a position (x or y) equivalent to zero.
The ”z” is meant to suggest ”zero”.

zlow znom − δ lower range of deadband for analog input reading,
δ ≈ 10

zhigh znom + δ lower range of deadband for analog input reading,
δ ≈ 10

a value that we choose in order to limit the speed of the motor. Choosing Smax = 255 allows the
maximum motor speed since the PWM duty cycle is specified as an 8-bit value.

The first step in the mapping is to determine whether the joystick indicates a forward or reverse
direction. In other words, we have to determine whether the analog input value is greater than zhigh
(positive direction) or less than zlow (negative direction). Use S+ and S− to designate the PWM
output values for forward and reverse direction of the motor, respectively.

From the geometry of Figure 4 we obtain the following formulas for S+ and S−.

S+ = Smin +
p− zhigh

Amax − zhigh
(Smax − Smin) (1)

S− = −Smax +
p−Amin

zlow −Amin
(−Smin − (−Smax))

= −Smax +
p−Amin

zlow −Amin
(Smax − Smin) (2)

Note that Amin = 0 and Amax = 1023 for 10-bit analog input. Equation (1) and Equation (2) use a
linear variation of PWM output with potentiometer position. A non-linear function could be used
instead, though the advantage of doing so is not obvious. Physical testing shows that the mapping
in Equation (1) and Equation (2) works well.

ME 491 :: DC motor control via joystick 7

10 kΩ

220 Ω
220 Ω

5V

B1

D02

D12

Figure 5: Button and LED circuits.

Arduino Code

The code in the TB6612_two_motor_joystick.ino sketch is spread over Listing 2, 3 and 4. The
code can be downloaded from the web page for Lecture 7 in ME 491 for Fall 2017, http://web.
cecs.pdx.edu/~gerry/class/ME491/lecture/ME491_lecture_07.html.

Listing 2 contains the code to define global variables and setup function for one-time initializa-
tion tasks. The setup function also contains code for the potentiometer calibration, which is only
included if the #define JOYSTICK_CALIBRATION line is un-commented.

Listing 3 contains the loop function, which is repeated indefinitely and the get_speed function,
which implements Equation (1) and Equation (2). Four lines in the loop function do the work of
setting the motor speeds according to the joystick potentiometer voltages.

// -- Get speed value from joystick position

x_speed = get_speed(X_INPUT_PIN, XLOW, XHIGH, min_speed, max_speed, ANALOG_MAX);

y_speed = get_speed(Y_INPUT_PIN, YLOW, YHIGH, min_speed, max_speed, ANALOG_MAX);

// -- Spin both motors. Direction determined by the sign of x_speed and y_speed

motorA.moveAtSpeed(x_speed);

motorB.moveAtSpeed(y_speed);

Of course, this compact code is made possible by the utility function get_speed and the code in
the MMEmotor library that defines the moveAtSpeed method for the MMEmotor object.

The Sel button on the Adafruit joystick is used to toggle an LED on and off. The button
input is managed via an interrupt on digital pin 2. The interrupt handler is specified via the call
to attachInterrupt in the setup function. (See Listing—reflst:AdafruitJoystick1.) The interrupt
handler code is in Listing 4.

Figure 5 shows the two circuits used to implement the select button feature of the joystick. The
circuit on the left side of Figure 5 ties digital pin 2 to the button circuit. A pull-up resistor maintains
the pin at HIGH (+5V) until the button is depressed. The right side of Figure 5 is a standard LED
circuit that is activated by digital pin 12.

ME 491 :: DC motor control via joystick 8

// File: TB6612_two_motor_joystick.ino

//

// Demonstrate use of the MME motor library for driving the Sparkfun TB6612

// break-out board. Run two motors at different directions and speeds

// which are controlled by input from an Adafruit joystick board

//

// Gerald Recktenwald, gerry@pdx.edu, created 2017-11-05

#include <MMEmotor.h>

// -- Analog input pins for the joystick

const byte X_INPUT_PIN = 0;

const byte Y_INPUT_PIN = 1;

const int ANALOG_MAX = 1023; // Maximum value for analog input: 10-bit => 1023

// -- Interrupt pin and status for button clicks, Interrupt 0 is on pin 2 !!

const int button_interrupt = 0;

const int LED_pin = 12;

int toggle_on = false; // Global variable stores state changed by button clicks

// Logic pins to control the motors: PWMA and PWMB must be pins capable of PWM output

// User needs to correctly wire these pins to corresponding contacts on TB6612 breakout

#define PWMA 10 // Motor A

#define AIN1 9

#define AIN2 8

#define STBY 7 // Standby pin of TB6612. Shared by both channels

#define PWMB 3 // Motor B

#define BIN1 4

#define BIN2 5

// -- Initialize MMEmotor objects

MMEmotor motorA = MMEmotor(AIN1, AIN2, PWMA, STBY);

MMEmotor motorB = MMEmotor(BIN1, BIN2, PWMB, STBY);

// ---

void setup() {

Serial.begin(9600);

attachInterrupt(button_interrupt, handle_click, RISING); // Register interrupt handler

pinMode(LED_pin, OUTPUT); // LED used to indicate value of toggle_on

// -- Include joystick calibration code ONLY when a new joystick is used.

// In practice the resistance of the joystick potentiometers is not equal to

// half of the maximum resistance. Therefore, the analog input from the pot

// as a voltag divider is not in the middle of the analog input rage.

// The goal of the calibration is to find the analog input values on both

// axes corresponding to the neutral position of the joystick. The following

// loop could be in a separate sketch, but we include it here for convenience.

// Using #ifdef determines whether the code is even compiled, so there is

// no cost of memory or execution speed to include the code here. To run

// the calibration, just uncomment the #define JOYSTICK_CALIBRATION line

// #define JOYSTICK_CALIBRATION

#ifdef JOYSTICK_CALIBRATION

while (1) {

int xpot = analogRead(X_INPUT_PIN);

int ypot = analogRead(Y_INPUT_PIN);

Serial.print(xpot); Serial.print(" "); Serial.println(ypot);

}

#endif

}

Listing 2: Part 1 (of 3) of the Arduino code to demonstrate joystick control of DC motors.

ME 491 :: DC motor control via joystick 9

// ---

void loop() {

// -- Define thresholds used to set deadband around neutral position of the potentiometers

const int XLOW = 492, XHIGH = 512;

const int YLOW = 504, YHIGH = 524;

int min_speed = 20, max_speed = 155, x_speed, y_speed, wait_time = 3000;

// -- Get speed value from joystick position

x_speed = get_speed(X_INPUT_PIN, XLOW, XHIGH, min_speed, max_speed, ANALOG_MAX);

y_speed = get_speed(Y_INPUT_PIN, YLOW, YHIGH, min_speed, max_speed, ANALOG_MAX);

// -- Spin both motors. Direction determined by the sign of x_speed and y_speed

motorA.moveAtSpeed(x_speed);

motorB.moveAtSpeed(y_speed);

// -- Turn LED on/off to indicate button state

if (toggle_on) {

digitalWrite(LED_pin, HIGH);

} else {

digitalWrite(LED_pin, LOW);

}

Serial.print(x_speed); Serial.print(" "); Serial.println(y_speed);

}

// --

// Compute motor speed from potentiometer reading. User supplies deadband

// limits and min/max motor speeds

//

// Input:

// pot_pin = analog input pin for this channel (x or y) of the joystick pot

// zlow, zhigh = deadband limits. Analog inputs in the range zlow <= v <= zhigh

// are considered to be zero

// Smin, Smax = minimum and motor speeds on 8-bit scale [0, 255]

// Smin is usually a value below which the motor doesn’t turn

// Smax sets the maximum desired speed when joystick is at max position

// Amax = maximum value for analog input range. Amax = 1023 for Arduino Uno

//

// Output:

// motor_speed = PWM value used to set speed, Smin <= |motor_speed| <= Smax

int get_speed(int pot_pin, int zlow, int zhigh, int Smin, int Smax, int Amax) {

float s; // Use float to avoid rounding during mapping

int pot_val, motor_speed;

pot_val = analogRead(pot_pin);

if (pot_val > zhigh) {

s = Smin + (pot_val - zhigh) * float(Smax - Smin) / float(Amax - zhigh);

motor_speed = constrain(int(s), Smin, Smax); // Make sure speed is in range

} else if (pot_val < zlow) {

s = -Smax + pot_val * float(Smax - Smin) / float(zlow) ; // Amin = 0

motor_speed = constrain(int(s), -Smax, -Smin); // Make sure speed is in range

} else {

motor_speed = 0; // potentiometer reading in the deadband

}

return(motor_speed);

}

Listing 3: Part 2 (of 3) of Arduino code to demonstrate joystick control of DC motors.

ME 491 :: DC motor control via joystick 10

// --

// Interupt handler to respond to button clicks. This function has two

// goals: (1) reject button bounces, and (2) toggle a global flag if a

// lepitmate button click event occurs.

void handle_click()

{

static unsigned long last_interrupt_time = 0; // Zero only when code first runs

unsigned long interrupt_time = millis(); // Read the clock

if (interrupt_time - last_interrupt_time > 200) { // Only count clicks separated by 200 msec

toggle_on = !toggle_on;

}

last_interrupt_time = interrupt_time;

}

Listing 4: Part 3 (of 3) of Arduino code to demonstrate joystick control of DC motors.

