
ME 120 Basic Pulse Width Modulation
Winter 2015 Gerald Recktenwald
v: March 30, 2015 gerry@pdx.edu

1 Basic PWM Properties

Pulse Width Modulation or PWM is a technique for supplying electrical power to a load that has
a relatively slow response. The supply signal consists of a train of voltages pulses such that the
width of individual pulses controls the effective voltage level to the load. Both AC and DC signals
can be simulated with PWM. In these notes we will describe the use of PWM on an Arduino for
controlling LEDs and DC motors.

The PWM pulse train acts like a DC signal when devices that receive the signal have an elec-
tromechanical response time that is slower than the frequency of the pulses. For a DC motor, the
energy storage in the motor windings and the inertia of the rotating mass in the rotor and winds
effectively smooths out the energy bursts delivered by the input pulses so that the motor experiences
a lesser or greater electrical power input depending on the widths of the pulses. For an LED, using
PWM causes the light to be turned on and off at frequency higher than our eyes can detect. We
simply perceive the light as brighter or dimmer depending on the widths of the pulses in the PWM
output.

Figure 1 shows a voltage signal comprised of pulses of duration τo that repeat every τc units of
time. The output of a PWM channel is either Vs volts during the pulse or zero volts otherwise. If
this signal is supplied as input to a device that has a response time much larger than τc, the device
will experience the signal as an approximately DC input with an effective voltage of

Veff = Vs
τo
τc

(1)

The ratio τo/τc is called the duty cycle of the square wave pulses. The effective DC voltage supplied
to the load is controlled by adjusting the duty cycle.

2 Using PWM on an Arduino

An Arduino Uno has 14 digital input/output (I/O) pins1. Conventional, i.e., not PWM, operation
of the digital I/O pins is controlled with the pinMode, digitalRead and digitalWrite functions.
The pinMode function is used to configure a pin as an input or output. When a digital I/O pin is
configured as an input, digitalRead reads the state of the pin, which will be either HIGH or LOW.

1http://arduino.cc/en/Main/ArduinoBoardUno

...

τo

τc

Vs

Figure 1: Nomenclature for definition of PWM duty cycle.

ME 120 :: Basic PWM Output 2

int PWM_out_pin = 9; // Must be one of 3, 5, 6, 9, 10, or 11

// for Arduino Uno

void setup() {

pinMode(PWM_out_pin, OUTPUT);

}

void loop() {

byte PWM_out_level;

PWM_out_level = ... // Code logic to set output level

analogWrite(PWM_out_pin, PWM_out_level);

}

Listing 1: Skeleton of an Arduino sketch to demonstrate the use of pinMode and analogWrite in
controlling PWM output.

In an Arduino sketch, HIGH is a predefined constant that is evaluated as “true” in a conditional
expression, and is equivalent to a numerical value of 1. Electrically, a value of HIGH means the pin
voltage is close to 5 V. Similarly, the constant LOW is interpreted as “false” in conditional expressions,
it is numerically equivalent to 0, and electrically the pin voltage is 0. When a digital I/O pin is
configured for output, digitalWrite is used to set the pin voltage to HIGH or LOW.

On an Arduino Uno, PWM output is possible on digital I/O pins 3, 5, 6, 9, 10 and 11. On these
pins the analogWrite function is used to set the duty cycle of a PWM pulse train that operates at
approximately 500 Hz2. Thus, with a frequency fc = 500 Hz, the period is τc = 1/fc ∼ 2 ms. As
with conventional digital I/O, the pinMode function must be called first to configure the digital pin
for output.

The skeleton of a sketch in Listing 1 shows the basic code components for using PWM on an
Arduino. Two integer variables, PWM_out_pin and PWM_out_level are used to indicate the pin
number and output level respectively. In the setup function, the statement

pinMode(PWM_out_pin, OUTPUT);

configures the PWM_out_pin for output. The OUTPUT symbol is a constant defined by the Arduino
programming tools (the IDE or Integrated Development Environment). The statement

analogWrite(PWM_out_pin, PWM_out_level);

sets the PWM_out_pin pin to the value of the PWM duty cycle and hence the effective voltage
according to Equation (1). The parameter that sets the duty cycle is an 8-bit unsigned integer, i.e.,
a value in the range 0 ≤ PWM_out_level ≤ 255.

The digital output voltage of an Arduino Uno is either 0 V or 5 V. Thus, in Equation (1),
Vs = 5 V. The PWM output level specified with the analogWrite is an 8-bit value that corresponds
to an effective voltage range of 0 to 5 V. Figure 2 depicts the relationships between the PWM output
parameters. The quantities in Figure 2 are linearly related. Thus,

PWM_out_level = 255× τo
τc

= 255× Veff

Vs

Remember that the second input to analogWrite is an unsigned 8-bit value, so PWM_out_level

should be an byte variable type. Since Vs = 5 V always, for routine calculations, we can use the
simple formula

PWM_out_level =
255

5
× Veff (2)

2See http://www.arduino.cc/en/Tutorial/PWM and http://arduino.cc/en/Tutorial/SecretsOfArduinoPWM.

ME 120 :: Basic PWM Output 3

0

1

τo
τc

0

1

Veff
Vs

0

5V

Veff

0

255

PWM_out_level

Figure 2: Scaling relationships for PWM parameters. PWM out level is the 8-bit value used as the
second parameter to the analogWrite function.

Therefore, to supply an effective voltage of 3 V use

PWM_out_level =
255

5
× 3 = 153

3 Implementation Examples

We now show how PWM can be applied to two practical situations: controlling the brightness of
an LED, and controlling the speed of a DC motor. The Arduino code for both cases is the same.

3.1 Blinking an LED

The very first program for most Arduino users is to blink an LED on and off. The wiring diagram
for the LED is shown on the left side of Figure 3. The basic blink program is available as blink.pde,
and is part of the standard installation of the Arduino Integrated Development Environment (IDE).
Make the following menu selections from an open Arduino window

File→ Examples→ Basics→ Blink

Note that the blink.pde program does not use PWM.

3.2 LED Brightness

Blinking an LED involves sending a signal to the LED that is either on or off, true or false, 5V or
0V. Adjusting the brightness of an LED requires the sending voltage values in the range between
0V and 5V using the PWM technique described earlier.

Example 3.1 Modifying the Blink Program to use PWM

Controlling the brightness of an LED with PWM is straightforward. The LED circuit is
connected to one of the PWM output pins and the duty cycle for the PWM output is controlled
with the analogWrite command.

Listing 2 shows two programs for blinking an LED with an Arduino. The program on the
left (blink.pde) is a slight variation on the Blink.pde program that comes as a standard part
of the Arduino distribution. Blink.pde uses the digitalWrite command to turn an LED on
and off. During the “on” state the digital output pin is supplied with 5V.

ME 120 :: Basic PWM Output 4

// File: Blink.pde // File: Blink_dim.pde

// //

// Turns on an LED on for one second, // Turns on an LED on for one second,

// then off for one second, repeatedly. // then off for one second, repeatedly.

// For digital I/O the brightness is set // Use PWM to control variable level of

// to maximum during the "on" phase. // brightness of the "on" phase.

// Use pins be 0, 1, ..., 13 for digital I/O // Use pins 3, 5, 6, 9, 10 or 11 for PWM

int LED_pin = 11; int LED_pin = 11;

// must be in the range 0 <= level <= 255

int level = 20;

void setup() { void setup() {

pinMode(LED_pin, OUTPUT); pinMode(LED_pin, OUTPUT);

} }

void loop() { void loop() {

digitalWrite(LED_pin, HIGH); analogWrite(LED_pin, level);

delay(1000); delay(1000);

digitalWrite(LED_pin, LOW); analogWrite(LED_pin, 0);

delay(1000); delay(1000);

} }

Listing 2: Arduino using PWM to control the brightness of an LED.

The Blink dim.pde program on the right hand side of Listing 2 uses the analogWrite function
to supply a variable voltage level to the LED.

2

Example 3.2 PWM Control of LED Brightness

In this example, the brightness of the LED is set to three levels in an endlessly repeating
sequence. This allows us to verify that the PWM control of brightness is working as it should.
The LED circuit is the same.

Digital
output

Digital
output

5V

Figure 3: Electrical circuit for the basic blink program on the left, and the transistor-controlled
blink program. Note that the program to drive these two circuits can be identical as long as the
same digital output pin is used for both circuits.

ME 120 :: Basic PWM Output 5

// File: LED_three_levels.pde

//

// Use PWM to control the brightness of an LED

// Repeat a pattern of three brightness levels

int LED_pin = 11; // must be one of 3, 5, 6, 9, 10 or 11 for PWM

void setup() {

pinMode(LED_pin, OUTPUT); // Initialize pin for output

}

void loop() {

int dtwait = 1000; // Pause interval, milliseconds

int V1=20, V2=220, V3=120; // 8-bit output values for PWM duty cycle

analogWrite(LED_pin, V1);

delay(dtwait);

analogWrite(LED_pin, V2);

delay(dtwait);

analogWrite(LED_pin, V3);

delay(dtwait);

}

Listing 3: Arduino using PWM to control the brightness of an LED.

The LED three levels.pde sketch in Listing 3 causes an LED to glow at three different
brightess levels specified by the variables V1, V2 and V3. Each level is held for a time interval
specified by the dtwait variable.

2

Example 3.3 Transistor-based PWM Control of LED Brightness

The Arduino digital output pins can supply a maximum current of 40 mA. In many applica-
tions, higher current loads need to be switched. For modestly larger current loads, say up to 1A,
simple NPN transistors can be used. For higher currents, MOSFETs or relays are necessary.
In this example, the basic principle of using a transistor to switch a load is demonstrated. The
load is an LED, which does not need a transistor for switching.

The Arduino sketch is the same as in the preceding examples. The only difference is in the
electrical circuit, where the PWM output pin is tied to the base of an NPN transistor, as shown
in the right half of Figure 3.

2

Continue Writing Here:

ME 120 :: Basic PWM Output 6

Example 3.4 PWM Control of a DC Motor

• DC motor circuit: Transistor control; Diode snubber

• Sketch

2

3.3 Hardware Limits

Each digital output pin of an Arduino Uno can supply no more than 40 mA. To drive modestly
higher current loads, the PWM output can be used with a transistor that switches the load. That
strategy works with small DC motors. For example, a P2N2222 transistor from ON Semiconductor
has a current limit of 600 mA, a factor of 30 higher than a digital pin of an Arduino.

Controlling higher power AC or DC loads introduces the potential for electrical hazards, and
should not be attempted without substantial experience and abundant safety precautions.

A MOSFET (Metal Oxide Field Effect Transistor) device can be used to control DC loads at
higher currents. Arduino shields using MOSFET controls can be purchased from Sparkfun 3 or
other vendors.

One solution for controlling resistive AC loads such as heaters is a product called the Power-
SwitchTail, which is available from the manufacturer (http://powerswitchtail.com/) or Adafruit
(http://www.adafruit.com/products/268).

3.4 Further Reading

The Secrets of Arduino PWM on the official Arduino web site4 explains some of the low-level details
of Arduino PWM, and how to take fine level control over the PWM outputs.

3See, e.g., the Power Driver Shield http://www.sparkfun.com/products/10618 or the mini FET Shield http:

//www.sparkfun.com/products/9627
4http://arduino.cc/en/Tutorial/SecretsOfArduinoPWM

+5V

motor
control
pin 330Ω Collector. Connect to

negative terminal
of motor

Base. Connect to motor
control pin on Arduino

Emitter: Connect to
ground

Orient the diode so
that the black stripe
is at the same voltage
as the positive motor
terminal

+

–

Figure 4: Electrical circuit for using PWM to control the speed control of a DC motor.

ME 120 :: Basic PWM Output 7

3.5 Study Questions

1. What is the effective voltage Veff for Vs = 5V and duty cycles of 25 percent, 38 percent, and
64 percent?

2. A small DC motor is connected to digital output pin 7 of an Arduino Uno. What are the
Arduino commands to set the effective output voltage to 2V, 3V, and 4.5V? Only write the
analogWrite() command.

