
Fully-Developed Flow in a Pipe:

A CFD Solution

Gerald Recktenwald∗

January 22, 2020

Abstract

A CFD model of fully-developed laminar flow in a pipe is derived and
implemented. This well-known problem is used to introduce the basic
concepts of CFD including: the finite-volume mesh, the discrete nature of
the numerical solution, and the dependence of the result on the mesh re-
finement. A Matlab implementation of the numerical model is provided.
Numerical results are presented for a sequence of finer meshes, and the
dependency of the truncation error on mesh size is verified.

One-Dimensional Fully-Developed Flow

The left side of Figure 1 shows the geometry of a simple round pipe of radius
R. The governing equation for fully-developed flow in a pipe is

µ

r

d

dr

(
r
du

dr

)
− dp

dx
= 0 (1)

where u is the velocity component along the pipe axis (x direction), µ is the
dynamic viscosity, and p is the pressure. The pressure gradient is a specified
constant. The velocity is a function of r alone. The boundary conditions are

du

dr

∣∣∣∣
r=0

= 0 (symmetry) (2)

u(R) = 0 (no slip) (3)

∗Mechanical Engineering Department, Portland State University, Portland, OR, 97201,
gerry@me.pdx.edu

1

2

x

r

2R

r

Pipe geometery
One-dimensional,
finite-volume mesh

R

�r �r

j = 1

2

3

M

M-1

enlarged view
of 0 � r � R

Figure 1: Geometry of fully-developed flow in a pipe.

Analytical Solution

The exact solution to Equation (1) subject to the boundary conditions is

u(r) =
R2

4µ

(
−∂p
∂x

)[
1−

(r
R

)2]
(4)

The maximum velocity in the pipe is at the centerline. Evaluating the preceding
formula for r = 0 gives

umax =
R2

4µ

(
−∂p
∂x

)
(5)

For flow in the positive x direction, dp/dx < 0. Combining Equation (4) and
(5) gives a more compact expression for the velocity profile.

u(r) = umax

[
1−

(r
R

)2]
(6)

The average velocity in the pipe is

uave =
1

A

∫
A

u dA =
1

πR2

∫ R

0

u 2πr dr (7)

=
umax

R2

∫ R

0

[
1−

(r
R

)2]
r dr

=
umax

2
(8)

3

The shear stress at the wall is

τw = µ

∣∣∣∣(dudr
)

r=R

∣∣∣∣ (9)

The absolute value sign is necessary because du/dr is negative at the wall1.
Using Equation (6) in Equation (9) gives

τw = µ

∣∣∣∣−(2umax

R

)
r=R

∣∣∣∣ =
4µuave
R

(10)

The definition of the Darcy Friction factor is

f =
8τw
ρu2ave

(11)

Substituting Equation (10) into Equation (11) gives

fpipe =
32µ

ρuaveR
=

64

Re

or
fpipeRe = 64 (12)

where

Re =
ρuaveD

µ
(13)

is the Reynolds number.

Finite Volume Mesh

The exact solution to Equation (1) is continuous. In other words, the function
for u(r) in Equation (4) is defined at all points in 0 ≤ r ≤ R. The numerical
solution is said to be discrete because it is only obtained at a finite number
of points called nodes or vertices. The nodes are represented by the solid dots
and open squares in the right side of Figure 1. The solid dots are interior
nodes. The open squares are boundary nodes, which are used for boundary
conditions, as will be explained later. The radial location of the nodes is rj
where j = 1, . . . ,M is the node index, and M is the total number of nodes
(both boundary and interior).

In the finite-volume method, the nodes are usually located at the center of
discrete volumes called cells or control volumes. For fully developed flow in

1To be more precise, the x-direction shear stress on the +r face of the control volume is
τrx = µ du

dr
. This stress is positive when it acts in the positive x direction. Evaluating this

formula gives τrx < 0 because the shear stress is in the negative direction on the face of the
control volume adjacent to the wall. Thus, the shear stress in the direction opposite to the
main flow is τw = −µ du

dr
. Since a negative shear stress seems a bit contrived, at least without

this explanation, I resorted to the even cheaper trick of using the absolute value. Aren’t you
glad you read this footnote?

4

�r

��

�x

�r
rj

rj+1

rj-1

rn

rs

�x

xi+1xi-1

P

N

S

EW

xexw

Figure 2: Control volume in axisymmetric coordinates.

a round pipe, the axial velocity is a function of r only. The problem is one-
dimensional, and the control volumes are radial slabs delineated by dashed lines
in Figure 1. For simplicity, we will choose control volumes of uniform thickness
∆r.

∆r =
R

M − 2
. (14)

Since the interior nodes are located in the center of the control volumes,
and since the control volumes have uniform thickness, the interior nodes are
uniformly spaced a distance δr = ∆r apart. There is no need to have a uniform
mesh, but for this simple problem it is both convenient and preferred. Although
the mesh is uniform, the distance between the boundary nodes and the nearest
interior nodes is (δr)/2. This is a consequence of locating the nodes at the
geometric center of the control volumes.

Figure 2 shows two views of a typical axisymmetric control volume. On the
left is a three-dimensional representation. On the right is a two-dimensional
view showing the extent of a control volumn in the r and x directions. In the
two-dimensional view, there are nodes in the x-direction, but these nodes do
not play a role in this simple model.

The two-dimensional view of the control volume identifies nodes with the
so-called compass point notation, which aides in the development of the discrete
model. The point in the center of the control volume is called “P”, and is
located at rj . Node N is at rj+1, and node S is at rj−1. The labels “E”, “W”,
“N”, and “S” are mnemonic devices referring to the north, south, east, and west
directions on a compass. The control volume faces in the r-direction are at rn
and rs, where the lower case “n” and “s” refers to the location of the north and
south control volume faces, not the north and south neighbor nodes N and S.

5

Finite Volume Approximation

The discrete model of the flow is obtained by integrating the governing equation
over a typical control volume. Multiply Equation (1) by r dr and integrate with
respect to r. ∫ rn

rs

µ

r

d

dr

(
r
du

dr

)
r dr −

∫ rn

rs

dp

dx
r dr = 0 (15)

The limits of the integrals are rs, and rn, the location of the control volume
faces.

Direct evaluation of the integral in the first term on the left side of Equa-
tion (15) gives ∫ rn

rs

µ

r

d

dr

(
r
du

dr

)
r dr = µ

[(
r
du

dr

)
n

−
(
r
du

dr

)
s

]
(16)

Since dp/dx is a constant, direct evaluation of the integral in the second term
on the left hand side of Equation (15) gives

−
∫ rn

rs

dp

dx
r dr =

dp

dx

∫ rn

rs

r dr ≈ −dp
dx

rP ∆r (17)

where rP = rj . In the last step the exact evaluation of the integral is avoided to
make subsequent algebraic steps more convenient. Substituting Equations (16)
and (17) into Equation (15) gives

µ

[(
r
du

dr

)
n

−
(
r
du

dr

)
s

]
− dp

dx
rP ∆r = 0 (18)

The derivative terms in Equation (18) are approximated by finite differences(
r
du

dr

)
n

≈ rn
uj+1 − uj
rj+1 − rj

= rn
uj+1 − uj

(δr)j
(19)

(
r
du

dr

)
s

≈ rs
uj − uj−1
rj − rj−1

= rs
uj − uj−1
(δr)j−1

(20)

where
(δr)j = rj+1 − rj (δr)j−1 = rj − rj−1

Substituting Equations (19) and (20) into Equation (18) and rearranging gives

−aSuj−1 + aPuj − aNuj+1 = −dp
dx

(21)

where

aS =
µrs

(δr)j−1rj∆r
, aN =

µrn
(δr)jrj∆r

, aP = aS + aN . (22)

Equation (21) applies to each interior node in the computational domain.
The boundary nodes need special treatment as described below. Since there are
M − 2 interior nodes, there are M − 2 versions of Equation (21) that must be
simultaneously satisfied by the set of unknown uj values.

6

r

R

j = 1

2

3

4

Figure 3: Finite volume mesh with two interior nodes and two boundary nodes.

Boundary Conditions

At r = 0, we use a finite-difference approximation to Equation (2)

du

dr

∣∣∣∣
r=0

≈ u2 − u1
r2 − r1

= 0

=⇒ u2 = u1 or u1 − u2 = 0 (23)

At r = R the velocity is zero. Therefore, one boundary condition is

uM = 0 (24)

System of Equations

Consider the mesh with just two interior nodes as depicted in Figure 3. Writing
the boundary condition equations and the two forms of Equation (21) for u2
and u3 gives

u1 − u2 = 0 (node 1)

−aS,2u1 + aP,2u2 − aN,2u3 = −dp
dx

(node 2)

−aS,3u2 + aP,3u3 − aN,3u4 = −dp
dx

(node 3)

u4 = 0 (node 4)

This is a system of four equations in four unknowns that can be written
1 −1 0 0

−aS,2 aP,2 −aN,2 0

0 −aS,3 aP,3 −aN,3

0 0 0 1

u1

u2

u3

u4

 =

0

− dp
dx

− dp
dx

0

 (25)

The solution to this system gives the velocities at the boundary and interior
nodes.

7

In general, for M total nodes in the domain, the equations are

u1 − u2 = 0

−aS,2u1 + aP,2u2 − aN,2u3 = −dp
dx

−aS,3u2 + aP,3u3 − aN,3u4 = −dp
dx

...

−aS,M−1uM−2 + aP,M−1uM−1 − aN,M−1uM = −dp
dx

uM = 0

and the matrix form of the system of equations is

1 −1 0 · · · 0

−aS,2 aP,2 −aN,2 0 · · · 0

0 −aS,3 aP,3 −aN,3 0 0

... 0
. . .

. . .
. . . 0

0 −aS,M−1 aP,M−1 −aN,M−1

0 0 · · · 0 1

u1

u2

u3

...

uM−1

uM

=

0

− dp
dx

− dp
dx
...

− dp
dx

0

(26)

Equation (26) is a tridiagonal system of equations. The solution to this equation
gives the nodal values of uj .

Extracting Results from the Solution

The solution to Equation (26) gives the velocity profile, uj = f(rj) as a set of
discrete (rj , uj) pairs. This data is interesting insofar as it shows the shape of
the velocity profile. Additional information can be obtained from the discrete
uj data.

The shear stress at the wall can be computed from the discrete equivalent
of Equation (9). Using a finite-difference approximation to du/dr we get2.

τw ≈ µ
uM−1 − um
rM − rM−1

(27)

The average velocity is computed by the discrete analog of Equation (7)

uave =
1

A

∫
A

u dA ≈ 1

πR2

M−1∑
i=2

uj2πrj∆r =
2

R2

M−1∑
i=2

ujrj∆r (28)

2Note that the sign of τw will be positive because uM−1 > um and rM > rM−1

8

Computational Procedure

The following steps organize the preceding equations into a sequential compu-
tational procedure.

1. Define the mesh: ∆r, rj , and (δr)j

2. Compute coefficients for each node using Equation (22)

3. Store coefficients in a matrix (or equivalent data structure).

4. Compute and store the right hand side vector in Equation (26)

5. Make any adjustments necessary to implement boundary conditions

6. Solve system of equations to obtain the uj .

7. Compute τw, f , f Re, and any other engineering quantities from the uj
values.

Truncation Error

The truncation error for the approximation leading to Equation (21) is O
(
∆r2

)
.

For convenience let
h = ∆r

If uex (rj) is the exact solution and uj(rj) is the numerical solution, then at any
point in the domain the error is

ej ≡ uj(rj)− uex (rj) ∼ O
(
h2
)

(29)

The largest error in the domain should also obey the order of magnitude estimate

‖ej‖∞ ∼ O
(
h2
)

(30)

This estimate of the truncation error can be used to check the correctness of
any computer code that implements a control-volume finite-difference model of
Equation (1). If the code is working correctly, doubling the number of control
volumes should reduce the largest error by a factor of four.

Matlab Implementation

The numerical model is implemented in the Matlab codes listed in Table 1. The
fullyDev1dr function computes the finite-volume coefficients and stores them
in a sparse tridiagonal matrix. The demoPipe1d and refinePipe1d functions
are main programs that use fullyDev1dr. The demoPipe1d obtains the velocity
profile and friction factor for a single set of parameters. The default values are
M = 4, µ = 1, dp/dx = −1. Running demoPipe1d for eight nodes (six internal
and two boundary nodes) gives

9

m-file function Description

fullyDev1dr Evaluates control-volume, finite-
difference coefficients

demoPipe1d Uses fullyDev1dr to solve the fully-
developed flow problem and plot the ve-
locity profile

refinePipe1d Verifies that the numerical solution ap-
proaches the exact solution as the mesh
is refined.

Table 1: Matlab functions used implement and test the finite-volume approx-
imation to one-dimensional, fully-developed, laminar flow in a pipe.

>> demoPipe1d(8)

fRe =

62.2703

umax = 0.250000 max(u) = 0.250000

and the velocity profile plot in Figure 4. The maximum velocity predicted by
the numerical model is in exact agreement with the analytical solution. The
fRe product predicted by the numerical model is in error by three percent.
This error is due to the error in the velocity gradient at the wall obtained by
the numerical model. Refining the mesh reduces this error.

The refinePipe1d function obtains the numerical model on a series of finer
meshes. Running refinePipe1d gives the following output

>> refinePipe1d

m Delta r fRe max error error ratio

4 0.500000 51.2000 1.563e-002

8 0.166667 62.2703 1.736e-003 9.000

16 0.071429 63.6751 3.189e-004 5.444

32 0.033333 63.9290 6.944e-005 4.592

64 0.016129 63.9834 1.626e-005 4.271

128 0.007937 63.9960 3.937e-006 4.130

256 0.003937 63.9990 9.688e-007 4.064

512 0.001961 63.9998 2.403e-007 4.032

The last column is the ratio of truncation errors on subsequent runs of the
model. As M increases, doubling the number of control volumes reduces the
truncation error by a factor of four, as predicted by Equation (30).

Figure 5 shows the velocity profiles obtained with a sequence of finer meshes.
As the control volume thickness is reduced, the velocity profile from the numer-
ical model quickly approaches the exact velocity profile.

10

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Velocity

r

8 node solution
exact

Figure 4: Velocity profile from the numerical model with six internal nodes and
two boundary nodes.

11

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Velocity

r

4 nodes
8 nodes
16 nodes
32 nodes
exact

Figure 5: Velocity profiles for a series of finer meshes.

12

function [ap,an,as,b,r] = fullyDev1dr(m,rout,mu,dpdx)

% fullyDev1dr CVFD coefficients for 1D fully developed flow in a pipe

%

% Synopsis: [ap,an,as,b,r] = fullyDev1dr

% [ap,an,as,b,r] = fullyDev1dr(m)

% [ap,an,as,b,r] = fullyDev1dr(m,rout)

% [ap,an,as,b,r] = fullyDev1dr(m,rout,mu)

% [ap,an,as,b,r] = fullyDev1dr(m,rout,mu,dpdx)

%

% Input: m = (optional) number of nodes in range 0 <= r <= rout;

% m-2 interior nodes; Default: m = 4

% rout = (optional) outer radiums; Default: rout = 1

% mu = (optional) dynamic viscosity; Default: mu = 1

% dpdx = (optional) pressure gradient; Default: dpdx = -1

% verbose = (optional) flag to control printing of coefficients;

% Default: verbose = 0, no printing

%

% Output: ap,an,as = diagonals of the coefficient matrix for 3 point

% finite volume scheme assuming centerline is symmetry

% BC and wall is no slip

% b = right hand side vector

% r = vector of radial positions of cell centers

if nargin<1, m = 4; end

if nargin<2, rout = 1; end

if nargin<3, mu = 1; end

if nargin<4, dpdx = -1; end

% --- Mesh constants

Deltar = rout/(m-2); % height of control volume = rn - rs

dr2 = Deltar/2; % half-height of control volume

r = [0; (dr2:Deltar:(rout-dr2))’; rout]; % node locations, column vector

dr = [0; diff(r)]; % dr(j) = r(j) - r(j-1)

rn = [0; r(2:m-1)+dr2; rout]; % position of north face

% --- Compute CVFD coefficients

an = zeros(m,1); as = an;

for j=2:m-1

as(j) = mu*rn(j-1)/(dr(j)*Deltar*r(j));

an(j) = mu*rn(j)/(dr(j+1)*Deltar*r(j));

end

ap = an + as;

% --- Adjust boundary coefficients and store rhs vector

ap(1) = 1; an(1) = 1; % symmetry boundary condition

as(m) = 0; ap(m) = 1; % zero slip boundary condition

b = [0; -dpdx*ones(m-2,1); 0];

Listing 1: The fullyDev1dr function computes the finite volume coefficients for
one-dimensional, fully-developed, laminar flow in a pipe.

13

function demoPipe1d(m,rout,mu,dpdx)

% demoPipe1d Test finite volume solution to 1D fully-developed pipe flow

%

% Synopsis: demoPipe1d

% demoPipe1d(m)

% demoPipe1d(m,rout)

% demoPipe1d(m,rout,mu)

% demoPipe1d(m,rout,mu,dpdx)

%

% Input: m = (optional) total number of nodes (including boundary nodes)

% in the model. There are m-2 control volumes. Default: m = 4

% rout = (optional) outer radius of the pipe. Default: rout = 1

% mu = (optional) viscosity. Default: mu = 1

% dpdx = (optional) pressure gradient. Default: dpdx = -1

%

% Output: Plot of velocity profile, print out out f*Re, maximum velocity and

% elapsed time to solve the problem.

if nargin<1, m = 4; end

if nargin<2, rout = 1; end

if nargin<3, mu = 1; end

if nargin<4, dpdx = -1; end

% --- Get CVFD coefficients and solve the system

[ap,an,as,b,r] = fullyDev1dr(m,rout,mu,dpdx);

u = tridiagSolve(ap,-an,-as,b); % Note change of sign for an and as

% --- Compute overal results from numerical solution

m = length(r);

tauw = mu * (u(m-1) - u(m))/(r(m) - r(m-1));

Deltar = rout/(m-2);

uave = sum(u.*r*Deltar)*2/rout^2;

fRe = 16*tauw/(mu*uave)

% --- Evaluate exact solution

umax = rout^2/(4*mu)*(-dpdx);

fprintf(’umax = %f max(u) = %f\n’,umax,max(u));

fprintf(’Elapsed time for %d node solution is %f seconds\n’,m,et);

re = linspace(0,rout);

ue = umax*(1- (re/rout).^2);

plot(u,r,’o’,ue,re,’-’);

legend(sprintf(’%d node solution’,m),’exact’);

xlabel(’Velocity’); ylabel(’r’);

Listing 2: The demoPipe1d function solves the finite volume model for one-
dimensional, fully-developed, laminar flow in a pipe.

14

function refinePipe1d(rout,mu,dpdx)

% refinePipe1d Mesh refinement study for 1D fully-developed pipe flow

if nargin<1, rout = 1; end

if nargin<2, mu = 1; end

if nargin<3, dpdx = -1; end

% --- Prepare for refinement study

umax = rout^2/(4*mu)*(-dpdx); % exact value of maxium velocity

mm = [4 8 16 32 64 128 256 512]; % sequence of finer meshes

Deltar = rout./(mm-2); % CV sizes

symbols = [’ro’;’bs’;’cd’;’m*’;’y^’;’kh’;’gv’;’r>’;’b<’]; % used in plots

fRe = zeros(size(mm)); err = fRe;

legstr = cell(1,length(mm)+1); nplots = 0;

for i = 1:length(mm)

% --- Get CVFD coefficients and solve the system

m = mm(i);

[ap,an,as,b,r] = fullyDev1dr(m,rout,mu,dpdx);

u = tridiagSolve(ap,-an,-as,b); % Note change of sign for an and as

% --- Compute overal results from numerical solution

tauw = mu * (u(m-1) - u(m))/(r(m) - r(m-1)); % wall shear stress

uave = sum(u.*r*Deltar(i))*2/rout^2; % average velocity

fRe(i) = 16*tauw/(mu*uave);

uex = umax*(1 - (r/rout).^2); % exact solution on this grid

err(i) = norm(u-uex,inf); % maximum error

if m<=32 % keep plot from getting too crowded

hold on; plot(u,r,symbols(i,:));

nplots = nplots + 1;

legstr{i} = sprintf(’%d nodes’,m);

end

end

% --- Evaluate exact solution and add it to the plot

re = linspace(0,rout); ue = umax*(1- (re/rout).^2);

plot(ue,re,’-’); xlabel(’Velocity’); ylabel(’r’);

legstr{nplots+1} = ’Exact’; % Add last legend entry

% legstr{1:(nplots+1)} only includes non-empty legend strings

legend(legstr{1:(nplots+1)},’Location’,’northeast’)

hold off

fprintf(’\n m Delta r fRe max error error ratio\n’);

for i=1:length(fRe)

fprintf(’%5d %9.6f %8.4f %12.3e’,mm(i),Deltar(i),fRe(i),err(i));

if i>1, fprintf(’ %8.3f\n’,err(i-1)/err(i));

else, fprintf(’\n’);

end

end

Listing 3: The refinePipe1d function solves the finite volume model for a series
of finer meshes.

