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Overview

1. Use the forward finite difference approximation to ∂u/∂t.

∂u

∂t
≈
uk+1
i − uki

∆t

2. Use the central difference approximation to ∂2u/∂x2 at time tk.

∂2u

∂x2

∣∣∣∣∣
xi

=
uki−1 − 2uki + uki+1

∆x2

3. Solve for uk+1
i . The computational formula is explicit: each value of uk+1

i can be

updated independently.

4. FTCS is easy to implement, but is only conditionally stable

5. Truncation errors are O
(
(∆x)2

)
and O(∆t).
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Finite Difference Operators

Choose the forward difference to evaluate the time derivative at t = tk.

∂u

∂t

∣∣∣∣
tk,xi

=
uk+1
i − uki

∆t
+O(∆t) (1)

Approximate the spatial derivative with the central difference operator and take all nodal

values at time tk.
∂2u

∂x2

∣∣∣∣∣
xi

=
uki−1 − 2uki + uki+1

∆x2
+O(∆x

2
) (2)
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FTCS Approximation to the Heat Equation

Substitute Equation (1) and Equation (2) into the heat equation

uk+1
i − uki

∆t
= α

uki−1 − 2uki + uki+1

∆x2
+O(∆t) +O(∆x

2
) (3)

Drop truncation error terms to get

uk+1
i − uki

∆t
= α

uki−1 − 2uki + uki+1

∆x2
(4)
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FTCS Computational Molecule

Solution is known 

for these nodes

FTCS scheme enables 

explicit calculation of 

u at this node
t

i i+1i 1i=1 n
x

k+1

k

k 1

. . .
. . .

. . .
. . .

. . .
. . .

. . .

x=Lx=0

t=0, k=1
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FTCS Approximation to the Heat Equation

Solve Equation (4) for uk+1
i

u
k+1
i = ru

k
i+1 + (1− 2r)u

k
i + ru

k
i−1 (5)

where r = α∆t/∆x2.

FTCS is an explicit scheme because it provides a

simple formula to update uk+1
i independently of the

other nodal values at tk+1.

t

i i+1i 1i=1 nx

k+1

k

k 1

. . .
. . .

. . .
. . .

. . .
. . .

. . .

x=Lx=0

t=0, k=1
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demoFTCS Code

function errout = demoFTCS(nx,nt)

% ... Comments and processing of optional inputs skipped

% --- Assign physical and mesh parameters

alfa = 0.1; L = 1; tmax = 2; % Diffusion coefficient, domain length and max time

dx = L/(nx-1); dt = tmax/(nt-1);

r = alfa*dt/dx^2; r2 = 1 - 2*r;

% --- Assign IC and BC. u is initialized to a vector that includes BC

x = linspace(0,L,nx)’; u = sin(pi*x/L);

% --- Loop over time steps

for k=2:nt

uold = u; % prepare for next step

for i=2:nx-1

u(i) = r*uold(i-1) + r2*uold(i) + r*uold(i+1);

end

end

Remember that the formula for updating uk+1
i is

u
k+1
i = ru

k
i+1 + (1− 2r)u

k
i + ru

k
i−1
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Alternative formulation to the FTCS Algorithm

Equation (5) can be expressed as a matrix multiplication.

u
(k+1)

= Au
(k)

(6)

where u(k+1) is the vector of u values at time step k + 1, u(k) is the vector of u values

at time step k, and A is the tridiagonal matrix

A =



1 0 0 0 0 0

r (1− 2r) r 0 0 0

0 r (1− 2r) r 0 0

0 0 . . . . . . . . . 0

0 0 0 r (1− 2r) r

0 0 0 0 0 1


. (7)

The first and last rows of A are set to enforce the Dirichlet boundary conditions at x = 0

and x = L.
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Run the demoFTCS code

>> demoFTCS

Error in FTCS solution = 0.002221
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Unstable FTCS Solution

movieFTCS(15):
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Conditionally Stable FTCS Scheme

Observations:

• The FTCS solution appears to be stable at first

• Toward the end of the simulation time, oscillations grow exponentially

• Instability is not caused by truncation error

• Instability is fed by round-off errors, but not directly caused by round-off

We’ll use a simplified form of Fourier Stability Analysis

• Suppose that the initial condition is a small sine wave

• The correct solution is a decay of the sine wave

• Under what condition does the solution grow instead of decay?

Stability or instability is an intrinsic property of the scheme

FTCS is conditionally stable for solutions to the heat equation.
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Stability Analysis

Suppose the initial condition looks like this

u0(x) = σ cos

(
πx

∆x

)
= σ(−1)

i−1

where σ is a suitably small value

The solution at time step k = 2 is

u
(2)
i = r

(
u0(xi+1) + u0(xi−1)

)
+ (1− 2r)u0(xi)

= rσ
(
(−1)

i
+ (−1)

i−2)
+ (1− 2r)σ(−1)

i−1

= −rσ
(
(−1)

i+1
+ (−1)

i−1)
+ (1− 2r)σ(−1)

i−1
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Stability Analysis

Since (−1)i+1 = (−1)i−1 for any i, the solution at k = 2 can be further simplified

u
(2)
i = −2rσ(−1)

i−1
+ (1− 2r)σ(−1)

i−1

= (1− 4r)σ(−1)
i−1

= (1− 4r)u0(xi)

The pattern is

u
(2)
i = (1− 4r)u0(xi)

u
(3)
i = (1− 4r)u

(2)
i (xi) = (1− 4r)

2
u0(xi)

u
(4)
i = (1− 4r)u

(3)
i (xi) = (1− 4r)

3
u0(xi)

where u
(2)
i is the numerical solution at xi and k = 2;

and where (1− 4r)2 is the square of (1− 4r)
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Stability Analysis

The general pattern is

u
k
i = (1− 4r)

k−1
u0(xi).

where (1− 4r)k−1 is (1− 4r) raised to the k − 1 power.

Therefore, the solution grows when |1− 4r| > 1.

Therefore, stability requires 1− 4r < 1 and −(1− 4r) < 1.

1− 4r < 1 =⇒ −4r < 2 =⇒ r > −
1

2
true for any r > 0.

The second case is

−(1− 4r) < 1 =⇒ 4r < 2 =⇒ r <
1

2
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Stability Analysis

The quick and dirty stability analysis shows that the FTCS scheme is stable only if

r =
α∆t

∆x2
<

1

2
. (8)

Recall: α is a parameter of the physical problem.

We must choose ∆t and ∆x so that Equation (8) is satisfied.

ME 448/548: FTCS Solution to the Heat Equation page 14



Working with the FTCS Stability Criterion

To increase accuracy, we want to decrease both ∆x and ∆t.

For a given ∆x, the stability limit for FTCS imposes an upper limit on ∆t

∆t <
∆x2

2α
(9)

Choosing ∆t and ∆x so that r <
1

2
does not guarantee an accurate numerical solution.

r <
1

2
only guarantees that the FTCS solution will not blow up.
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Working with the FTCS Stability Criterion

When reducing ∆x and ∆t to

improve accuracy, follow a path

like A→C not A→B.

Note that the axes have

logarithmic scales.

log(∆t)

log(∆x)

A
B

C

Unstable

Stable

∆t = 
2α 

(∆x)2
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Measuring the FTCS Truncation Error

The error reported by demoFTCS is defined as

E(nx, nt) =
1
√
nx
‖uki − u(xi, tk)‖2 (10)

The factor of 1/
√
nx converts ‖uki − u(xi, tk)‖2 to an average error.
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Measuring the FTCS Truncation Error

Designate the local error at x = xi and t = tk as

e
k
i = u

k
i − u(xi, tk). (11)

Define ēk as an RMS average error per node at time step tk

ē
k ≡

[
1

nx

nx∑
i=1

(e
k
i )

2

]1/2

(12)

Algebraic substitution shows that E(nx, nt) = ēk.

If the solution to the heat equation is smooth, then E(nx, nt) = O(∆t) +O(∆x2)
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Measuring the truncation error

Systematically reduce ∆x and ∆t to determine whether truncation error prediction is

realized by the code.

We know the exact solution, so we use Equation(10).

This is a test of whether the code correctly implements FTCS.

Recall that for FTCS

E(nx, nt) = O(∆t) +O(∆x
2
)

but stability requires ∆t = C∆x2, where C is a constant.

Therefore, a stable solution to FTCS should demonstrate

E(nx, nt) = O(∆x
2
)
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Measuring the truncation error

Suppose we don’t know the exponent of the truncation error for our code.

In other words, instead of

E(nx, nt) = O(∆x
2
)

we have

E(nx, nt) = O(∆x
p
)

where p is uknown

Since ∆x =
L

nx − 1
we have

E(nx, nt) = O(∆x
p
) = O

(
Lp

(nx − 1)p

)
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Measuring the truncation error

Simplify the preceding expression

E(nx, nt) = O(∆x
p
)

= O
(

Lp

(nx − 1)p

)

∼ O
(

1

(nx − 1)p

)
ignore multiplicative constants

∼ O
(

1

npx

)
leading powers dominate

Therefore, we expect

E(nx, nt) = O
(

1

npx

)
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Measuring the truncation error

Measure E(nx, nt) on two difference meshes, nx,1 and nx,2.

With

E(nx, nt) = O
(

1

npx

)
we form the ratio

E(nx,2, nt)

E(nx,1, nt)
=
npx,1

npx,2
=

(
nx,1

nx,2

)p
Solve for p

p =
log (E(nx,2, nt)/E(nx,1, nt))

log (nx,1/nx,2)
.
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convFTCS Code

function convFTCS

% convFTCS Convergence of FTCS on a series of finer spatial meshes

% --- Set constants to be consistent with demoFTCS

alfa = 0.1; L = 1; tmax=2; rsafe = 0.49999; % stable r<0.5

% --- Specify nx and compute nt consistent with stability limit

nx = [8 16 32 64 128 256]; dx = L./(nx-1);

nt = ceil( 1 + alfa*tmax*((nx-1).^2)/(rsafe*L^2) );

% --- Loop over mesh sizes, store error and compute order of scheme

fprintf(’\n nx nt error E(j)/E(j-1) p\n’);

er = NaN; p = 0;

for j=1:length(nx);

e(j) = demoFTCS(nx(j),nt(j));

if j>1

er = e(j)/e(j-1); p = log(er)/log(nx(j-1)/nx(j));

end

fprintf(’ %5d %5d %11.3e %8.4f %8.4f\n’,nx(j),nt(j),e(j),er,p);

end

% -- plotting code skipped ...
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Running the convFTCS Code

>> convFTCS

nx nt error E(j)/E(j-1) p

8 21 6.028e-03 NaN 0.0000

16 92 1.356e-03 0.2249 2.1524

32 386 3.262e-04 0.2406 2.0553

64 1589 7.972e-05 0.2444 2.0329

128 6453 1.970e-05 0.2471 2.0170

256 26012 4.895e-06 0.2485 2.0085

The last column of text output shows

that demoFTCS has the right truncation

error behavior.
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Summary for the FTCS Scheme

• FTCS is easy to implement. The update formula is

u
k+1
i = ru

k
i+1 + (1− 2r)u

k
i + ru

k
i−1

• The FTCS scheme is conditionally stable when

r =
α∆t

∆x2
< 1/2

In two spatial dimensions with ∆y = ∆x, the stability condition is r < 1/4. In 3D

with ∆y = ∆z = ∆x, the stability condition is r < 1/8.

• There are much better schemes for solving the heat equation.

• FTCS is a toy used to introduce the numerical solution of PDEs
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