FTCS for the 1D Heat Equation, in a Nutshell
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1. Combine finite difference approximations for du/dt at © = x;
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Drop the truncation error terms and solve for u# ™!
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where r = aAt/Az?. Equation (4) is the computational formula for the FTCS scheme. It is

an explicit scheme because it provides a simple formula to update uf“

other nodal values at t1.

2. Computational Molecule

FTCS scheme enables
explicit calculation of
u at this node

Solution is known
for these nodes

3. MATLAB implementation: code from demoFTCS

% --- Assign IC and BC. u is initialized to a vector that includes BC
x = linspace(0,L,nx)’; u = sin(pi*x/L);
% —-- Loop over time steps
for k=2:nt
uold = u; % prepare for next step

for i=2:nx-1
u(i) = r*uold(i-1) + r2*uold(i) + r*uold(i+1);
end
end

A more general implementation is in heatFTCS.
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4. Stability: A computational scheme is stable if
small perturbations in the values of the dependent Unstable
variable do not grow unboundedly. The perturba- log(A)
tions may arise in the initial conditions, boundary
conditions, or from roundoff.

The FTCS is conditionally stable for the heat
equation when
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5. Measuring truncation error: When an analytical solution is known, we can compare the nu-
merical solution (in this case from FTCS) with the exact solution.

Define:

E(ng,ny) = i — (s, te)l (5)
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where n, is the number of z-direction nodes in the mesh.

The local error at x = x; and ¢t = t;, is
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Let e as an RMS average error per node at time step ty
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This definition of the error is consistent with the order of accuracy of the solution. A little

algebra shows that E(n,,n;) = *.

We are most interested in the rate at which € or E(n,,n:) approach zero. Applying FTCS to
the heat equation gives
E(ng,ne) = O(At) + O(Az?)
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