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to get a system of equations having the same structure as the BTCS method
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Equation (3) is the computational formula for the Crank-Nicolson scheme. It is an implicit
scheme because all uk+1 values are coupled and must be updated simultaneously.
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3. Stability:

The Crank-Nicolson method is unconditionally stable for the heat equation.

The benefit of stability comes at a cost of increased complexity of solving a linear system of
equations at each time step. The Crank-Nicolson scheme is not significantly more costly to
implement than the BTCS Scheme

4. The Crank-Nicolson scheme has a truncation error that is O(∆t2) +O(∆x2)
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5. For the one-dimensional heat equation, the linear system of equations for the Crank-Nicolson
scheme can be organized into a tridiagonal matrix that looks just like the tridiagonal matrix
for the BTCS scheme.
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The coefficients of the interior nodes (i = 2, 3, . . . , N − 1) are

ai = 1/∆t+ α/∆x2 = 1/∆t− (bi + ci),

bi = ci = −α/(2∆x2),

di = −ciuki−1 + (1/∆t+ bi + ci)u
k
i − biuki+1.

As with the BTCS scheme, this system of equations is efficiently solved with a form of LU
factorization. The LU factors need to be computed only once before the first time step.

6. Matlab implementation: code from demoCN

% --- Coefficients of the tridiagonal system

b = (-alfa/2/dx^2)*ones(nx,1); % Super diagonal: coefficients of u(i+1)

c = b; % Subdiagonal: coefficients of u(i-1)

a = (1/dt)*ones(nx,1) - (b+c); % Main Diagonal: coefficients of u(i)

at = (1/dt + b + c); % Coefficient of u_i^k on RHS

a(1) = 1; b(1) = 0; % Fix coefficients of boundary nodes

a(end) = 1; c(end) = 0;

[e,f] = tridiagLU(a,b,c); % Save LU factorization

% --- Assign IC and save BC values in ub. IC creates u vector

x = linspace(0,L,nx)’; u = sin(pi*x/L); ub = [0 0];

% --- Loop over time steps

for k=2:nt

% --- Update RHS for all equations, including those on boundary

d = - [0; c(2:end-1).*u(1:end-2); 0] ...

+ [ub(1); at(2:end-1).*u(2:end-1); ub(2)] ...

- [0; b(2:end-1).*u(3:end); 0];

u = tridiagLUsolve(e,f,b,d); % Solve the system

end

A more general implementation is in heatCN.

7. A comparison of FTCS, BTCS and Crank-Nicolson shows
that all three have the same spatial truncation error. FTCS
and BTCS have the same temporal truncation error. Crank-
Nicolson has superior temporal truncation error.

Truncation Errors

Scheme Spatial Temporal

FTCS ∆x2 ∆t

BTCS ∆x2 ∆t

C-N ∆x2 ∆t2
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8. The compHeatSchemes function shows that our Matlab implementation of all three schemes
demonstrate the correct behavior of truncation error.

>> compHeatSchemes

Reduce both dx and dt within the FTCS stability limit

------------- Errors ------------

nx nt FTCS BTCS CN

4 5 2.903e-02 5.346e-02 1.304e-02

8 21 6.028e-03 1.186e-02 2.929e-03

16 92 1.356e-03 2.716e-03 6.804e-04

32 386 3.262e-04 6.522e-04 1.630e-04

64 1589 7.972e-05 1.594e-04 3.984e-05

128 6453 1.970e-05 3.939e-05 9.847e-06

256 26012 4.895e-06 9.790e-06 2.448e-06

512 104452 1.220e-06 2.440e-06 6.101e-07

Reduce dt while holding dx = 9.775171e-04 (L=1.0, nx=1024) constant

------------- Errors ------------

nx nt FTCS BTCS CN

1024 8 NaN 2.601e-02 1.291e-03

1024 16 NaN 1.246e-02 2.798e-04

1024 32 NaN 6.102e-03 6.534e-05

1024 64 NaN 3.020e-03 1.570e-05

1024 128 NaN 1.502e-03 3.749e-06

1024 256 NaN 7.492e-04 8.154e-07

1024 512 NaN 3.742e-04 8.868e-08

1024 1024 NaN 1.871e-04 9.218e-08

In the plot of truncation error versus ∆t (right hand plot), there is an irregularity at ∆t ∼
3.9× 10−3. At that level of ∆t, and for the chosen ∆x, which is held constant, the truncation
error due to ∆x is no longer negligible. Further reductions in ∆t alone will not reduce the
total truncation error.
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9. Truncation error is additive.

The truncation error for the finite-difference schemes that we have explored in this class so
far are of the form

ē = O(∆tp) +O(∆xq) (5)
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where p and q are integers. For example, for the Crank-Nicolson scheme, p = q = 2.

The plot below demonstrates the effect of additive truncation errors. The horizontal axis is
the time step size, ∆t. The curves are for different spatial step sizes, ∆x.

If ∆t is reduced while ∆x is held constant, the measured error is reduced until the point that
the temporal truncation error is less than the spatial truncation error.

The results in the plot show that we need to be cognizant of all sources of truncation er-
ror. Usually, reducing ∆t and ∆x will help. However, there are situations where one source
of truncation error dominates and that dominant source limits improvements in other factors
you can control.

In a complex CFD simulation, the role of truncation errors may be hard to isolate. There
are many modeling choices that can affect the result. That said, the fundamental effect of
truncation error is always present.
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