
BTCS Solution to the Heat Equation
ME 448/548 Notes

Gerald Recktenwald

Portland State University

Department of Mechanical Engineering

gerry@pdx.edu

ME 448/548: BTCS Solution to the Heat Equation

Overview

1. Use the backward finite difference approximation to ∂u/∂t.

∂u

∂t

∣∣∣∣
tk,xi

≈
uki − u

k−1
i

∆t

(“backward” because we are using k and k − 1 instead of k + 1 and k.)

2. Use the central difference approximation to ∂2u/∂x2 at time tk+1.

∂2u

∂x2

∣∣∣∣∣
tk,xi

≈
uki−1 − 2uki + uki+1

∆x2

3. The computational formula is implicit: we cannot solve for uk+1
i independently of

uk+1
i−1 and uk+1

i−1 . We must solve a system of equations for all uk+1
i simultaneously.

4. Solution is more complex, but unconditionally stable

5. Truncation errors are O
(
(∆x)2

)
and O(∆t), i.e., the same as FTCS

ME 448/548: BTCS Solution to the Heat Equation page 1

Finite Difference Operators

Choose the backward difference to evaluate the time derivative at t = tk.

∂u

∂t

∣∣∣∣
tk,xi

=
uki − u

k−1
i

∆t
+O(∆t) (1)

Approximate the spatial derivative with the central difference operator and take all nodal

values at time tk.

∂2u

∂x2

∣∣∣∣∣
tk,xi

=
uki−1 − 2uki + uki+1

∆x2
+O(∆x

2
). (2)

ME 448/548: BTCS Solution to the Heat Equation page 2

BTCS Approximation to the Heat Equation

Making these substitutions in the heat equation gives

uki − u
k−1
i

∆t
= α

uki−1 − 2uki + uki+1

∆x2
+O(∆t) +O(∆x

2
) (3)

Unlike the FTCS scheme, it is not possible to solve for uki in terms of other known values

at tk−1.

Drop truncation error terms and shift the time step by one: (k − 1)→ k and

k → (k + 1)

uk+1
i − uki

∆t
= α

uk+1
i−1 − 2uk+1

i + uk+1
i+1

∆x2
(4)

ME 448/548: BTCS Solution to the Heat Equation page 3

BTCS Computational Molecule

Solution is known

for these nodes

BTCS scheme requires

simultaneous calculation

of u at all nodes on the

k+1 mesh line

t

i i+1i 1i=1 n
x

k+1

k

k 1

. . .
. . .

. . .
. . .

. . .
. . .

. . .

x=Lx=0

t=0, k=1

ME 448/548: BTCS Solution to the Heat Equation page 4

BTCS Approximation to the Heat Equation

Move all unknown nodal values in Equation (3) to the left hand side to get[
−

α

∆x2

]
u
k+1
i−1 +

[
1

∆t
+

2α

∆x2

]
u
k+1
i +

[
−

α

∆x2

]
u
k+1
i+1 =

1

∆t
u
k
i (5)

Nodal values at tk+1 are all on the left hand side, and the lone nodal value from tk is on

the right hand side. The terms in square brackets are the coefficients in a system of linear

equations.

ME 448/548: BTCS Solution to the Heat Equation page 5

BTCS System of Equations

The system of equations can be represented in matrix form as



a1 b1 0 0 0 0

c2 a2 b2 0 0 0

0 c3 a3 b3 0 0

0 0 0

0 0 0 cnx−1 anx−1 bnx−1

0 0 0 0 cnx anx





uk+1
1

uk+1
2

uk+1
3
...

uk+1
nx−1

uk+1
nx


=



d1

d2

d3
...

dnx−1

dnx


(6)

where the coefficients of the interior nodes (i = 2, 3, . . . , nx − 1) are

ai = (1/∆t) + (2α/∆x
2
), bi = ci = −α/∆x2

, di = (1/∆t)u
k
i . (7)

ME 448/548: BTCS Solution to the Heat Equation page 6

BTCS System of Equations

To impose the Dirichlet boundary conditions set

a1 = 1, b1 = 0, d1 = u(0, tk+1)

anx = 1, cnx = 0, dnx = u(L, tk+1)

Then 
1 0 0 0 0 0

c2 a2 b2 0 0 0

0 0 0

0 0 0 cnx−1 anx−1 bnx−1

0 0 0 0 0 1




uk+1

1

uk+1
2
...

uk+1
nx−1

uk+1
nx

 =


u(0, tk+1)

d2

...

dnx−1

u(L, tk+1)


which guarantees

u
k+1
1 = u(0, tk+1) and u

k+1
nx

= u(L, tk+1)

ME 448/548: BTCS Solution to the Heat Equation page 7

BTCS System of Equations

At each time step we must solve the nx× nx system of equations.

Au
(k+1)

= d (8)

where A is the coefficient matrix, u(k+1) is the column vector of unknown values at tk+1,

and d is a set of values reflecting the values of uki , boundary conditions, and source terms.

For the heat equation in one spatial dimension, matrix A is tridiagonal, which allows for a

very efficient solution of Equation (8).

ME 448/548: BTCS Solution to the Heat Equation page 8

Solving the BTCS System of Equations

At each time step we need to solve

Au
(k+1)

= d

We could use a simplistic approach and use a standard Gaussian elimination routine.

However A is tridiagonal and substantial speed and memory savings can be had by

exploiting that structure. Furthermore, using LU factorization leads to even more savings

by reducing the computational cost per time step.

ME 448/548: BTCS Solution to the Heat Equation page 9

LU Factorization

Start with the square n× n matrix A, and n× 1 column vectors x and b

Ax = b (9)

The LU factorization of matrix A involves finding the lower triangular matrix L and the

upper triangular matrix U such that

A = LU. (10)

The factorization alone does not solve Ax = b.

Gaussian elimination only transforms an augmented coefficient matrix to triangular form.

It is the backward substitution phase that obtains the solution. Similarly the factorization

of A into L and U sets up the solution Ax = b via two triangular solves.

ME 448/548: BTCS Solution to the Heat Equation page 10

LU Factorization

Since A = LU , the system Ax = b is equivalent to

(LU)x = b. (11)

Matrix multiplication is associative, so regroup the left hand side

(LU)x = b −→ L(Ux) = b

Let y = Ux, so that Equation (11) becomes

Ly = b.

Given y, we then have the system

Ux = y,

which is easily solved for x with a backward substitution.

ME 448/548: BTCS Solution to the Heat Equation page 11

Solving Ax = b via LU Factorization

Put the pieces together to obtain an algorithm for solving Ax = b.

Algorithm 1 Solve Ax = b with LU factorization

Factor A into L and U

Solve Ly = b for y forward substitution

Solve Ux = y for x backward substitution

The last two steps, solve Ly = b and solve Ux = y, are efficient because L and U are

triangular matrices.

ME 448/548: BTCS Solution to the Heat Equation page 12

LU Factorization for tridiagonal systems

Store the diagonals of A as three vectors, a, b and c
a1 b1

c2 a2 b2
.

cn−1 an−1 bn−1

cn an




x1

x2
...

xn−1

xn

 =


d1

d2
...

dn−1

dn


The L and U matrix factors of the tridiagonal coefficient matrix have the form

L =


1

e2 1
.

en−1 1

en 1

 , U =


f1 b1

f2 b2
.

fn−1 bn−1

fn



ME 448/548: BTCS Solution to the Heat Equation page 13

LU Factorization for tridiagonal systems

For the tridiagonal system, performing the LU factorization comes down to finding the ei
and fi, given the ai, bi and ci.

To find formulas for ei and fi, multiply the L and U factors, and set the result equal to

A.

LU = A


1
e2 1

.

en−1 1
en 1



f1 b1

f2 b2
.

fn−1 bn−1

fn

 =


a1 b1
c2 a2 b2

.

cn−1 an−1 bn−1

cn an



ME 448/548: BTCS Solution to the Heat Equation page 14

LU Factorization for tridiagonal systems

For the tridiagonal system, performing the LU factorization comes down to finding the ei
and fi, given the ai, bi and ci.

To find formulas for ei and fi, multiply the L and U factors, and set the result equal to

A to get

eifi−1 = ci, eibi−1 + fi = ai, bi = bi

Solve the first and second equations for ei and fi

ei = ci/fi−1, fi = ai − eibi−1.

which apply for i = 2, . . . , n.

Multiplying the first row of L with the first column of U gives f1 = a1.

ME 448/548: BTCS Solution to the Heat Equation page 15

LU Factorization for triangular systems

LU factorization for a tridiagonal system:

Given ai, bi, ci and di,

compute the ei and fi:

f1 = a1

for i = 2, . . . , n

ei = ci/fi−1

fi = ai − eibi−1

ME 448/548: BTCS Solution to the Heat Equation page 16

LU Factorization for triangular systems

The preceding formulas are directly translated into Matlab code.

f(1) = a(1);

for i=2:n

e(i) = c(i)/f(i-1);

f(i) = a(i) - e(i)*b(i-1);

end

Given e and f vectors, the solution to the system is

y(1) = d(1); % Forward substitution: solve L*y = d

for i=2:n

y(i) = d(i) - e(i)*y(i-1);

end

x(n) = y(n)/f(n); % Backward substitution: solve U*x = y

for i=n-1:-1:1

x(i) = (y(i) - b(i)*y(i+1))/f(i);

end

ME 448/548: BTCS Solution to the Heat Equation page 17

BTCS Algorithm

Set-up: Define the problem

1. Specify α, L, tmax, BC and IC

2. Specify mesh parameters nx and nt

BTCS scheme for constant material properties and BC:

1. Compute the coefficients ai, bi, ci and di in Equation (7)

2. Perform the LU factorization and store ei and fi
3. Assign ui values with initial condition

4. For each time step:

• Update di with new “old” values uki .

• Update u with triangular solves

ME 448/548: BTCS Solution to the Heat Equation page 18

demoBTCS Code

% --- Assign physical and mesh parameters

alfa = 0.1; L = 1; tmax = 2; % Diffusion coefficient, domain length and max time

dx = L/(nx-1); dt = tmax/(nt-1);

% --- Coefficients of the tridiagonal system

b = (-alfa/dx^2)*ones(nx,1); % Super diagonal: coefficients of u(i+1)

c = b; % Subdiagonal: coefficients of u(i-1)

a = (1/dt)*ones(nx,1) - (b+c); % Main Diagonal: coefficients of u(i)

a(1) = 1; b(1) = 0; % Fix coefficients of boundary nodes

a(end) = 1; c(end) = 0;

[e,f] = tridiagLU(a,b,c); % Save LU factorization

% --- Assign IC and save BC values in ub. IC creates u vector

x = linspace(0,L,nx)’; u = sin(pi*x/L); ub = [0 0];

% --- Loop over time steps

for k=2:nt

d = [ub(1); u(2:nx-1)/dt; ub(2)]; % Update RHS, preserve BC

u = tridiagLUsolve(e,f,b,d); % Solve the system

end

ME 448/548: BTCS Solution to the Heat Equation page 19

Convergence of BTCS

nx nt error E(j)/E(j-1) p

4 5 5.346e-02 0.0000 0.0000

8 21 1.186e-02 0.2219 2.1723

16 92 2.716e-03 0.2290 2.1268

32 386 6.522e-04 0.2401 2.0581

64 1589 1.594e-04 0.2444 2.0326

128 6453 3.939e-05 0.2471 2.0168

256 26012 9.790e-06 0.2485 2.0084

512 104452 2.440e-06 0.2493 2.0042

nx nt error E(j)/E(j-1) p

4 4 6.444e-02 0.0000 0.0000

8 8 2.737e-02 0.4248 1.2353

16 16 1.276e-02 0.4661 1.1014

32 32 6.172e-03 0.4838 1.0475

64 64 3.037e-03 0.4921 1.0230

128 128 1.507e-03 0.4961 1.0113

256 256 7.504e-04 0.4981 1.0056

512 512 3.745e-04 0.4990 1.0028

10
−3

10
−2

10
−1

10
0

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

� x
E

(n
x,n

y)

� t = c
1
� x2

E = c
2
� x2

� t=� x
E = c

3
 � x

The first set of results uses ∆t ∝ ∆x2 as was necessary in the convergence study for the

FTCS scheme. The second set of results shows that the temporal truncation error is the

controlling factor when both ∆x and ∆t are reduced by the same factor.

ME 448/548: BTCS Solution to the Heat Equation page 20

Summary for the BTCS Scheme

• BTCS requires solution of a tridiagonal system of equations at each step

• Use LU factorization of the coefficient matrix once at the start simulation.

• Each step of the solution requires solution with the triangular factors L and U.

• The BTCS scheme is unconditionally stable for the heat equation.

• BTCS is a toy used to introduce the numerical solution of PDEs

ME 448/548: BTCS Solution to the Heat Equation page 21

