Alternative Boundary Condition Implementations for Crank Nicolson Solution to the Heat Equation ME 448/548 Notes

Gerald Recktenwald Portland State University Department of Mechanical Engineering gerry@pdx.edu

Overview

- 1. Goal is to allow Dirichlet, Neumann and mixed boundary conditions
- 2. Use ghost node formulation
 - Preserve spatial accuracy of $\mathcal{O}(\Delta x^2)$
 - Preserve tridiagonal structure to the coefficient matrix
- 3. Implement in a code that uses the Crank-Nicolson scheme.
- 4. Demonstrate the technique on sample problems

Heat Transfer Boundary Conditions

Prescribe T_w, a know wall temperature. Maybe T_w = f(t).
 Solve internal T(x,t) field
 Compute the wall heat flux, q_w.

1. Prescribe q_w , a know wall heat flux. Maybe $q_w(t) = f(t)$. 2. Solve internal T(x,t) field 3. Compute the wall temperature, T_w .

1. Prescribe T_{∞} and h. Maybe $T_{w}(t) = f(t)$ and h = f(t). 2. Solve internal T(x,t) field 3. Compute the wall heat flux, q_{w} and wall temperature, T_{w} .

Convective Boundary Condition

The general form of a convective boundary condition is

$$\left. \frac{\partial u}{\partial x} \right|_{x=0} = g_0 + h_0 u \tag{1}$$

This is also known as a *Robin* boundary condition or a *boundary condition of the third kind*.

The simplistic implementation is to replace the derivative in Equation (1) with a one-sided difference

$$\frac{u_2^{k+1} - u_1^{k+1}}{\Delta x} = g_0 + h_0 u_1^{k+1}$$
(2)

Don't do that! The one-sided difference approximation has a spatial accuracy of $\mathcal{O}(\Delta x)$.

Introduce a Ghost Node

Imagine that there is a node \hat{u}_0 that is *outside* of the domain

this node is used to enforce the boundary condition from Equation (1).

The value \hat{u}_0 does not explicitly appear in the numerical scheme. We introduce it as a device to introduce a higher order approximation to the gradient at the boundary. It turns out that with algebra, \hat{u}_0 disappears from the final formulation.

Use the BC to compute \hat{u}_0 by extrapolation

Use a *central* difference approximation at x = 0($x = x_1$) to impose the boundary condition.

$$\frac{u_2 - \hat{u}_0}{2\Delta x} = g_0 + h_0 u_1. \tag{3}$$

The value of \hat{u}_0 consistent with the boundary condition is

$$\hat{u}_0 = u_2 - 2\Delta x (g_0 + h_0 u_1).$$
 (4)

Equation (4) allows us to eliminate \hat{u}_0 at the boundary.

Equation for u_1

Evaluate the finite difference form of the heat equation at $x = x_1$.

$$\frac{u_1^{k+1} - u_1^k}{\Delta t} = \theta \alpha \left[\frac{\hat{u}_0^{k+1} - 2u_1^{k+1} + u_2^{k+1}}{\Delta x^2} \right] + (1 - \theta) \alpha \left[\frac{\hat{u}_0^k - 2u_1^k + u_2^k}{\Delta x^2} \right]$$

Choose heta=1/2 and use the formulas for \hat{u}_0 at time step k and time step k+1

$$\begin{aligned} \frac{u_1^{k+1} - u_1^k}{\Delta t} &= \frac{\theta \alpha}{\Delta x^2} \left[\boxed{u_2^{k+1} - 2\Delta x (g_0^{k+1} + h_0^{k+1} u_1^{k+1})} - 2u_1^{k+1} + u_2^{k+1} \right] \\ &+ \frac{(1 - \theta)\alpha}{\Delta x^2} \left[\boxed{u_2^k - 2\Delta x (g_0^k + h_0^k u_1^k)} - 2u_1^k + u_2^k \right] \end{aligned}$$

The terms in boxes are from the boundary condition

Rearrange the Equation for u_1

Algebraically rearranging the preceding equation gives

$$a_1 u_1^{k+1} + b_1 u_2^{k+1} = d_1 \tag{5}$$

where

$$a_1 = \frac{1}{\Delta t} + \frac{2\theta\alpha}{\Delta x^2} (1 + \Delta x h_0^{k+1}) \tag{6}$$

$$b_1 = -\frac{2\theta\alpha}{\Delta x^2} \tag{7}$$

$$d_1 = \left[\frac{1}{\Delta t} - \frac{2(1-\theta)\alpha}{\Delta x^2}(1+\Delta x h_0^k)\right] u_1^k \tag{8}$$

$$+\frac{2(1-\theta)\alpha}{\Delta x^2}u_2^k - \frac{2\alpha}{\Delta x}\left[\theta g_0^{k+1} + (1-\theta)g_0^k\right]$$

These equations define the terms for the first row in the system of equations

Data structure for implementing alternative BC in the MATLAB code

Store the data defining the boundary condition for both boundaries in a 2×3 matrix.

The first row has data for x = 0The second row has data for x = L.

Type is a flag with the boundary condition type.

if
$$ubc(b, 1) = 1$$
, then
 $u(x_b) = value$
 $ubc(b, 2) = value of u at boundary$
 $ubc(b, 3) = not used$

if
$$ubc(b, 1) = 2$$
, then
 $\partial u / \partial x|_{x_b} = g + hu(x_b)$
 $ubc(b, 2) = g$
 $ubc(b, 3) = h$

ubc =
$$\begin{bmatrix} Type & Value 1 & Value 2 \\ Type & Value 1 & Value 2 \\ x = L \end{bmatrix}$$

$$b = 1 \text{ for } x = 0$$
$$b = 2 \text{ for } x = L$$

The toy problem used to test the codes

$$\begin{aligned} \frac{\partial u}{\partial t} &= \alpha \frac{\partial^2 u}{\partial x^2} & t > 0, \quad 0 \le x \le L \\ u(0,t) &= u(L,t) = 0; \\ u(x,0) &= \sin(\pi x/L) \end{aligned}$$

only needs to be solved on one half of the domain

$$\begin{split} &\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2} \quad t > 0, \ 0 \le x \le L/2 & \frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2} \quad t > 0, \ L/2 \le x \le L \\ &u(0,t) = 0; \quad \frac{\partial u}{\partial x}\Big|_{L/2} = 0 & \frac{\partial u}{\partial x}\Big|_{L/2} = 0 \quad u(L,t) = 0; \\ &u(x,0) = \sin(\pi x/L) & u(x,0) = \sin(\pi x/L) \end{split}$$

Use ubc matrix to specify boundary conditions.

For the half-problem on $0 \le x \le L/2$:

$$u(0,t) = 0 \implies ubc(1,2) = 0, value of u at x = 0$$

 $ubc(1,3) = 0, not used$

$$\begin{array}{c|c} \left. \frac{\partial u}{\partial x} \right|_{L/2} = 0 & \Longrightarrow & \operatorname{ubc}(2,1) = 2, & \operatorname{boundary type} \\ & \operatorname{ubc}(2,2) = 0, & \operatorname{value of} g_{L/2} \\ & \operatorname{ubc}(2,3) = 0, & \operatorname{value of} h_{L/2} \end{array}$$

For the half-problem on $L/2 \leq x \leq L$:

$$\frac{\partial u}{\partial x}\Big|_{L/2} = 0 \implies \text{ubc}(1,1) = 2, \text{ boundary type}$$
$$\frac{\partial u}{\partial x}\Big|_{L/2} = 0 \implies \text{ubc}(1,2) = 0, \text{ value of } g_0$$
$$\frac{\partial u}{\partial x}\Big|_{L/2} = 0, \text{ value of } h_0$$

$$ubc(2,1) = 1, \text{ boundary type}$$
$$u(L,t) = 0 \implies ubc(2,2) = 0, \text{ value of } u \text{ at } x = L$$
$$ubc(2,3) = 0, \text{ not used}$$

 ${\small Output \ of \ demoCNBC}$

Contact resistance at
$$x = 0$$

MATLAB boundary matrix for x = 0

$$-k \frac{\partial T}{\partial x} \Big|_{x=0} = q_t = h_t (T_p - T_0)$$
$$\implies \frac{\partial T}{\partial x} \Big|_{x=0} = -\frac{h_t T_p}{k} + \frac{h_t}{k} T_0$$

ubc(1,1) = 2, boundary type ubc(1,2) = $-h_t T_p/k$, value of g_0 ubc(1,3) = h_t/k , value of h_0

Convective resistance at x = L

MATLAB boundary matrix for x = L

$$-k \frac{\partial T}{\partial x} \bigg|_{x=L} = q_b = h_b (T_L - T_{air})$$
$$\implies \frac{\partial T}{\partial x} \bigg|_{x=L} = \frac{h_b T_{air}}{k} - \frac{h_b}{k} T_L$$

ubc(2,1) = 2, boundary type ubc(2,2) = $h_b T_{\rm air}/k$, value of g_L ubc(2,3) = $-h_b/k$, value of h_L

Core of demoHotPot.m

```
\% --- Define physical properties for table and boundary conditions
             % density of oak (kg/m^3)
rho = 545;
            \% thermal conductivity of oak, across the grain (W/m/C)
k = 0.17;
c = 2385;
              % specific heat capacity of oak (J/kg/K)
alfa = k/rho/c; % thermal diffusivity (m^2/s)
           % Table thickness (m)
L = 2e-2;
% --- Use relaxation time of table material to specify time step size
tau = L^2/alfa;
                    % Relaxation time for the heat condution (s)
dt = tau/1000;
                    % Time step (s)
nt = ceil(tmax/dt); % Number of time steps
% --- Specify initial and boundary conditions
u0 = Tair*ones(nx,1);
ubc = [2 (-htop*Tp/k) (htop/k); 2 (hbot*Tair/k) (-hbot/k)];
\% --- Solve the heat equation and plot the results
[U,x,t] = heatCNBC(nx,nt,ubc,u0,L,tmax,alfa);
plotHeat(U,100*x,t,floor(nt/5))
xlabel('x (cm)'); ylabel('T ({{}^\circ}C)'); ylim([Tair-5, Tp])
```

>> demoHotPot

>> demoHotPot(1200)

