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ME 448/548: Alternative BC Implementation for the Heat Equation



Overview

1. Goal is to allow Dirichlet, Neumann and mixed boundary conditions

2. Use ghost node formulation

• Preserve spatial accuracy of O(∆x2)

• Preserve tridiagonal structure to the coefficient matrix

3. Implement in a code that uses the Crank-Nicolson scheme.

4. Demonstrate the technique on sample problems
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Heat Transfer Boundary Conditions

2 3

x = 0

i = 1
Tw

1. Prescribe Tw, a know wall temperature. Maybe Tw = f(t).
2. Solve internal T(x,t) field
3. Compute the wall heat flux, qw.

1. Prescribe qw, a know wall heat flux. Maybe qw(t) = f(t).
2. Solve internal T(x,t) field
3. Compute the wall temperature, Tw.

2 3

x = 0

i = 1

qw

1. Prescribe T∞ and h. Maybe Tw(t) = f(t) and h  = f(t).
2. Solve internal T(x,t) field
3. Compute the wall heat flux, qw and wall temperature, Tw.

2 3

x = 0

i = 1

h, T∞ 
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Convective Boundary Condition

The general form of a convective boundary condition is

∂u

∂x

∣∣∣∣
x=0

= g0 + h0u (1)

This is also known as a Robin boundary condition or a boundary condition of the third

kind.

The simplistic implementation is to replace the derivative in Equation (1) with a

one-sided difference
uk+1

2 − uk+1
1

∆x
= g0 + h0u

k+1
1 (2)Don’t do that! The one-sided difference approximation has a spatial accuracy of O(∆x).
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Introduce a Ghost Node

Imagine that there is a node û0 that is outside of the domain

   ∆xx0

...

x1 x2
 ∆x

u0 u1 u2 u3

this node is used to enforce the boundary condition from Equation (1).

The value û0 does not explicitly appear in the numerical scheme. We introduce it as a

device to introduce a higher order approximation to the gradient at the boundary. It turns

out that with algebra, û0 disappears from the final formulation.
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Use the BC to compute û0 by extrapolation

Use a central difference approximation at x = 0

(x = x1) to impose the boundary condition.

u2 − û0

2∆x
= g0 + h0u1. (3)

The value of û0 consistent with the boundary

condition is

û0 = u2 − 2∆x(g0 + h0u1). (4)

Equation (4) allows us to eliminate û0 at the

boundary.
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Equation for u1

Evaluate the finite difference form of the heat equation at x = x1.

uk+1
1 − uk1

∆t
= θα

[
ûk+1

0 − 2uk+1
1 + uk+1

2

∆x2

]
+ (1− θ)α

[
ûk0 − 2uk1 + uk2

∆x2

]

Choose θ = 1/2 and use the formulas for û0 at time step k and time step k + 1

uk+1
1 − uk1

∆t
=

θα

∆x2

[
u
k+1
2 − 2∆x(g

k+1
0 + h

k+1
0 u

k+1
1 ) − 2u

k+1
1 + u

k+1
2

]

+
(1− θ)α

∆x2

[
u
k
2 − 2∆x(g

k
0 + h

k
0u

k
1) − 2u

k
1 + u

k
2

]

The terms in boxes are from the boundary condition
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Rearrange the Equation for u1

Algebraically rearranging the preceding equation gives

a1u
k+1
1 + b1u

k+1
2 = d1 (5)

where

a1 =
1

∆t
+

2θα

∆x2
(1 + ∆xh

k+1
0 ) (6)

b1 = −
2θα

∆x2
(7)

d1 =

[
1

∆t
−

2(1− θ)α
∆x2

(1 + ∆xh
k
0)

]
u
k
1 (8)

+
2(1− θ)α

∆x2
u
k
2 −

2α

∆x

[
θg

k+1
0 + (1− θ)gk0

]
These equations define the terms for the first row in the system of equations
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Data structure for implementing alternative BC in the Matlab code

Store the data defining the boundary condition

for both boundaries in a 2× 3 matrix.

The first row has data for x = 0

The second row has data for x = L.

Type Value 1 Value 2 x = 0

x = LType Value 1 Value 2 
ubc =

Type is a flag with the boundary condition type.

if ubc(b, 1) = 1, then

u(xb) = value

ubc(b, 2) = value of u at boundary

ubc(b, 3) = not used

if ubc(b, 1) = 2, then

∂u/∂x|xb = g + hu(xb)

ubc(b, 2) = g

ubc(b, 3) = h

b = 1 for x = 0

b = 2 for x = L
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Verification: Solve the toy problem on half of the domain

The toy problem used to test the codes

∂u

∂t
= α

∂2u

∂x2
t > 0, 0 ≤ x ≤ L

u(0, t) = u(L, t) = 0;

u(x, 0) = sin(πx/L)

only needs to be solved on one half of the domain

∂u

∂t
= α

∂2u

∂x2
t > 0, 0 ≤ x ≤ L/2

u(0, t) = 0;
∂u

∂x

∣∣∣∣
L/2

= 0

u(x, 0) = sin(πx/L)

∂u

∂t
= α

∂2u

∂x2
t > 0, L/2 ≤ x ≤ L

∂u

∂x

∣∣∣∣
L/2

= 0 u(L, t) = 0;

u(x, 0) = sin(πx/L)
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Verification: Solve the toy problem on half of the domain

Use ubc matrix to specify boundary conditions.

For the half-problem on 0 ≤ x ≤ L/2:

u(0, t) = 0 =⇒
ubc(1,1) = 1, boundary type

ubc(1,2) = 0, value of u at x = 0

ubc(1,3) = 0, not used

∂u

∂x

∣∣∣∣
L/2

= 0 =⇒
ubc(2,1) = 2, boundary type

ubc(2,2) = 0, value of gL/2

ubc(2,3) = 0, value of hL/2
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Verification: Solve the toy problem on half of the domain

For the half-problem on L/2 ≤ x ≤ L:

∂u

∂x

∣∣∣∣
L/2

= 0 =⇒
ubc(1,1) = 2, boundary type

ubc(1,2) = 0, value of g0

ubc(1,3) = 0, value of h0

u(L, t) = 0 =⇒
ubc(2,1) = 1, boundary type

ubc(2,2) = 0, value of u at x = L

ubc(2,3) = 0, not used
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Verification: Solve the toy problem on half of the domain

Output of demoCNBC

0 0.1 0.2 0.3 0.4
x

0

0.5

1

1.5
u

IC
CN
Exact

0.5 0.6 0.7 0.8 0.9
x

0

0.5

1

1.5
IC
CN
Exact
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Solve the hot pot problem

t < 0 t > 0

xL

Contact resistance at x = 0

−k
∂T

∂x

∣∣∣∣
x=0

= qt = ht(Tp − T0)

=⇒
∂T

∂x

∣∣∣∣
x=0

= −
htTp

k
+
ht

k
T0

Matlab boundary matrix for x = 0

ubc(1,1) = 2, boundary type

ubc(1,2) = −htTp/k, value of g0

ubc(1,3) = ht/k, value of h0
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Solve the hot pot problem

t < 0 t > 0

xL

Convective resistance at x = L

−k
∂T

∂x

∣∣∣∣
x=L

= qb = hb(TL − Tair)

=⇒
∂T

∂x

∣∣∣∣
x=L

=
hbTair

k
−
hb

k
TL

Matlab boundary matrix for x = L

ubc(2,1) = 2, boundary type

ubc(2,2) = hbTair/k, value of gL

ubc(2,3) = −hb/k, value of hL
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Solve the hot pot problem

Core of demoHotPot.m

% --- Define physical properties for table and boundary conditions

rho = 545; % density of oak (kg/m^3)

k = 0.17; % thermal conductivity of oak, across the grain (W/m/C)

c = 2385; % specific heat capacity of oak (J/kg/K)

alfa = k/rho/c; % thermal diffusivity (m^2/s)

L = 2e-2; % Table thickness (m)

% --- Use relaxation time of table material to specify time step size

tau = L^2/alfa; % Relaxation time for the heat condution (s)

dt = tau/1000; % Time step (s)

nt = ceil(tmax/dt); % Number of time steps

% --- Specify initial and boundary conditions

u0 = Tair*ones(nx,1);

ubc = [2 (-htop*Tp/k) (htop/k); 2 (hbot*Tair/k) (-hbot/k)];

% --- Solve the heat equation and plot the results

[U,x,t] = heatCNBC(nx,nt,ubc,u0,L,tmax,alfa);

plotHeat(U,100*x,t,floor(nt/5))

xlabel(’x (cm)’); ylabel(’T ({{}^\circ}C)’); ylim([Tair-5, Tp])
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Solve the hot pot problem

>> demoHotPot

0 0.5 1 1.5 2
x  (cm)

20

30

40

50

60

70

80
T 

 (°
C

)
t = 0.00
t = 24.62
t = 49.23
t = 73.85
t = 98.46
t = 120.00
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Solve the hot pot problem

>> demoHotPot(1200)

0 0.5 1 1.5 2
x  (cm)

20

30

40

50

60

70

80
T 

 (°
C

)
t = 0.00
t = 238.78
t = 477.55
t = 716.33
t = 955.10
t = 1193.88
t = 1200.00
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Solve the hot pot problem

>> demoHotPotQw([],[],[],[],1200)

0 200 400 600 800 1000 1200
t  (s)

20

30

40

50

60

70

80

90

T 
 (C

)

T0
TL

0 200 400 600 800 1000 1200
0

2000

4000

6000

q 0  (
 W

/(m
2  C

) )

0 200 400 600 800 1000 1200
t  (s)

0

20

40
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80

100

q L  (
 W

/(m
2  C

) )
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