1 Overview

Imagine that you are part of a team developing a medical diagnostic device. The device has a millimeter scale flow channel designed to allow a sample fluid to be mixed with a carrier fluid. Figure 1 is a top-view schematic of the base case design for the flow channel. Figure 2 is a three-dimensional model created in Solidworks. The dimensions of the channel in mm are

$$
L=50, L_{i}=6, L_{s}=5, W=8, w_{s}=2, h=2 \quad \text { all in } m m
$$

where h is the depth of the channel into the page.
In the test apparatus, water is used for both the carrier fluid and the sample fluid. The sample fluid is marked with red food coloring to provide a visual indication of how well the sample fluid mixes with the carrier fluid. The carrier stream has a velocity of $V_{\mathrm{in}}=0.1 \mathrm{~m} / \mathrm{s}$ and the sample stream has an inlet velocity of $V_{s}=0.05 \mathrm{~m} / \mathrm{s}$. The properties of water used by STAR-CCM+ are

$$
\rho=997.56 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \mu=8.887 \times 10^{-4} \mathrm{~Pa}-\mathrm{s}
$$

The Reynolds number based on hydraulic diameter, $D_{h}=2 W h /(W+h)=$ 3.2 mm for the main inlet duct is

$$
\operatorname{Re}_{D h}=\frac{\rho V_{\mathrm{in}} D_{h}}{\mu}=359
$$

Measurements show that despite the intention of the designers, the channel does a poor job of mixing the sample fluid with the carrier fluid. Your job is to propose design changes that will improve the mixing. Your design changes cannot alter the overall dimensions L, W, w_{s}, L_{s} or h. You cannot change the

Figure 1: Device for testing flow mixing strategies. Depth into the page is h

Figure 2: Solidworks model of the flow channel.
fluid velocities $V_{\text {in }}$ and V_{s}. You can alter the geometry of the channel, for example, by adding obstructions or objects to increase mixing. Any modifications should be geometrically simple so that the new design is easy to manufacture.

The three-dimensional geometry of the channel was created in Solidworks model and saved as a Parasolid XT CAD file ${ }^{1}$ that is imported into STAR-CCM+ as a surface mesh.

2 Import the Model Geometry

The model geometry is defined in a Parasolid file stored as microchanel_mixer.x_t. Download that file from http://web.cecs.pdx.edu/~gerry/class/ME448/tutorial/ and store it in a convenient place.

2.1 Import the Parasolid Surface Mesh

The Parasolid model defines a geometry in a form that STAR-CCM+ can understand, but not work with directly.

[^0]1. Launch STAR-CCM + and open a new simulation.
2. Import the surface mesh:
a. File \triangleright Import \triangleright Import Surface Mesh.
b. Select the microchanel_mixer.x_t file from your computer's drive.
c. In the Import Surface Options dialog box, make sure the Create New Part option is selected.
d. Click OK.

2.2 Split the Single Surface into Patches

The surface mesh in the Parasolid model is a network of triangles that define the geometric features of the surface that encloses the domain volume. This single surface must be separated so that boundary conditions can be applied to distinct areas on the boundary of the domain. The first step in that process is to split the one bounding surface into patches, where each patch is a area that defines a smaller piece of the surface geometry. After the dividing the surface into patches, we rename those patches, and in some cases regroup the patches to form boundaries. When the patches are renamed and regrouped, we are ready to assign those patches to the boundaries of the region in Section 3.

1. Select the new part in the Geometry tree
2. Expand the Surfaces node
3. Right-click on Faces and select Split by Patch....
Notice these features of the user interface as evident in Figure 3:

- The Geometry Scene now has different color surface patches.
- Each surface patch corresponds to a number listed in the edit panel in the upper left.
- Surface patches are selected by either clicking on their number or clicking on the patch in the Geometry Scene.

Figure 3: Appearance of the Geometry Scene and the edit panel used to select and name patches. Note that the numbers of the Part Surface Patches may be different in your model.
4. Orient the model in the Geometry Scene so that you can select (click on) the outlet face as shown in Figure 3.
5. In the middle of the edit panel, type "outlet" into the Part Surface Name box and click Create. This will rename the surface patch and remove it from the display in the Geometry Scene. It is possible to select and name multiple patches at a time with this procedure, which has the effect of combining those patches into an object with the same name. For the current model, we will only work with one patch at a time.
6. Repeat the two preceding steps for the two inlets. Choose inlet_main and inlet_sample for the names of the main inlet surface and sample inlet surface, respectively.
7. Click Close to stop selection of the patches.

Notice that under the Surfaces node (a sub-node of the Parts node) that there are separate surfaces: the three newly created and named surfaces (inlet_main, inlet_sample and outlet, and one remaining surface called Faces.
8. Select the Faces surface, right-click to select Rename... and change the name to duct_wall.

2.3 Save the Model

Select Save from the file menu to save the model in a . sim file on the hard drive of your computer. It's a good idea at this point to create a directory for the simulation results as well as a meaningful file name. As you build the model and run different cases, you will accumulate alternate . sim files for the same physical problem. You will also generate external graphics files to be incorporated into reports. Therefore, creating a directory to group the files related to a single simulation will help you stay organized later.

Click the Save icon.

3 Create Fluid Region and Boundaries

The volume occupied by the part must be assigned to a Region. This can be accomplished (at least) two ways. Choose only one of the following

1. Select Assign Part to Regions....
or
2. Select Regions \triangleright New, and then select the parts that belong to it.

The procedures are equivalent. We will demonstrate both.

> When you build your model, follow the steps in either Section 3.1 or Section 3.2, but not both.

3.1 Assign Parts to Regions

1. Right click on the microchannel_mixer part node (first level under Parts) and select Assign Parts to Regions...

2. In the Assign Parts to Regions dialog box, make sure the Part is selected (blue dot next to the microchannel part).
3. Important: Select Create a Boundary for Each Part Surface. This selection will simplify the steps in §3.1.1, below.
4. Change the name of the region from "Region" to "fluid" or "channel" or some other descriptive name.
5. Click the Create Regions button

6. Click Close

3.1.1 Assign Boundary Types to Surfaces of the Region

It's important to assign the types of boundary condition before the mesh is created. We will first assign the boundary types, and then set the boundary values later in Section 5.

Create the outlet boundary

1. Expand the Boundaries sub-node of the fluid Region
2. Select outlet
3. In the Properties pane, select Pressure Outlet from the Type property

Create the main inlet boundary

1. Select inlet_main sub-node under Boundaries sub-node of the fluid Region
2. In the Properties pane, select Velocity Inlet from the Type property

Create the sample inlet boundary

1. Select inlet_sample sub-node under Boundaries sub-node of the fluid Region
2. In the Properties pane, select Velocity Inlet from the Type property

Note that the icons for the outlet and the two inlets reflect the type of boundary condition applied to the surfaces of the region.

Skip to Section 4.

3.2 Create a Region and Assign Parts to It

The following steps are an alternative to the steps in Section 3.1.

1. Select Regions, right-click New
2. Right-click on the newly-created region, and select Rename....
3. Enter fluid as the fluid name. Click OK.

Assign the Part to the fluid Region.

1. Click on the fluid node to select it.
2. In the Properties pane (lower left corner), click the [...] icon to initiate selection of the parts for the Region.
3. In the dialog box, select the Part corresponding to the fluid by clicking the blue dot to the left of the part name.
4. Click OK.

3.2.1 One outlet boundary

Separate the outlet surface and assign its boundary type.

1. Expand the Boundaries node under the fluid Region.
2. Right-click on Boundaries and select New.
3. Right-click on the newly-created Boundary 1 node and select Rename...
4. Enter outlet in the New Name field. Click OK.
5. Select the newly created outlet boundary surface.
6. In the Properties pane (lower left corner), Click the [...] icon to initiate selection of part surfaces for the outlet boundary.
7. In the dialog box, expand the Part node and select the sub-Part corresponding to the outlet by clicking the blue dot to the left of the part name.
8. In the Properties pane (lower left corner), Click in the box to the right of Type. Select Pressure Outlet from the pop-up menu of options.

3.2.2 Two inlet boundaries

Separate the inlet_main and inlet_sample surfaces and assign the boundary type to those surfaces. The procedure is the same as that used for the outlet boundary, with the exception, of course, that a different boundary names and boundary types and applied to different part surfaces.

1. Right-click on Boundaries and select New.
2. Right-click on the newly-created Boundary (currently Boundary 1) and select Rename. . . .
3. Enter inlet_main in the New Name field. Click OK.
4. Select the newly created boundary surface (inlet_main)
5. In the Properties pane (lower left corner), Click the [...] icon to initiate selection of part surfaces for the inlet_main boundary.
6. In the dialog box, expand the Part node and select the sub-Part corresponding to the main inlet by clicking the blue dot to the left of the part name.
7. In the Properties pane (lower left corner), Click in the box to the right of Type. Select Velocity inlet from the pop-up menu of options. We will specify the value of this velocity later.

Repeat the preceding steps, substituting inlet_sample for inlet_main while selecting the sample inlet surface instead of the main inlet.

3.3 Save the Model

Click the Save icon.

4 Create the Fluid Continua

This problem introduces the passive scalar, which will be used as a marker to indicate the degree of mixing. A passive scalar is a quantity of interest that is transported by convection and diffusion. It is passive in the sense that its presence does not affect the motion of the fluid. We will call the passive scalar "red dye" to reinforce the idea that the passive scalar could be red food coloring that is uniformly mixed into the sample stream.

4.1 Turn on the features of the Physics Continuum

Except for the turning on the passive scalar feature, all other fluid continuum features are the typical ones for steady, laminar flow.

1. Right-click Continua, select New \triangleright Physics Continuum.
2. Right-click on Physics 1 and select Rename.... Choose a suggestive name like "fluid"
3. Make the following choices for the phyisics models

- Three-dimensional
- Steady
- Liquid
- Segregated Flow
- Constant Density
- Laminar
- Passive Scalar

4. Click Close

4.2 Create the red dye passive scalar

Checking the Passive Scalar box in the Physics Continuum model causes the Passive Scalar feature to be enabled. We must also define that Passive Scalar, i.e., we must identify the red dye as a passive scalar

1. Expand the Passive Scalar node in the Physics 1 Models tree.
2. Right-click on Passive Scalars \triangleright New
3. Right-click on the newly created Passive Scalar node and select Rename. . .
4. Enter red dye as the new name of the passive scalar

4.3 Verify fluid (water) properties

The default liquid is water. No changes are necessary, but it is instructive to inspect the properties used by StarCCM+

1. Expand the Liquid node in the fluid Models tree.
2. Expand the H 2 O sub-node, and expand the Material Properties sub-subnode
3. Expand the Density sub-node, click on the Constant sub-sub-node and notice the value of $997.561 \mathrm{~kg} / \mathrm{m}^{3}$ assigned to the Value
4. Expand the Dynamic Viscosity sub-node, click on the Constant sub-subnode and notice the value of $8.8871 \mathrm{E}-4 \mathrm{~Pa}-\mathrm{s}$ assigned to the Value
5. After inspecting the values, collapse the nodes under the fluid Continua

4.4 Save the Model

Click the Save icon.

5 Specify values of boundary properties

The type of boundaries were specified when the surfaces of the Region were created. After Physics Continuum is created, the values of the fluid properties on the surface can be specified. Expand the fluid sub-node of the Regions node in the simulation tree.

1. Expand the inlet_main node under Boundaries
2. Expand the Physics Values node and make the following changes to the sub-nodes

- Select Passive Scalar and confirm that the value is [0.0] in the Properties pane
- Select Velocity Magnitude and set the value to $0.1 \mathrm{~m} / \mathrm{s}$ in the Properties pane

3. Expand the inlet_sample node under Boundaries
4. Expand the Physics Values node and make the following changes to the sub-nodes
5. On the inlet_sample surface

- Select Passive Scalar and set that the value to [0.50] in the Properties pane. The value of the passive scalar is arbitrary in this model, as long as it is non-zero. The value set here will be the maximum value achieved in the domain.
- Select Velocity Magnitude and set the value to $0.05 \mathrm{~m} / \mathrm{s}$ in the Properties pane

The default values on the outlet and wall boundaries are correct.

6 Create the Mesh

The mesh can be created with two different processes: region-based meshing and parts-based meshing. Parts-based meshing is a newer approach (circa 2017) and is recommended because the region-based meshing approach will be phased out in a future version of STAR-CCM + .

6.1 Dimensions controlling the mesh size

The smallest dimensions in the physical problem are $h=2 \mathrm{~mm}$ and $w_{s}=2 \mathrm{~mm}$. Keep these values in mind when specifying the mesh base size and the thickness of the prism layer. Both of base size and the thickness of the prism layer should be smaller than the smallest macroscopic feature in the domain.

6.2 Create the Parts-based Mesh

- Under the Geometry node, right-click the Operations node and select New \triangleright Mesh \triangleright Automated Mesh.
- The Create Automated Mesh Operation modal pane opens
\triangleright At the top left of the pane, check the small box to the left of microchannel_mixer.
\triangleright In the bottom half of the pane, make three selections: Surface remesher, Trimmer Mesher, and Thin Mesher.
\triangleright Click OK.
- Expand the newly created Automated Mesh node, and expand the Default Controls sub-node.
\triangleright Select Base Size, and in the Properties panel change 1.0 m to 0.5 mm . Note that when you change values in the Properties pane, there is no "OK" or "Close" button. Simply type in the new value and press Return or Enter on your keyboard.
\triangleright Click on the Number of Thin Layers node. In the Properties pane, the Number of Layers value is 2 , which is fine for now. Leave this value unchanged.
- Execute the mesh: Right click on the Automated Mesh node and select Execute.
- View the mesh in a new Mesh Scene

The Mesh Scene pane will show one of four representations of the mesh: Geometry, Initial Surface, Remeshed Surface, Volume. Figure 4 shows three of those representations. The Geometry and Initial Surface representations show the triangles (sometimes very long and skinny triangles) used by the CAD tool to define the surface of the domain. The Remeshed Surface is also a geometrydefining mesh created by the Surface Remesher. The Volume Mesh depends on the kind of volume mesher selected for the Mesh Continuum. Figure 4 shows the volume mesh at the outlet when the Prism Layer and Polyhedral volume mesh options are selected.

There are many ways to control the size of the volume mesh elements. The primary control is via the base size parameter. Figure 5 shows the mesh on the outlet surface for two choices of base size: 0.5 mm and 0.2 mm .

6.3 Save the Model

Click the Save icon. 回

Figure 4: Three representations of the mesh in the Mesh Scene: Geometry, Remeshed Surface, Volume Mesh.

Figure 5: Mesh on the outlet surface for base size of 0.5 mm (top) and 0.2 mm (bottom). Both meshes have an absolute prism layer thickness of 0.15 mm .

Figure 6: Icons in the menubar for running, stepping and stopping a simulation.

7 Run the model

Before running the model, limit the number of iterations and set a stopping criteria on the residuals of the continuity equation. You could skip these steps and manually intervene during the solution by clicking the Stop icon. However, it makes sense to set these standard stopping controls because it will allow you to do other work (on long runs) while the iterations procede toward convergence.

7.1 Limit the maximum number of iterations

1. Expand Stopping Criteria node
2. Click Maximum Steps and set to 300

7.2 Add stopping criterion for continuity residuals

1. Right-click on the Stopping Criteria node
2. Select Create New Criterion \triangleright Create from Monitor \triangleright Continuity
3. Click on the Minimum Limit sub-node
4. Notice that the Minimum Value in the Properties Pane is 1.0E-4. Leave this value for now.

7.3 Start the solver

Figure 6 shows the four buttons in menu bar that are used to run, step and stop a solution. The start button is frequently used to begin the simulation. Clicking the run button automatically initializes the solution if it hasn't already been initialized. Clicking the run button will continue a simulation that has already taken some iterations.

If you click on the stop button, the solver completes the current iteration before stopping. Therefore, clicking stop will not risk damage to a successful simulation. The step button causes the solver to complete one more iteration.

1. Click the Run icon 季
2. Watch the residual plot.

If the residual plot does not automatically open in the Scene pane, expand the Plots node in the simulation tree, then right-click on the Residuals node and select Open.

The residual plot in Figure 7 shows that the model converges to a continuity equation criterion of 1×10^{-4} in about 220 iterations.

Figure 7: Residual history for the base case problem: mesh base size of 0.5 mm .

8 Visualize the Results

8.1 Red dye concentration

Red dye from the sample inlet is convected downstream after it enters the main channel. The dye also slowly diffuses into the water from the main channel flow.

8.1.1 Dye concentration a horizontal plane in middle of the duct

Create a plane for visualizing the $x-z$ distribution of red dye in the channel.

1. Bring the Geometry Scene tab to the foreground
2. Right-click on Derived Part \triangleright New \triangleright Section \triangleright Plane This opens an edit panel in the upper left corner.
3. Click on Select... in the Input Parts area at the top of the edit panel.
4. Select the channel fluid region (or whatever you named the Region)
5. Enter the values to the right into the Plane Parameters table. Any x and z values will work in the origin column.

	origin	normal
x	0 mm	0 mm
y	1 mm	1 mm
z	0 mm	0 mm

6. Click Create
7. Click Close
8. In the list of Derived Parts, right-click on the newly created plane section and select Rename.... Change the name to y-normal midplane or some other meaningful name.
9. Click OK.

Create a scalar viewer to display the concentration on the horizontal midplane.

1. Right-click on Scenes \triangleright New Scene \triangleright Scalar
2. Expand the newly created Scalar Scene 1 node. (At this point you could rename the scene to make it easier to identify at later stages in model development and visualization.)
3. Click on the Parts node under the Scalar 1 node of the newly created Scalar Scene.
4. In the Properties pane, click on the [...] icon to the right of the Parts item.
5. Select the y-normal midplane from the list of Derived Parts (Be sure to click on the blue square, not the name of the part.)
6. Click OK to close the parts selection dialog box
7. Click on the Scalar Field node under the Parts sub-node
8. In the Properties pane, click on the <Select Function> field in the Function row. Select Passive Scalar \triangleright red dye
9. Click on the Scalar 1 node
10. In the Properties pane, click on the Filled field in the Contour Style row. Select Smooth Filled from the pop-up menu.
11. Click on the Outline 1 node under the Displayers node of the Scalar Scene.
12. In the Properties pane, check the Feature lines box

Figure 8 shows two view of the image created by the preceding steps. The views are created by the rotating the model in the Scalar Scene viewer. Standard views and user-define views can be defined and recalled by clicking the Save-Restore-Select views button and choosing views +Y $\triangleright \mathrm{Up}+\mathrm{X}$.

Figure 8: Two views of the concentration of red dye on the mid plane for the coarse mesh solution.

8.2 Concentration profile at the exit mid-plane

Creation of a concentration profile at the exit is a two-step process.

1. Create a line probe to extract data from the field values on the mesh
2. Create an X-Y plot to display the profile data

8.2.1 Create a line probe

1. Open the Geometry Scene tab
2. Right-click on Derived Parts \triangleright New Part \triangleright Probe \triangleright Line....
This opens an edit panel in the upper left corner.
3. Click on Select. . . in the Input Parts area at the top of the edit panel.
4. Select the outlet boundary in the fluid region
5. Enter the following values for the coordinates of Point 1 and Point 2

	Point 1	Point 2
x	0 mm	8 mm
y	1 mm	1 mm
z	45 mm	45 mm

Inspect the image in the Geometry Scene to verify that the line probe is correctly located.

6. Click Create
7. Click Close.
8. In the list of Derived Parts, right-click on the newly created line probe and select Rename.... Change the name to exit profile probe. Click OK.

8.2.2 Plot the concentration data on the line probe

Now that the probe line has been created, we can construct the plot

1. Right-click on the Plots node.
2. Select New Plot \triangleright X-Y
3. Right-click on the new XY Plot 1 node and select Rename.... Give the plot a new name, like exit profile
4. In the Properties pane, Click on the [...] icon for the Parts property
5. Select the outlet boundary as the Part to be used for the plot data.
6. Expand the X Type node and click on the Position sub-node
7. In the Properties panel, note that the Direction value is [1.0, 0.0, 0.0] which corresponds to having the independent (X Type) value equal to the x axis. This is correct for the profile we want to create.
8. Expand the Y Types node
9. Expand the Y Type 1 sub-node
10. Click on the Scalar sub-node
11. In the Properties pane, select Passive Scalarゅ red dye.
12. The appearance of the plot can be improved by adjusting the symbol type, x axis range, and x-axis label spacing.

First, change the axis range.
a. Expand the Axis node. Expand the X Axis sub-node. Expand the Title sub-node.
b. Click on the Labels sub-node.
c. In the Properties pane, change the Maximum property to 0.008 , and change the Label Spacing to 0.0010 .

Next change the symbol type
a. Expand the Y Types node. Expand the Y Type 1 sub-node. Expand the exit profile probe sub-node. (exit profile probe is the name of the line probe derived part.
b. Click on Symbol Style.
c. In the Properties pane, change the Size to 8. Change the Shape to Dot. Change the Color to Black.

The result of these operations is the plot in Figure 9.

Figure 9: Profile of red dye concentration across the x direction at the duct exit

8.2.3 Export the profile data to a CSV file

To post-process the data in MatLab or Excel, export the profile data to a CSV file.

1. Right click on exit profile - the name of the X-Y plot under the Plots node.
2. Select Tabulate...
3. Click Export... in the Tabular Data dialog box
4. Navigate to a good place in your file system and enter a name like dye_exit_profile.csv in the File name: field and click Save.

8.3 Save the Model

Click the Save icon.

8.4 Streamlines

8.4.1 Create Streamline Derived Parts

Streamlines are geometric features derived from the velocity field. The Derived Part interface is used to specify the seed point (or points) of the streamlines. We will create two separate line seeds. After the seeds are defined, and after the velocity field has been obtained, the streamlines are visualized in a Scene.

1. Open the Geometry Scene tab.
2. Right-click on Derived Parts \triangleright New Part \triangleright Streamline. . . .

This opens an edit panel in the upper left corner. It also opens up a pop-up window that a
3. Make sure that the Input Parts selection is for the fluid domain, e.g., it is not empty or referring to a boundary
4. Make sure Vector Field is set to Velocity
5. In the Seed Mode pop-up menu, select Line Seed.
6. Enter the following values for the coordinates of Point 1 and Point 2.

	Point 1	Point 2
x	7.5 mm	7.5 mm
y	0 mm	2 mm
z	0 mm	0 mm

If the model includes a velocity field (i.e., if the flow solver has been run and there is a velocity field in the current model) the streamlines should be visible in the Geometry Scene.
7. Set the resolution (number of points) to 5 .
8. Click Apply. You should now see faint streamlines in the Geometry Scene.
9. Enter the following values for the coordinates of Point 1 and Point 2.

	Point 1	Point 2
x	12.99 mm	12.99 mm
y	0 mm	2 mm
z	7.75 mm	7.75 mm

The x coordinates are just shy of the 13 mm that defines the far edge of the domain. Due to round-off, the streamline seed may fall outside of the domain if $x=13 \mathrm{~mm}$ is used to define the seed line. This may or may not be an issue in your model. Using $x=12.99 \mathrm{~mm}$ guarantees that the see line is inside the domain.
10. Click Apply. A new set of streamlines should be visible in the Geometry Scene.

11. Click Close.

Figure 10: Stream tubes emanating from the two inlets for the coarse mesh solution with base size $=0.5 \mathrm{~mm}$.

8.4.2 Display the Streamlines

Once streamlines are created with the preceding steps, those streamlines can be added to any Scene.

1. In any Scene, right-click on the Displayers node and select New Displayers \triangleright Streamline.
2. Expand the Streamlines 1 node.
3. In the Properties pane, change Mode to Tube. This changes the streamlines to stream tubes, but the scale of the tubes is so large that they obliterate the other features of the Scene.

Change the Width parameter in the Properties pane to $1 \mathrm{e}-4$ to give the stream tubes an appropriate scale.
4. Click on the Scalar Field sub-node of the Streamline 1 node. In the Properties pane, click on <Select Function> adjacent to the Function property, and select Velocity \triangleright Magnitude.

Repeat the preceding steps for the second streamline part.
When scalars are displayed on more than one set of streamlines, it is very important that the scalars use the same scale. Figure 10 shows two sets of stream tubes (created with the preceding steps) and a single color scale to indicate the velocity magnitude.

1. Select Scalar Field sub-node of the Streamline 1 node
a. In the Properties pane, set the min value to 0.
b. Set the max value to a value somewhat larger than the default value. In this example a maximum value of 0.16 is sufficient.
2. Select Scalar Field sub-node of the Streamline 2 node
a. In the Properties pane, set the min value to 0 .
b. Set the max value to the same value as the maximum for the velocity scale used in the other streamline object.
c. Click on the Color Bar sub-node for that Scalar Field and uncheck the Visible box.

The preceding steps should yield a stream tube plot similar to that in Figure 10.

9 Quantitative Reports

9.1 Element Counts

1. Right-click Reports \triangleright New Report \triangleright Element Count
2. Click on the just-created Element Count 1 sub-node
3. In the Properties pane, click on the [...] icon in the Parts row.
4. Select all of the nodes under the fluid region (under the Regions node). Make sure you click the blue squares, not the names of the region or boundary.

5. Right-click on Element Count $1 \triangleright$ Run Report. The results of the report are printed to the Output pane.

Element Count
Part
channel
channel_side_mix.inlet_main
channel_side_mix.inlet_sample
channel_side_mix.outlet
channel_side_mix.walls
Total:

Element Count
$2.976200 \mathrm{e}+04$ cells
$2.590000 \mathrm{e}+02$ faces
$1.090000 \mathrm{e}+02$ faces
$2.590000 \mathrm{e}+02$ faces
$5.353000 \mathrm{e}+03$ faces
$3.574200 \mathrm{e}+04$ element

9.2 Average Pressures on inlets and outlet

1. Right-click Reports \triangleright New Report \triangleright Surface Average
2. Click on the just-created Surface Average 1 sub-node
3. In the Properties pane, click on the [...] icon in the Parts row.
4. Select two inlet and one outlet surfaces under the fluid region (under the Regions node). Make sure you click the blue squares, not the names of the region or boundary.
5. In the Properties pane, click on the <Select Function> field in the Scalar Function Row row. Select Pressure

6. Right-click on Surface Average $1 \triangleright$ Run Report. The results of the report are printed to the Output pane.

Surface Average of Pressure on Volume Mesh	
Part	Value (Pa)
channel: channel_side_mix.inlet_main	$2.865981 \mathrm{e}+01$
channel: channel_side_mix.inlet_sample	$2.793480 \mathrm{e}+01$
channel: channel_side_mix.outlet	$0.000000 \mathrm{e}+00$
Total:	$1.584156 \mathrm{e}+01$

9.3 Save the Model

Click the Save icon.

[^0]: ${ }^{1}$ Parasolid is a 3D geometric modeling engine owned by Siemens. See http://www.plm. automation.siemens.com/en_us/products/open/parasolid/index.shtml.

