ME 350: A Quick Introduction to Vector Variables Matlab

Create Vectors

"Manual"	$\begin{aligned} & \mathrm{x}=[1,5,9] \\ & \mathrm{x}=[159] \\ & \mathrm{x}=[1 ; 5 ; 9] \\ & \mathrm{x}=[159], \end{aligned}$	Row vector Row vector, commas are optional Column vector Column vector (notice the transpose)
Vector-creating function	$\begin{aligned} & \mathrm{x}=\operatorname{linspace}(2,3) \\ & \mathrm{x}=\operatorname{linspace}(-1,1) \\ & \mathrm{x}=\operatorname{ones}(1,3) \\ & \mathrm{x}=\operatorname{zeroes}(10,1) \\ & \mathrm{x}=\operatorname{randn}(10,1) \end{aligned}$	Row vector Column vector (notice the transpose) Row vector Column vector Column vector
Colon notation	$\begin{aligned} & \mathrm{x}=1: 5 \\ & \mathrm{x}=1: 2: 10 \\ & \mathrm{x}=0: 0.1: 10 \end{aligned}$	Row vector of integers Row vector, increments of 2 Row vector, increments of 0.1
Vector expressions	$\begin{aligned} & \mathrm{x}=1: 5 \\ & \mathrm{y}=\sin (\mathrm{x}) \end{aligned}$	Row vector of integers y is same "shape" as x

Access to Elements in a Vectors

After the x vector has been created, then

```
x(1) is the first element of x
x(3) is the third element of x
x(end) is the last element of x
i = ...; x(i) is the ith element of x
    i must be a positive integer }\leq\mathrm{ length(x)
```

Expressions like $\mathrm{x}(\mathrm{i})$ can be used to retrieve a value from x

$$
y=x(5) ;
$$

as well as assign values to the elements of x

```
x(3) = sqrt( x(2) );
```

Other examples

```
x(2)=7.2 stores 7.2 in the second element of x
i=3; y(i) = x(i+1) stores the value of x(4) in y(3).
i=3; y(i) = sqrt(x(i+1)) stores the square root of the value of x(4) in y(3)
```


Operations to Summarize or Extract Values from Vectors

After the x vector has been created, then

$\mathrm{n}=\operatorname{length}(\mathrm{x})$	n is the number of elements in x.
$\mathrm{xmax}=\max (\mathrm{x})$	xmax contains the element from x with largest posi- tive value.
$\mathrm{xmin}=\min (\mathrm{x})$	xmin contains the element from x with either the smallest in magnitude positive value if all $x_{i}>0$ or the most negative value in x if any $x_{i}<0$.
$\mathrm{y}=\operatorname{abs}(\mathrm{x})$	creates a vector y such that $y_{i}=\left\|x_{i}\right\|$.
$\mathrm{xmax}=\max (\operatorname{abs}(\mathrm{x}))$	xmax contains the element from x with largest abso- lute value.
$\mathrm{xmin}=\min (\operatorname{abs}(\mathrm{x}))$	xmin contains the element from x with smallest ab- solute value.
$\mathrm{xbar}=\operatorname{mean}(\mathrm{x})$	xbar contains the average of the values in x.
$\mathrm{t}=\operatorname{sum}(\mathrm{x})$	t is the L_{2} norm of elements in $\mathrm{x} . \quad s=\left[\sum_{i=1}^{n} x_{i}^{2}\right]^{1 / 2}$
$\mathrm{t}=\operatorname{sum}(\mathrm{abs}(\mathrm{x}))$	t is the sum of the elements in $\mathrm{x} . \quad t=\sum_{i=1}^{n} x_{i}$
$u=\sum_{i=1}^{n}\left\|x_{i}\right\|$	

