ME 350: A Quick Introduction to Vector Variables MATLAB

Create Vectors

"Manual"	x = [1, 5, 9] x = [1 5 9] x = [1; 5; 9] x = [1 5 9]'	Row vector Row vector, commas are optional Column vector Column vector (notice the transpose)
Vector-creating function	<pre>x = linspace(2,3) x = linspace(-1,1)' x = ones(1,3) x = zeroes(10,1) x = randn(10,1)</pre>	Row vector Column vector (notice the transpose) Row vector Column vector Column vector
Colon notation	x = 1:5 x = 1:2:10 x = 0:0.1:10	Row vector of integers Row vector, increments of 2 Row vector, increments of 0.1
Vector expressions	x = 1:5 y = sin(x)	Row vector of integers y is same "shape" as x

Access to Elements in a Vectors

After the ${\tt x}$ vector has been created, then

x(1)	is the first element of \mathbf{x}
x(3)	is the third element of \mathbf{x}
x(end)	is the last element of \mathbf{x}
i =; x(i)	is the ith element of \mathbf{x}
	i must be a positive integer \leq length(x)

Expressions like x(i) can be used to retrieve a value from x

y = x(5);

as well as assign values to the elements of ${\tt x}$

x(3) = sqrt(x(2));

Other examples

x(2) = 7.2	stores 7.2 in the second element of \mathbf{x}
i=3; y(i) = x(i+1)	stores the value of $x(4)$ in $y(3)$.
i=3; y(i) = sqrt(x(i+1))	stores the square root of the value of $x(4)$ in $y(3)$

Operations to Summarize or Extract Values from Vectors

After the ${\tt x}$ vector has been created, then

n = length(x)	n is the number of elements in x .
<pre>xmax = max(x)</pre>	xmax contains the element from \mathbf{x} with largest positive value.
xmin = min(x)	xmin contains the element from x with either the smallest in magnitude positive value if all $x_i > 0$ or the most negative value in x if any $x_i < 0$.
y = abs(x)	creates a vector y such that $y_i = x_i $.
<pre>xmax = max(abs(x))</pre>	xmax contains the element from x with largest absolute value.
<pre>xmin = min(abs(x))</pre>	xmin contains the element from x with smallest absolute value.
xbar = mean(x)	xbar contains the average of the values in x.
s = norm(x)	s is the L_2 norm of elements in x . $s = \left[\sum_{i=1}^n x_i^2\right]^{1/2}$
t = sum(x)	t is the sum of the elements in x. $t = \sum_{i=1}^{n} x_i$
u = sum(abs(x))	${\tt t}$ is the sum of the absolute value of elements in ${\tt x}.$ $u=\sum_{i=1}^n x_i $