
Introduction to Matrix Operations in Matlab

Gerald W. Recktenwald

Department of Mechanical Engineering

Portland State University

gerry@pdx.edu

ME 350: Introduction to Matrix Operations in Matlab

Overview

Working with Matrices and Vectors

• Linear algebra

• Vectorized operations

• Array operators

ME 350: Introduction to Matrix Operations in Matlab page 1

Manipulation of Matrices and Vectors

The name “Matlab” evolved as an abbreviation of “MATrix LABoratory”. The data

types and syntax used by Matlab make it easy to perform the standard operations of

linear algebra including addition and subtraction, multiplication of vectors and matrices,

and solving linear systems of equations.

Later we will review linear algebra. Here we provide a simple introduction to some

operations that are necessary for routine calculation.

• Vector addition and subtraction

• Inner and outer products

• Vectorization

• Array operators

ME 350: Introduction to Matrix Operations in Matlab page 2

Vector Addition and Subtraction

Vector and addition and subtraction are element-by-element operations.

Example:

>> u = [10 9 8]; (u and v are row vectors)
>> v = [1 2 3];

>> u+v

ans =

11 11 11

>> u-v

ans =

9 7 5

ME 350: Introduction to Matrix Operations in Matlab page 3

Vector Inner and Outer Products

The inner product combines two vectors to form a scalar

σ = u · v = u v
T ⇐⇒ σ =

∑
ui vi

The outer product combines two vectors to form a matrix

A = u
T
v ⇐⇒ ai,j = ui vj

ME 350: Introduction to Matrix Operations in Matlab page 4

Inner and Outer Products in Matlab

Inner and outer products are supported in Matlab as natural extensions of the

multiplication operator

>> u = [10 9 8]; (u and v are row vectors)
>> v = [1 2 3];

>> u*v’ (inner product)
ans =

52

>> u’*v (outer product)
ans =

10 20 30

9 18 27

8 16 24

ME 350: Introduction to Matrix Operations in Matlab page 5

Vectorization

• Vectorization is the use of single, compact expressions that operate on all elements of

a vector without explicitly executing a loop. The loop is executed by the Matlab

kernel, which is much more efficient at looping than interpreted Matlab code.

• Vectorization allows calculations to be expressed succintly so that programmers get a

high level (as opposed to detailed) view of the operations being performed.

• Vectorization is important to make Matlab operate efficiently.

ME 350: Introduction to Matrix Operations in Matlab page 6

Vectorization of Built-in Functions

Most built-in function support vectorized operations. If the input is a scalar the result is a

scalar. If the input is a vector or matrix, the output is a vector or matrix with the same

number of rows and columns as the input.

>> x = 0:pi/4:pi (define a row vector)
x =

0 0.7854 1.5708 2.3562 3.1416

>> y = cos(x) (evaluate cosine of each x(i)

y =

1.0000 0.7071 0 -0.7071 -1.0000

Contrast with Fortran implementation:
real x(5),y(5)

pi = 3.14159624

dx = pi/4.0

do 10 i=1,5

x(i) = (i-1)*dx

y(i) = sin(x(i))

10 continue

No explicit loop is necessary in Matlab.

ME 350: Introduction to Matrix Operations in Matlab page 7

Vector Calculations (1)

More examples

>> A = pi*[1 2; 3 4]

A =

3.1416 6.2832

9.4248 12.5664

>> S = sin(A)

S =

0 0

0 0

>> B = A/2

B =

1.5708 3.1416

4.7124 6.2832

>> T = sin(B)

T =

1 0

-1 0

ME 350: Introduction to Matrix Operations in Matlab page 8

Array Operators

Array operators support element-by-element operations that are not defined by the rules

of linear algebra

Array operators are designated by a period prepended to the standard operator

Symbol Operation

.* element-by-element multiplication

./ element-by-element “right” division

.\ element-by-element “left” division

.^ element-by-element exponentiation

Array operators are a very important tool for writing vectorized code.

ME 350: Introduction to Matrix Operations in Matlab page 9

Using Array Operators (1)

Examples: Element-by-element multiplication and division

>> u = [1 2 3];

>> v = [4 5 6];

>> w = u.*v (element-by-element product)
w =

4 10 18

>> x = u./v (element-by-element division)
x =

0.2500 0.4000 0.5000

>> y = sin(pi*u/2) .* cos(pi*v/2)

y =

1 0 1

>> z = sin(pi*u/2) ./ cos(pi*v/2)

Warning: Divide by zero.

z =

1 NaN 1

ME 350: Introduction to Matrix Operations in Matlab page 10

Using Array Operators (2)

Examples: Application to matrices

>> A = [1 2 3 4; 5 6 7 8];

>> B = [8 7 6 5; 4 3 2 1];

>> A.*B

ans =

8 14 18 20

20 18 14 8

>> A*B

??? Error using ==> *

Inner matrix dimensions must agree.

>> A*B’

ans =

60 20

164 60

>> A.^2

ans =

1 4 9 16

25 36 49 64

ME 350: Introduction to Matrix Operations in Matlab page 11

