
ME 350 Lecture 8 Solving Systems of Linear Equations
Winter 2017

1 Learning Objectives

At the end of this class you will be able to

• Set up a system of n equations in n unknowns:
create A and b in Ax = b.

• State the condition that must hold if a solution exists. Explain this con-
dition in terms of the column space of A.

• State the condition that must hold if the solution to Ax = b exist and is
unique when A is n× n

• explain the significance of the condition number

• compute and interpret the residual

• explain a rule of thumb estimate for the number of significant digits in the
solution to a linear system of equations.

2 Standard Form

The standard form for a system of linear equations is

Ax = b

A is a matrix, usually square, x is a column vector, b is a column vector. The
unknowns are elements of x. Multipliers of x (coefficients of x) are elements of
A. Everything else must be known and goes in b.

Putting a system into Standard Form

1. Write equations in “natural” form, i.e., the form that arises from the given
problem. Don’t try to write A, x and b just by looking at your equations.

2. Identify unknowns and order them. Associate this ordered list of un-
knowns with the elements of x.

3. Manipulate equations:

• Gather all multipliers of each unknown on left hand side

• Move all leftovers to right hand side

4. Transfer to matrix form.

ME 350: Solving Linear Systems Winter 2017 page 2/8

3 Requirements for a solution

• b must lie in range(A) for solution to exist. In other words, b must lie in
the column space of A.

Ax = b is a statement that x is a set of coefficients that are
used to construct b from a linear combination of the columns
of A.

• if A is not full rank, solution will not be unique

• For n× n systems

– If rank(A) = n, the n columns of A are linearly independent, so
columns of A span Rn. Therefore, any n element vector, b, must lie
in range(A), and a solution exists.

– If rank(A) = n the solution is also unique

4 Formal Solution

The formal solution to Ax = b is x = A−1b, when A is n× n.

• If A−1 does not exist, then A is singular

• If A−1 does exist, then A is nonsingular

Do not use x = A−1b in Matlab, e.g., x = inv(A)*b. Use the
backslash operator instead.

5 Gaussian Elimination

Gaussian Elimination: the goal is to transform a system so that the coefficient
matrix is triangular. The triangular system is then solved by backward substi-
tution.

5.1 Solving Ax = b in Matlab

The ”backslash” operator, \, is used to solve linear systems of equations in
Matlab. Given an n × n matrix A, and an n × 1 vector b the \ operator
performs a sequence of tests on the A matrix. Matlab attempts to solve the
system with the method that gives the least roundoff and the fewest operations.

Consider the linear system defined by

A =


2 4 −2 −2
1 2 4 −3
−3 −3 8 −2
−1 1 6 −3

 , b =


−4

5
7
7

 .
The following statements define matrix A and column vector b

ME 350: Solving Linear Systems Winter 2017 page 3/8

>> A = [2 4 -2 2; 1 2 4 -3; -3 -3 8 -2; -1 1 6 -3]

A =

2 4 -2 2

1 2 4 -3

-3 -3 8 -2

-1 1 6 -3

>> b = [-4; 5; 7; 7]

b =

-4

5

7

7

Remember that row elements are separated by spaces or commas, and columns
are separated by semicolons. With A and b defined as above, the solution to
Ax = b is

>> x = A\b

x =

-0.7778

0.2222

0.3333

-1.3333

Do not use the inv command. Although one can usually get away with
solving Ax = b with the inv commmand, it is a bad habit for the following
reasons.

• Solving Ax = b with inv takes more operations than x = A\b. The differ-
ence in operation count becomes significant as n increases. (A is n× n.)

• The backslash operator examines the properties of A before it chooses
one of several solution methods. The process is represented graphically
in Figure 1. As long as A is full rank and well-conditioned, the different
methods are equivalent, but the solution algorithm chosen by the backslash
algorithm will be as efficient as possible and use the least amount of effort
possible.

• Solving Ax = b with inv is more susceptible to roundoff than x = A\b.

ME 350: Solving Linear Systems Winter 2017 page 4/8

Figure 1: Analysis of the coefficient matrix and subsequent solution methods
used by the backslash operator. Image from the Mathworks https://www.

mathworks.com/help/releases/R2016b/matlab/ref/mldivide_full.png.

ME 350: Solving Linear Systems Winter 2017 page 5/8

6 Numerical Accuracy and Stability

Solving a linear system involves O(n3) floating point operations when A is n×n.
Therefore, as n increases, the work increases rapidly. For large n roundoff errors
can also reduce the accuracy of the solution. However, even for modest-sized
systems, roundoff can be important if the coefficient matrix is ill-conditioned.
In this section we introduce the condition number, which is a scalar value that
indicates how close the coefficient matrix is to being singular.

6.1 Condition Number

• In exact arithmetic a square matrix is either singular or not.

• In floating point arithmetic, a matrix can be more or less singular. The
condition number of a matrix is “large” when the matrix is nearly singular

• The numerical solution to Ax = b is x̂. Because of roundoff, x̂ 6= x, i.e.,
the numerical solution is not exactly equal to the true (perfect, analytical)
solution. We hope that x̂ is close to x, i.e. we want a small ‖x̂− x‖.

• The condition number of matrix A is

κ(A) = ‖A‖‖A−1‖

where ‖A‖ is the matrix norm.

Note that matrix norms are not obtained by applying the formulas for vec-
tor norms to the elements of A. In general, matrix norms are expensive to
compute. The built-in condest and rcond functions allow us to estimate
the condition number of matrices without incurring the full computational
cost of computing the matrix norms.

In general
1 ≤ κ(A) ≤ ∞

and κ(A) =∞ for a singular matrix. Thus,

The magnitude of κ(A) indicates how close A is to being
singular.

A large κ(A) means that A is ill conditioned.

• When A is ill conditioned, small changes in the elements of A and b can
have a big effect on the numerical solution to Ax = b.

• A matrix that has a large κ is susceptible to roundoff in a way that makes
the solution to Ax = b potentially unreliable regardless of how x is com-
puted. In other words,

The condition number is a characteristic of the problem being
solved, not the algorithm used to obtain the solution.

• In exact arithmetic (infinite number of digits) a matrix is either singular
(A−1 does not exist) or nonsingular (A−1 exists). Thus, the condition
number has no bearing on accuracy of solution obtained in exact arith-
metic, i.e. in symbolic form.

ME 350: Solving Linear Systems Winter 2017 page 6/8

6.2 Stability

“Good” and “bad” algorithms — Backward stability

• A good algorithm will not amplify roundoff errors present in the input
data. Roundoff is always present. An unstable algorithm makes the effect
of roundoff worse.

Roundoff in the input occurs when elements of A and or b come from
(uncertain) experimental data, or when the elements of A and b are stored
with limited precision (roundoff)

• A good algorithm is backward stable, i.e. it produces the exact solution to
a problem that is close to the original problem.

• Gaussian elimination without pivoting is not backward stable. The algo-
rithm cannot be guaranteed to give small ‖x̂− x‖ even if the problem has
a small κ(A) and even if no zero pivot is encountered

• Gaussian elimination with partial pivoting (GEPP) is backward stable.
The x̂ vector produced by applying GEPP to Ax = b is the exact solution
to

(A+ E)x̂ = b (1)

where E is a matrix of small perturbations to A. The solution to Equa-
tion (1) satisfies

‖x̂− x‖
‖x‖

= κ(A)
‖E‖
‖A‖

In other words both κ(A) and ‖E‖ affect the accuracy of GEPP.

6.3 The role of the residual

• The numerical solution to Ax = b is x̂. The residual vector is defined by

r = b−Ax̂.

Notice that r uses the numerical solution , x̂, not the true solution, x.

• So, if r is “small enough”, is x̂ ≈ x?

The answer is no!

• It is not hard to show that (see Appendix)

‖x̂− x‖
x̂

= κ(A)
‖r‖
‖b‖

(2)

Thus, the error
‖x̂− x‖

x

is small, only if
‖r‖
‖b‖

is small

and
κ(A) is not large.

ME 350: Solving Linear Systems Winter 2017 page 7/8

6.4 Rules of thumb

1 Applying Gaussian elimination with partial pivoting and back substitution
to Ax = b yields a numerical solution x̂ such that the residual vector
r = b−Ax̂ is small even if κ(A) is large.

2 If A and b are stored to machine precision εm, the numerical solution to
Ax = b by any variant of GEPP is correct to d digits where

d = | log10(εm)| − log10 (κ(A)) (3)

In Matlab, εm ≈ 2.2 × 10−16. Therefore, in Matlab, there is a maximum
of 16 possibly significant digits when solving Ax = b. Since κ(A) ≥ 1, we can
expect that the solution to linear systems has somewhat fewer than 16 reliable
digits.

6.5 Summary of Condition Number

• Small residuals are achieved by Gaussian elimination with partial pivot-
ing.)

• Small residuals do not guarantee an accurate solution unless the condition
number is “not too large”.

• The rule of thumb in Equation (3) provides a way of estimating when
condition numbers are “too large”

• In general, we don’t compute the condition numbers for routine problem-
solving. The Matlab backslash operator estimates the condition number
and prints a warning message if it’s too large

• The condition number is a measure of how close the coefficient matrix is
to being numerically rank deficient (numerically singular). By “numerical
rank deficiency” I mean that a matrix that is not singular in exact arith-
metic (infinite number of mantissa digits) can be effectively rank deficient
due to roundoff errors.

ME 350: Solving Linear Systems Winter 2017 page 8/8

Appendix: Derive Equation (2)

Let x be the exact solution and x̂ be the numerical solution to Ax = b. Define
the residual by r = b−Ax̂, and derive Equation (2).

Add Ax− b = 0 to the equation defining the residual, r = b−Ax̂,

r = b−Ax̂ = b−Ax̂+ (Ax− b) = A(x− x̂)

Thus, since r = A(x− x̂),
x− x̂ = A−1r

Taking norms of both sides we get

‖x− x̂‖ ≤ ‖A−1‖‖r‖ (4)

Now, take the norm of Ax = b

‖Ax‖ = ‖b‖ =⇒ ‖b‖ ≤ ‖A‖‖x‖

and rearrange to get
1

‖x‖
≤ ‖A‖
‖b‖

(5)

Multiply Equation (4) by Equation (5) to get

‖x− x̂‖
‖x‖

≤ ‖A‖‖A−1‖‖r‖
‖b‖

or
‖x− x̂‖
‖x‖

≤ κ(A)
‖r‖
‖b‖

where κ(A) ≡ ‖A‖‖A−1‖.

