
Solving Linear Systems of Equations

Gerald Recktenwald
Portland State University

Mechanical Engineering Department
gerry@me.pdx.edu

These slides are a supplement to the book Numerical Methods with
Matlab: Implementations and Applications, by Gerald W. Recktenwald,
c© 2000–2006, Prentice-Hall, Upper Saddle River, NJ. These slides are

copyright c© 2000–2006 Gerald W. Recktenwald. The PDF version
of these slides may be downloaded or stored or printed only for
noncommercial, educational use. The repackaging or sale of these
slides in any form, without written consent of the author, is prohibited.

The latest version of this PDF file, along with other supplemental material
for the book, can be found at www.prenhall.com/recktenwald or
web.cecs.pdx.edu/~gerry/nmm/.

Version 0.88 August 22, 2006

page 1

Primary Topics

• Basic Concepts

• Gaussian Elimination

• Limitations on Numerical Solutions to Ax = b

• Factorization Methods

• Nonlinear Systems of Equations

NMM: Solving Systems of Equations page 2

Basic Concepts

• Matrix Formulation

• Requirements for a Solution

! Consistency
! The Role of rank(A)
! Formal Solution when A is n × n

NMM: Solving Systems of Equations page 3

Pump Curve Model (1)

Objective: Find the coefficients of the quadratic equation that approximates the pump
curve data.

0 0.5 1 1.5
x 10−3

85

90

95

100

105

110

115

120

Flow rate (m3/s)

H
ea

d
 (m

)

Model equation:

h = c1q
2 + c2q + c3

Write the model equation for three
points on the curve. This gives three
equations for the three unknowns c1,
c2, and c3.

NMM: Solving Systems of Equations page 4

Pump Curve Model (2)

Points from the pump curve:

q (m3/s) 1 × 10−4 8 × 10−4 1.4 × 10−3

h (m) 115 110 92.5

Substitute each pair of data points into the model equation

115 = 1 × 10−8 c1 + 1 × 10−4 c2 + c3,
110 = 64 × 10−8 c1 + 8 × 10−4 c2 + c3,
92.5 = 196 × 10−8 c1 + 14 × 10−4 c2 + c3,

Rewrite in matrix form as
2

4
1 × 10−8 1 × 10−4 1
64 × 10−8 8 × 10−4 1
196 × 10−8 14 × 10−4 1

3

5

2

4
c1

c2

c3

3

5 =

2

4
115
110
92.5

3

5 .

NMM: Solving Systems of Equations page 5

Pump Curve Model (3)

Using more compact symbolic notation

Ax = b

where

A =

2

4
1 × 10−8 1 × 10−4 1
64 × 10−8 8 × 10−4 1
196 × 10−8 14 × 10−4 1

3

5 ,

x =

2

4
c1

c2

c3

3

5 , b =

2

4
115
110
92.5

3

5 .

NMM: Solving Systems of Equations page 6

Pump Curve Model (4)

In general, for any three (q, h) pairs the system is still Ax = b with

A =

2

64
q2
1 q1 1

q2
2 q2 1

q2
3 q3 1

3

75 , x =

2

4
c1

c2

c3

3

5 , b =

2

4
h1

h2

h3

3

5 .

NMM: Solving Systems of Equations page 7

Matrix Formulation

Recommended Procedure

1. Write the equations in natural form.

2. Identify unknowns, and order them.

3. Isolate the unknowns.

4. Write equations in matrix form.

NMM: Solving Systems of Equations page 8

Thermal Model of an IC Package (1)

Objective: Find the temperature of an integrated circuit (IC) package mounted on a heat
spreader. The system of equations is obtained from a thermal resistive network model.

Physical Model: Mathematical Model:

Tp Tw

air flow

ambient air at Ta

R1

!c
Qc

!a

Q3 R3

!p

!a

!w

!a

Q4 R4 Q5 R5

Q1 Q2

R2

NMM: Solving Systems of Equations page 9

Thermal Model of an IC Package (2)

1. Write the equations in natural form:

Use resistive model of heat flow between nodes to get

Q1 =
1

R1
(Tc − Tp) Q2 =

1

R2
(Tp − Tw)

Q3 =
1

R3
(Tc − Ta) Q4 =

1

R4
(Tp − Ta)

Q2 =
1

R5
(Tw − Ta)

Qc = Q1 + Q3 Q1 = Q2 + Q4

NMM: Solving Systems of Equations page 10

Thermal Model of an IC Package (3)

2. Identify unknowns, and order them:
Unknowns are Q1, Q2, Q3, Q4, Tc, Tp, and
Tw. Thus,

x =

2

6666666664

Q1

Q2

Q3

Q4

Tc

Tp

Tw

3

7777777775

.

3. Isolate the Unknowns

R1Q1 − Tc + Tp = 0,

R2Q2 − Tp + Tw = 0,

R3Q3 − Tc = −Ta,

R4Q4 − Tp = −Ta,

R5Q2 − Tw = −Ta,

Q1 + Q3 = Qc,

Q1 − Q2 − Q4 = 0.

NMM: Solving Systems of Equations page 11

Thermal Model of an IC Package (4)

4. Write in Matrix Form
2

6666666664

R1 0 0 0 −1 1 0
0 R2 0 0 0 −1 1
0 0 R3 0 −1 0 0
0 0 0 R4 0 −1 0
0 R5 0 0 0 0 −1
1 0 1 0 0 0 0
1 −1 0 −1 0 0 0

3

7777777775

2

6666666664

Q1

Q2

Q3

Q4

Tc

Tp

Tw

3

7777777775

=

2

6666666664

0
0

−Ta

−Ta

−Ta

Qc

0

3

7777777775

Note: The coefficient matrix has many more zeros than non-zeros. This is an example
of a sparse matrix.

NMM: Solving Systems of Equations page 12

Requirements for a Solution

1. Consistency

2. The Role of rank(A)

3. Formal Solution when A is n × n

4. Summary

NMM: Solving Systems of Equations page 13

Consistency (1)

If an exact solution to Ax = b exists, b must lie in the column space of A. If it does,
then the system is said to be consistent.

If the system is consistent, an exact solution exists.

NMM: Solving Systems of Equations page 14

Consistency (2)

rank(A) gives the number of linearly independent columns in A

[A b] is the augmented matrix formed by combining the b vector with the columns of A.

[A b] =

2

664

a11 a12 · · · a1,n

a21 a22 a2,n
...

am,1 am,2 · · · an,n

˛̨
˛̨
˛̨
˛̨

b1

b2
...

bn

3

775

If rank([A b]) > rank(A) then b does not lie in the column space of A. In other
words, since [A b] has a larger set of basis vectors than A, and since the difference in the
size of the basis set is solely due to the b vector, the b vector cannot be constructed from
the column vectors of A.

NMM: Solving Systems of Equations page 15

Role of rank(A)

• If A is m × n, and z is an n-element column vector, then Az = 0 has a nontrivial
solution only if the columns of A are linearly dependent1.

• In other words, the only solution to Az = 0 is z = 0 when A is full rank.

• Given the m × n matrix A, the system Ax = b has a unique solution if the system is
consistent and if rank(A) = n.

1“0” is the m-element column vector filled with zeros

NMM: Solving Systems of Equations page 16

Summary of Solution to Ax = b where A is m × n

For the general case where A is m × n and m ≥ n,

• If rank(A) = n and the system is consistent, the solution exists and it is unique.

• If rank(A) = n and the system is inconsistent, no solution exists.

• If rank(A) < n and the system is consistent, an infinite number of solutions exist.

If A is n × n and rank(A) = n, then
the system is consistent and the
solution is unique.

NMM: Solving Systems of Equations page 17

Formal Solution when A is n × n

The formal solution to Ax = b is
x = A−1b

where A is n × n.

If A−1 exists then A is said to be nonsingular.

If A−1 does not exist then A is said to be singular.

NMM: Solving Systems of Equations page 18

Formal Solution when A is n × n

If A−1 exists then
Ax = b =⇒ x = A−1b

but

Do not compute the solution to Ax = b by
finding A−1, and then multiplying b by A−1!

We see: x = A−1b

We do: Solve Ax = b by Gaussian elimination
or an equivalent algorithm

NMM: Solving Systems of Equations page 19

Singularity of A

If an n × n matrix, A, is singular then

! the columns of A are linearly dependent

! the rows of A are linearly dependent

! rank(A) < n

! det(A) = 0

! A−1 does not exist

! a solution to Ax = b may not exist

! If a solution to Ax = b exists, it is not unique

NMM: Solving Systems of Equations page 20

Summary of Requirements for Solution of Ax = b

Given the n × n matrix A and the n × 1 vector, b

• the solution to Ax = b exists and is unique for any b if and only if rank(A) = n.

• rank(A) = n automatically guarantees that the system is consistent.

NMM: Solving Systems of Equations page 21

Gaussian Elimination

• Solving Diagonal Systems

• Solving Triangular Systems

• Gaussian Elimination Without Pivoting

! Hand Calculations
! Cartoon Version
! The Algorithm

• Gaussian Elimination with Pivoting

! Row or Column Interchanges, or Both
! Implementation

• Solving Systems with the Backslash Operator

NMM: Solving Systems of Equations page 22

Solving Diagonal Systems (1)

The system defined by

A =

2

4
1 0 0
0 3 0
0 0 5

3

5 b =

2

4
−1

6
−15

3

5

NMM: Solving Systems of Equations page 23

Solving Diagonal Systems (1)

The system defined by

A =

2

4
1 0 0
0 3 0
0 0 5

3

5 b =

2

4
−1

6
−15

3

5

is equivalent to
x1 = −1

3x2 = 6
5x3 = −15

NMM: Solving Systems of Equations page 24

Solving Diagonal Systems (1)

The system defined by

A =

2

4
1 0 0
0 3 0
0 0 5

3

5 b =

2

4
−1

6
−15

3

5

is equivalent to
x1 = −1

3x2 = 6
5x3 = −15

The solution is

x1 = −1 x2 =
6

3
= 2 x3 =

−15

5
= −3

NMM: Solving Systems of Equations page 25

Solving Diagonal Systems (2)

Algorithm 8.1

given A, b
for i = 1 . . . n

xi = bi/ai,i

end

In Matlab:

>> A = ... % A is a diagonal matrix
>> b = ...
>> x = b./diag(A)

This is the only place where element-by-element division (.*) has anything to do with
solving linear systems of equations.

NMM: Solving Systems of Equations page 26

Triangular Systems (1)

The generic lower and upper triangular matrices are

L =

2

664

l11 0 · · · 0
l21 l22 0
...

ln1 · · · lnn

3

775

and

U =

2

664

u11 u12 · · · u1n

0 u22 u2n
...
0 · · · unn

3

775

The triangular systems
Ly = b Ux = c

are easily solved by forward substitution and backward substitution, respectively

NMM: Solving Systems of Equations page 27

Solving Triangular Systems (2)

A =

2

4
−2 1 2

0 3 −2
0 0 4

3

5 b =

2

4
9

−1
8

3

5

NMM: Solving Systems of Equations page 28

Solving Triangular Systems (3)

A =

2

4
−2 1 2

0 3 −2
0 0 4

3

5 b =

2

4
9

−1
8

3

5

is equivalent to
−2x1 + x2 + 2x3 = 9

3x2 + −2x3 = −1
4x3 = 8

NMM: Solving Systems of Equations page 29

Solving Triangular Systems (4)

A =

2

4
−2 1 2

0 3 −2
0 0 4

3

5 b =

2

4
9

−1
8

3

5

is equivalent to
−2x1 + x2 + 2x3 = 9

3x2 + −2x3 = −1
4x3 = 8

Solve in backward order (last equation is solved first)

x3 =
8

4
= 2

NMM: Solving Systems of Equations page 30

Solving Triangular Systems (5)

A =

2

4
−2 1 2

0 3 −2
0 0 4

3

5 b =

2

4
9

−1
8

3

5

is equivalent to
−2x1 + x2 + 2x3 = 9

3x2 + −2x3 = −1
4x3 = 8

Solve in backward order (last equation is solved first)

x3 =
8

4
= 2 x2 =

1

3
(−1 + 2x3) =

3

3
= 1

NMM: Solving Systems of Equations page 31

Solving Triangular Systems (6)

A =

2

4
−2 1 2

0 3 −2
0 0 4

3

5 b =

2

4
9

−1
8

3

5

is equivalent to
−2x1 + x2 + 2x3 = 9

3x2 + −2x3 = −1
4x3 = 8

Solve in backward order (last equation is solved first)

x3 =
8

4
= 2 x2 =

1

3
(−1 + 2x3) =

3

3
= 1

x1 =
1

−2
(9 − x2 − 2x3) =

4

−2
= −2

NMM: Solving Systems of Equations page 32

Solving Triangular Systems (7)

Solving for xn, xn−1, . . . , x1 for an upper triangular system is called backward
substitution.

Algorithm 8.2

given U , b
xn = bn/unn

for i = n − 1 . . . 1
s = bi

for j = i + 1 . . . n
s = s − ui,jxj

end
xi = s/ui,i

end

NMM: Solving Systems of Equations page 33

Solving Triangular Systems (8)

Solving for x1, x2, . . . , xn for a lower triangular system is called forward substitution.

Algorithm 8.3

given L, b
x1 = b1/"11
for i = 2 . . . n

s = bi

for j = 1 . . . i − 1
s = s − "i,jxj

end
xi = s/"i,i

end

Using forward or backward substitution is sometimes referred to as performing a
triangular solve.

NMM: Solving Systems of Equations page 34

Gaussian Elimination

Goal is to transform an arbitrary, square system into the equivalent upper triangular
system so that it may be easily solved with backward substitution.

The formal solution to Ax = b, where A is an n × n matrix is

x = A−1b

In Matlab:

>> A = ...
>> b = ...
>> x = A\b

NMM: Solving Systems of Equations page 35

Gaussian Elimination — Hand Calculations (1)

Solve

x1 + 3x2 = 5

2x1 + 4x2 = 6

Subtract 2 times the first equation from the second equation

x1 + 3x2 = 5

−2x2 = −4

This equation is now in triangular form, and can be solved by backward substitution.

NMM: Solving Systems of Equations page 36

Gaussian Elimination — Hand Calculations (2)

The elimination phase transforms the matrix and right hand side to an equivalent system

x1 + 3x2 = 5

2x1 + 4x2 = 6
−→

x1 + 3x2 = 5

−2x2 = −4

The two systems have the same solution. The right hand system is upper triangular.

Solve the second equation for x2

x2 =
−4

−2
= 2

Substitute the newly found value of x2 into the first equation and solve for x1.

x1 = 5 − (3)(2) = −1

NMM: Solving Systems of Equations page 37

Gaussian Elimination — Hand Calculations (3)

When performing Gaussian Elimination by hand, we can avoid copying the xi by using a
shorthand notation.

For example, to solve:

A =

2

4
−3 2 −1

6 −6 7
3 −4 4

3

5 b =

2

4
−1
−7
−6

3

5

Form the augmented system

Ã = [A b] =

2

4
−3 2 −1

6 −6 7
3 −4 4

˛̨
˛̨
˛̨

−1
−7
−6

3

5

The vertical bar inside the augmented matrix is just a reminder that the last column is the
b vector.

NMM: Solving Systems of Equations page 38

Gaussian Elimination — Hand Calculations (4)

Add 2 times row 1 to row 2, and add (1 times) row 1 to row 3

Ã(1) =

2

4
−3 2 −1

0 −2 5
0 −2 3

˛̨
˛̨
˛̨

−1
−9
−7

3

5

Subtract (1 times) row 2 from row 3

Ã(2) =

2

4
−3 2 −1

0 −2 5
0 0 −2

˛̨
˛̨
˛̨

−1
−9

2

3

5

NMM: Solving Systems of Equations page 39

Gaussian Elimination — Hand Calculations (5)

The transformed system is now in upper triangular form

Ã(2) =

2

4
−3 2 −1

0 −2 5
0 0 −2

˛̨
˛̨
˛̨

−1
−9

2

3

5

Solve by back substitution to get

x3 =
2

−2
= −1

x2 =
1

−2
(−9 − 5x3) = 2

x1 =
1

−3
(−1 − 2x2 + x3) = 2

NMM: Solving Systems of Equations page 40

Gaussian Elimination — Cartoon Version (1)

Start with the augmented system
2

664

x x x x x
x x x x x
x x x x x
x x x x x

3

775

The xs represent numbers, they are not necessarily the same values.

Begin elimination using the first row as the pivot row and the first element of the first
row as the pivot element

2

6664

x x x x x

x x x x x
x x x x x
x x x x x

3

7775

NMM: Solving Systems of Equations page 41

Gaussian Elimination — Cartoon Version (2)

Eliminate elements under the pivot element in the first column. x′ indicates a value that
has been changed once.

2

6666664

x x x x x

x x x x x

x x x x x

x x x x x

3

7777775
−→

2

6666664

x x x x x

0 x′ x′ x′ x′

x x x x x

x x x x x

3

7777775

−→

2

6666664

x x x x x

0 x′ x′ x′ x′

0 x′ x′ x′ x′

x x x x x

3

7777775

−→

2

6666664

x x x x x

0 x′ x′ x′ x′

0 x′ x′ x′ x′

0 x′ x′ x′ x′

3

7777775

NMM: Solving Systems of Equations page 42

Gaussian Elimination — Cartoon Version (3)

The pivot element is now the diagonal element in the second row. Eliminate elements
under the pivot element in the second column. x′′ indicates a value that has been
changed twice.

2

66666664

x x x x x

0 x′ x′ x′ x′

0 x′ x′ x′ x′

0 x′ x′ x′ x′

3

77777775

−→

2

66666664

x x x x x

0 x′ x′ x′ x′

0 0 x′′ x′′ x′′

0 x′ x′ x′ x′

3

77777775

−→

2

66666664

x x x x x

0 x′ x′ x′ x′

0 0 x′′ x′′ x′′

0 0 x′′ x′′ x′′

3

77777775

NMM: Solving Systems of Equations page 43

Gaussian Elimination — Cartoon Version (4)

The pivot element is now the diagonal element in the third row. Eliminate elements under
the pivot element in the third column. x′′′ indicates a value that has been changed three
times.

2

66666664

x x x x x

0 x′ x′ x′ x′

0 0 x′′ x′′ x′′

0 0 x′′ x′′ x′′

3

77777775

−→

2

66666664

x x x x x

0 x′ x′ x′ x′

0 0 x′′ x′′ x′′

0 0 0 x′′′ x′′′

3

77777775

NMM: Solving Systems of Equations page 44

Gaussian Elimination — Cartoon Version (5)

Summary

• Gaussian Elimination is an orderly process of transforming an augmented matrix into
an equivalent upper triangular form.

• The elimination operation is

ãkj = ãkj − (ãki/ãii)ãij

• Elimination requires three nested loops.

• The result of the elimination phase is represented by the image below.
2

666664

x x x x x

x x x x x

x x x x x

x x x x x

3

777775
−→

2

666664

x x x x x

0 x′ x′ x′ x′

0 0 x′′ x′′ x′′

0 0 0 x′′′ x′′′

3

777775

NMM: Solving Systems of Equations page 45

Gaussian Elimination Algorithm

Algorithm 8.4

form Ã = [A b]

for i = 1 . . . n − 1
for k = i + 1 . . . n

for j = i . . . n + 1
ãkj = ãkj − (ãki/ãii)ãij

end
end

end

GEshow: The GEshow function in the NMM toolbox uses Gaussian elimination to solve
a system of equations. GEshow is intended for demonstration purposes only.

NMM: Solving Systems of Equations page 46

The Need for Pivoting (1)

Solve:

A =

2

664

2 4 −2 −2
1 2 4 −3

−3 −3 8 −2
−1 1 6 −3

3

775 b =

2

664

−4
5
7
7

3

775

Note that there is nothing ”wrong” with this system. A is full rank. The solution exists
and is unique.

Form the augmented system.

2

664

2 4 −2 −2
1 2 4 −3

−3 −3 8 −2
−1 1 6 −3

˛̨
˛̨
˛̨
˛̨

−4
5
7
7

3

775

NMM: Solving Systems of Equations page 47

The Need for Pivoting (2)

Subtract 1/2 times the first row from the second row,
add 3/2 times the first row to the third row,
add 1/2 times the first row to the fourth row.

The result of these operations is:

2

664

2 4 −2 −2
0 0 5 −2
0 3 5 −5
0 3 5 −4

˛̨
˛̨
˛̨
˛̨

−4
7
1
5

3

775

The next stage of Gaussian elimination will not work because there is a zero in the pivot
location, ã22.

NMM: Solving Systems of Equations page 48

The Need for Pivoting (3)

Swap second and fourth rows of the augmented matrix.

2

664

2 4 −2 −2
0 3 5 −4
0 3 5 −5
0 0 5 −2

˛̨
˛̨
˛̨
˛̨

−4
5
1
7

3

775

Continue with elimination: subtract (1 times) row 2 from row 3.

2

664

2 4 −2 −2
0 3 5 −4
0 0 0 −1
0 0 5 −2

˛̨
˛̨
˛̨
˛̨

−4
5

−4
7

3

775

NMM: Solving Systems of Equations page 49

The Need for Pivoting (4)

Another zero has appear in the pivot position. Swap row 3 and row 4.

2

664

2 4 −2 −2
0 3 5 −4
0 0 5 −2
0 0 0 −1

˛̨
˛̨
˛̨
˛̨

−4
5
7

−4

3

775

The augmented system is now ready for backward substitution.

NMM: Solving Systems of Equations page 50

Pivoting Strategies

Partial Pivoting: Exchange only rows

! Exchanging rows does not affect the order of the xi

! For increased numerical stability, make sure the largest possible pivot element is used.
This requires searching in the partial column below the pivot element.

! Partial pivoting is usually sufficient.

NMM: Solving Systems of Equations page 51

Partial Pivoting

To avoid division by zero, swap the row having the zero pivot with one of the rows below
it.

0

*

Rows completed in
forward elimination.

Rows to search for a
more favorable pivot
element.

Row with zero pivot element

To minimize the effect of roundoff, always choose the row that puts the largest pivot
element on the diagonal, i.e., find ip such that |aip,i| = max(|ak,i|) for k = i, . . . , n

NMM: Solving Systems of Equations page 52

Pivoting Strategies (2)

Full (or Complete) Pivoting: Exchange both rows and columns

! Column exchange requires changing the order of the xi

! For increased numerical stability, make sure the largest possible pivot element is used.
This requires searching in the pivot row, and in all rows below the pivot row, starting
the pivot column.

! Full pivoting is less susceptible to roundoff, but the increase in stability comes at a
cost of more complex programming (not a problem if you use a library routine) and an
increase in work associated with searching and data movement.

NMM: Solving Systems of Equations page 53

Full Pivoting

0

*

Rows completed in
forward elimination.

Columns to search for a more
favorable pivot element.

Row with zero pivot element

Rows to search for a
more favorable pivot
element.

*

NMM: Solving Systems of Equations page 54

Gauss Elimination with Partial Pivoting

Algorithm 8.5

form Ã = [A b]
for i = 1 . . . n − 1

find ip such that
max(|ãipi|) ≥ max(|ãki|) for k = i . . . n

exchange row ip with row i

for k = i + 1 . . . n

for j = i . . . n + 1

ãk,j = ãk,j − (ãk,i/ãi,i)ãi,j

end
end

end

NMM: Solving Systems of Equations page 55

Gauss Elimination with Partial Pivoting

GEshow: The GEshow function in the NMM toolbox uses naive Gaussian elimination
without pivoting to solve a system of equations.

GEpivshow: The GEpivshow function in the NMM toolbox uses Gaussian elimination
with partial pivoting to solve a system of equations. GEpivshow is
intended for demonstration purposes only.

GEshow and GEpivshow are for demonstration purposes only. They are also a convenient
way to check your hand calculations.

NMM: Solving Systems of Equations page 56

The Backslash Operator (1)

Consider the scalar equation

5x = 20 =⇒ x = (5)−120

The extension to a system of equations is, of course

Ax = b =⇒ x = A−1b

where A−1b is the formal solution to Ax = b

In Matlab notation the system is solved with

x = A\b

NMM: Solving Systems of Equations page 57

The Backslash Operator (2)

Given an n × n matrix A, and an n × 1 vector b the \ operator performs a sequence of
tests on the A matrix. Matlab attempts to solve the system with the method that gives
the least roundoff and the fewest operations.

When A is an n × n matrix:

1. Matlab examines A to see if it is a permutation of a triangular system

If so, the appropriate triangular solve is used.

2. Matlab examines A to see if it appears to be symmetric and positive definite.

If so, Matlab attempts a Cholesky factorization
and two triangular solves.

3. If the Cholesky factorization fails, or if A does not appear to be symmetric,

Matlab attempts an LU factorization
and two triangular solves.

NMM: Solving Systems of Equations page 58

Limits on Numerical Solution to Ax = b

Machine Limitations

• RAM requirements grow as O(n2)

• flop count grows as O(n3)

• The time for data movement is an important speed bottleneck on modern systems

NMM: Solving Systems of Equations page 59

Disk

FPU CPU

internal bus

cache

system bus

RAM

network

Computer

Data Access Time:

shortest

longest

!"#$%&'()*(+,-&'+&%(')*..'+&-/0)&,')1$''2)".)34&4)*++'55)
64),-0,78)5-#$7-.-'2)9-':;

Stand alone computer

Computer Computer

NMM: Solving Systems of Equations page 60

Limits on Numerical Solution to Ax = b

Limits of Floating Point Arithmetic

• Exact singularity

• Effect of perturbations to b

• Effect of perturbations to A

• The condition number

NMM: Solving Systems of Equations page 61

Geometric Interpretation of Singularity (1)

Consider a 2 × 2 system describing two lines that intersect

y = −2x + 6

y =
1

2
x + 1

The matrix form of this equation is

»
2 1

−1/2 1

– »
x1

x2

–
=

»
6
1

–

The equations for two parallel but not intersecting lines are

»
2 1
2 1

– »
x1

x2

–
=

»
6
5

–

Here the coefficient matrix is singular (rank(A) = 1), and the system is inconsistent

NMM: Solving Systems of Equations page 62

Geometric Interpretation of Singularity (2)

The equations for two parallel and coincident lines are

»
2 1
2 1

– »
x1

x2

–
=

»
6
6

–

The equations for two nearly parallel lines are

»
2 1

2 + δ 1

– »
x1

x2

–
=

»
6

6 + δ

–

NMM: Solving Systems of Equations page 63

Geometric Interpretation of Singularity (3)

0 1 2 3 4

0

2

4

6

8
A and b are consistent
A is nonsingular

0 1 2 3 4

0

2

4

6

8
A and b are inconsistent

A is singular

0 1 2 3 4

0

2

4

6

8
A and b are consistent
A is singular

0 1 2 3 4

0

2

4

6

8
A and b are consistent
A is ill conditioned

NMM: Solving Systems of Equations page 64

Effect of Perturbations to b

Consider the solution of a 2 × 2 system where

b =

»
1

2/3

–

One expects that the exact solutions to

Ax =

»
1

2/3

–
and Ax =

»
1

0.6667

–

will be different. Should these solutions be a lot different or a little different?

NMM: Solving Systems of Equations page 65

Effect of Perturbations to b

Perturb b with δb such that
‖δb‖
‖b‖

) 1,

The perturbed system is
A(x + δxb) = b + δb

The perturbations satisfy
Aδxb = δb

Analysis shows (see next two slides for proof) that

‖δxb‖
‖x‖

≤ ‖A‖‖A−1‖
‖δb‖
‖b‖

Thus, the effect of the perturbation is small only if ‖A‖‖A−1‖ is small.

‖δxb‖
‖x‖

) 1 only if ‖A‖‖A−1‖ ∼ 1

NMM: Solving Systems of Equations page 66

Effect of Perturbations to b (Proof)

Let x + δxb be the exact solution to the perturbed system

A(x + δxb) = b + δb (1)

Expand
Ax + Aδxb = b + δb

Subtract Ax from left side and b from right side since Ax = b

Aδxb = δb

Left multiply by A−1

δxb = A−1δb (2)

NMM: Solving Systems of Equations page 67

Effect of Perturbations to b (Proof, p. 2)

Take norm of equation (2)
‖δxb‖ = ‖A−1 δb‖

Applying consistency requirement of matrix norms

‖δx‖ ≤ ‖A−1‖‖δb‖ (3)

Similarly, Ax = b gives ‖b‖ = ‖Ax‖, and

‖b‖ ≤ ‖A‖‖x‖ (4)

Rearrangement of equation (4) yields

1

‖x‖
≤

‖A‖
‖b‖

(5)

NMM: Solving Systems of Equations page 68

Effect of Perturbations to b (Proof)

Multiply Equation (4) by Equation (3) to get

‖δxb‖
‖x‖

≤ ‖A‖‖A−1‖
‖δb‖
‖b‖

(6)

Summary:

If x + δxb is the exact solution to the perturbed system

A(x + δxb) = b + δb

then
‖δxb‖
‖x‖

≤ ‖A‖‖A−1‖
‖δb‖
‖b‖

NMM: Solving Systems of Equations page 69

Effect of Perturbations to A

Perturb A with δA such that
‖δA‖
‖A‖

) 1,

The perturbed system is
(A + δA)(x + δxA) = b

Analysis shows that
‖δxA‖

‖x + δxA‖
≤ ‖A‖‖A−1‖

‖δA‖
‖A‖

Thus, the effect of the perturbation is small only if ‖A‖‖A−1‖ is small.

‖δxA‖
‖x + δxA‖

) 1 only if ‖A‖‖A−1‖ ∼ 1

NMM: Solving Systems of Equations page 70

Effect of Perturbations to both A and b

Perturb both A with δA and b with δb such that

‖δA‖
‖A‖

) 1 and
‖δb‖
‖b‖

) 1

The perturbation satisfies

(A + δA)(x + δx) = b + δb

Analysis shows that

‖δx‖
‖x + δx‖

≤
‖A‖‖A−1‖

1 − ‖A‖‖A−1‖‖δA‖
‖A‖

»‖δA‖
‖A‖

+
‖δb‖
‖b‖

–

Thus, the effect of the perturbation is small only if ‖A‖‖A−1‖ is small.

‖δx‖
‖x + δx‖

) 1 only if ‖A‖‖A−1‖ ∼ 1

NMM: Solving Systems of Equations page 71

Condition number of A

The condition number
κ(A) ≡ ‖A‖‖A−1‖

indicates the sensitivity of the solution to perturbations in A and b. The condition
number can be measured with any p-norm.

The condition number is always in the range

1 ≤ κ(A) ≤ ∞

! κ(A) is a mathematical property of A
! Any algorithm will produce a solution that is sensitive to perturbations in A

and b if κ(A) is large.
! In exact math a matrix is either singular or non-singular. κ(A) = ∞ for a

singular matrix
! κ(A) indicates how close A is to being numerically singular.
! A matrix with large κ is said to be ill-conditioned

NMM: Solving Systems of Equations page 72

Computational Stability

In Practice, applying Gaussian elimination with partial pivoting and back substitution to
Ax = b gives the exact solution, x̂, to the nearby problem

(A + E)x̂ = b where ‖E‖∞ ≤ εm‖A‖∞

Gaussian elimination with partial pivoting and back substitution “gives exactly the
right answer to nearly the right question.”

— Trefethen and Bau

NMM: Solving Systems of Equations page 73

Computational Stability

An algorithm that gives the exact answer to a problem that is near to the original problem
is said to be backward stable. Algorithms that are not backward stable will tend to
amplify roundoff errors present in the original data. As a result, the solution produced by
an algorithm that is not backward stable will not necessarily be the solution to a problem
that is close to the original problem.

Gaussian elimination without partial pivoting is not backward stable for arbitrary A. If A
is symmetric and positive definite, then Gaussian elimination without pivoting in backward
stable.

NMM: Solving Systems of Equations page 74

The Residual

Let x̂ be the numerical solution to Ax = b. x̂ .= x (x is the exact solution) because of
roundoff.

The residual measures how close x̂ is to satisfying the original equation

r = b − Ax̂

It is not hard to show that
‖x̂ − x‖

‖x̂‖
≤ κ(A)

‖r‖
‖b‖

Small ‖r‖ does not guarantee a small ‖x̂ − x‖.

If κ(A) is large the x̂ returned by Gaussian elimination and back substitution (or any
other solution method) is not guaranteed to be anywhere near the true solution to
Ax = b.

NMM: Solving Systems of Equations page 75

Rules of Thumb (1)

! Applying Gaussian elimination with partial pivoting and back substitution to Ax = b
yields a numerical solution x̂ such that the residual vector r = b − Ax̂ is small even
if the κ(A) is large.

! If A and b are stored to machine precision εm, the numerical solution to Ax = b by
any variant of Gaussian elimination is correct to d digits where

d = | log10(εm)| − log10 (κ(A))

NMM: Solving Systems of Equations page 76

Rules of Thumb (2)

d = | log10(εm)| − log10 (κ(A))

Example:

Matlab computations have εm ≈ 2.2 × 10−16. For a system with κ(A) ∼ 1010 the
elements of the solution vector will have

d = | log10(2.2 × 10−16)| − log10

“
1010

”

= 16 − 11

= 5

correct digits

NMM: Solving Systems of Equations page 77

Summary of Limits to Numerical Solution of Ax = b

1. κ(A) indicates how close A is to being numerically singular

2. If κ(A) is “large”, A is ill-conditioned and even the best numerical algorithms will
produce a solution, x̂ that cannot be guaranteed to be close to the true solution, x

3. In practice, Gaussian elimination with partial pivoting and back substitution produces
a solution with a small residual

r = b − Ax̂

even if κ(A) is large.

NMM: Solving Systems of Equations page 78

Factorization Methods

• LU factorization

• Cholesky factorization

• Use of the backslash operator

NMM: Solving Systems of Equations page 79

LU Factorization (1)

Find L and U such that
A = LU

and L is lower triangular, and U is upper triangular.

L =

2

666664

1 0 · · · 0
"2,1 1 0 0
"3,1 "3,2 1 0
...

"n,1 "n,2 · · · "n − 1, n 1

3

777775

U =

2

666664

u1,1 u1,2 u1,3 · · · u1,n

0 u2,2 u2,3 · · · u2,n

0 0
... ... un−1,n

0 0 un,n

3

777775

Since L and U are triangular, it is easy to apply their inverses.

NMM: Solving Systems of Equations page 80

LU Factorization (2)

Since L and U are triangular, it is easy to apply their inverses.

Consider the solution to Ax = b.

A = LU =⇒ (LU)x = b

Regroup, matrix multiplication is associative

L(Ux) = b

Let Ux = y, then
Ly = b

Since L is triangular it is easy (without Gaussian elimination) to compute

y = L−1b

This expression should be interpreted as “Solve Ly = b with a forward substitution.”

NMM: Solving Systems of Equations page 81

LU Factorization (3)

Now, since y is known, solve for x

x = U−1y

which is interpreted as “Solve Ux = y with a backward substitution.”

NMM: Solving Systems of Equations page 82

LU Factorization (4)

Algorithm 8.6 Solve Ax = b with LU factorization

Factor A into L and U
Solve Ly = b for y use forward substitution
Solve Ux = y for x use backward substitution

NMM: Solving Systems of Equations page 83

The Built-in lu Function

• Refer to luNopiv and luPiv functions in the NMM toolbox for expository
implementations of LU factorization

• Use the built-in lu function for routine work

NMM: Solving Systems of Equations page 84

Cholesky Factorization (1)

• A must be symmetric and positive definite (SPD)

• For SPD matrices, pivoting is not required

• Cholesky factorization requires one half as many flops as LU factorization. Since
pivoting is not required, Cholesky factorization will be more than twice as fast as LU
factorization since data movement is avoided.

• Refer to the Cholesky function in NMM Toolbox for a view of the algorithm

• Use built-in chol function for routine work

NMM: Solving Systems of Equations page 85

Backslash Redux

The \ operator examines the coefficient matrix before attempting to solve the system.

\ uses:

• A triangular solve if A is triangular, or a permutation of a triangular matrix

• Cholesky factorization and triangular solves if A is symmetric and the diagonal
elements of A are positive (and if the subsequent Cholesky factorization does not fail.)

• LU factorization if A is square and the preceding conditions are not met.

• QR factorization to obtain the least squares solution if A is not square.

NMM: Solving Systems of Equations page 86

Nonlinear Systems of Equations

The system of equations
Ax = b

is nonlinear if A = A(x) or b = b(x)

Characteristics of nonlinear systems

• Solution requires iteration

• Each iteration involves the work of solving a related linearized system of equations

• For strongly nonlinear systems it may be difficult to get the iterations to converge

• Multiple solutions might exist

NMM: Solving Systems of Equations page 87

Nonlinear Systems of Equations

Example: Intersection of a parabola and a line

y = αx + β

y = x2 + σx + τ

or, using x1 = x, x2 = y

αx1 − x2 = −β

(x1 + σ)x1 − x2 = −τ

which can be expressed in matrix notation as

»
α −1

x1 + σ −1

– »
x1

x2

–
=

»
−β
−τ

–

The coefficient matrix, A depends on x

NMM: Solving Systems of Equations page 88

Nonlinear Systems of Equations

Graphical Interpretation of solutions to:

»
α −1

x1 + σ −1

– »
x1

x2

–
=

»
−β
−τ

–
Change values of α and β to get

-4 -2 0 2 4 6

-5

0

5

10
Two distinct
solutions

-4 -2 0 2 4 6

-5

0

5

10
One solution

-4 -2 0 2 4 6

-5

0

5

10
One solution
sensitive to
inputs

-4 -2 0 2 4 6

-5

0

5

10
No solution

NMM: Solving Systems of Equations page 89

Newton’s Method for Nonlinear Systems (1)

Given
Ax = b

where A is n × n, write
f = Ax − b

Note: f = −r

The solution is obtained when

f(x) =

2

664

f1(x1, x2, . . . , xn))
f2(x1, x2, . . . , xn))

...
fn(x1, x2, . . . , xn))

3

775 =

2

664

0
0
...
0

3

775

NMM: Solving Systems of Equations page 90

Newton’s Method for Nonlinear Systems (2)

Let x(k) be the guess at the solution for iteration k

Look for ∆x(k)

x(k+1) = x(k) + ∆x(k)

so that
f(x(k+1)) = 0

Expand f with the multidimensional Taylor Theorem

f(x(k+1)) = f(x(k)) + f ′(x(k))∆x(k)

+ O
“
‖∆x(k)‖

2”

NMM: Solving Systems of Equations page 91

Newton’s Method for Nonlinear Systems (3)

f ′(x(k)) is the Jacobian of the system of equations

f ′(x) ≡ J(x) =

2

66666666664

∂f1

∂x1

∂f1

∂x2
· · ·

∂f1

∂xn

∂f2

∂x1

∂f2

∂x2
· · ·

∂f3

∂xn
... . . .

∂fn

∂x1

∂fn

∂x2
· · ·

∂fn

∂xn

3

77777777775

Neglect the higher order terms in the Taylor expansion

f(x(k+1)) = f(x(k)) + J(x(k))∆x(k)

NMM: Solving Systems of Equations page 92

Newton’s Method for Nonlinear Systems (4)

Now, assume that we can find the ∆x(k) that gives f(x(k+1)) = 0

0 = f(x(k)) + J(x(k))∆x(k) =⇒ J(x(k))∆x(k) = −f(x(k))

The essence of Newton’s method for systems of equations is

1. Make a guess at x

2. Evaluate f

3. If ‖f‖ is small enough, stop

4. Evaluate J

5. solve J ∆x = −f for ∆x

6. update: x ← x + ∆x

7. Go back to step 2

NMM: Solving Systems of Equations page 93

Newton’s Method for Nonlinear Systems (5)

Example: Intersection of a line and parabola

y = αx + β

y = x2 + σx + τ

Recast as

αx1 − x2 + β = 0

x2
1 + σx1 − x2 + τ = 0

or

f =

»
αx1 − x2 + β

x2
1 + σx1 − x2 + τ

–
=

»
0
0

–

NMM: Solving Systems of Equations page 94

Newton’s Method for Nonlinear Systems (6)

Evaluate each term in the Jacobian

∂f1

∂x1
= α

∂f1

∂x2
= −1

∂f2

∂x1
= 2x1 + σ

∂f2

∂x2
= −1

therefore

J =

»
α −1

(2x1 + σ) −1

–

NMM: Solving Systems of Equations page 95

