
Numerical Solution of f(x) = 0

Gerald W. Recktenwald

Department of Mechanical Engineering

Portland State University

gerry@pdx.edu

ME 350: Finding roots of f(x) = 0

Overview

Topics covered in these slides

• Preliminary considerations and bracketing.

• Fixed Point Iteration

• Bisection

• Newton’s Method

• The Secant Method

• Hybrid Methods: the built in fzero function

• Roots of Polynomials

ME 350: Finding roots of f(x) = 0 page 1

Example: Picnic Table Leg

ME 350: Finding roots of f(x) = 0 page 2

Example: Picnic Table Leg

Computing the dimensions of a picnic table leg involves a root-finding problem.

2α

θ

w

d2

d1

h

b

d2

d1

b

d2

b2

c

αθ

α

a

θ

Leg assembly Detail of one leg

ME 350: Finding roots of f(x) = 0 page 3

Example: Picnic Table Leg

Dimensions of a the picnic table leg satisfy

w sin θ = h cos θ + b

Given overall dimensions w and h, and the material dimension, b, what is the value of θ?

An analytical solution for θ = f(w, h, b) exists, but is not obvious.

Use a numerical root-finding procedure to find the value of θ that satisfies

f(θ) = w sin θ − h cos θ − b = 0

ME 350: Finding roots of f(x) = 0 page 4

Roots of f(x) = 0

Any function of one variable can be put in the form f(x) = 0.

Example: To find the x that

satisfies

cos(x) = x,

find the zero crossing of

f(x) = cos(x)− x = 0

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-1

-0.5

0

0.5

1

1.5

Solution

y = x
y = cos(x)
f = cos(x) - x

ME 350: Finding roots of f(x) = 0 page 5

General Considerations

• Is this a special function that will be evaluated often?

• How much precision is needed?

• How fast and robust must the method be?

• Is the function a polynomial?

• Does the function have singularities?

There is no single root-finding method that is best for all situations.

ME 350: Finding roots of f(x) = 0 page 6

Root-Finding Procedure

The basic strategy is

1. Plot the function.

ã The plot provides an initial guess, and

an indication of potential problems.

2. Select an initial guess.

3. Iteratively refine the initial guess

with a root-finding algorithm.

ME 350: Finding roots of f(x) = 0 page 7

Bracketing

A root is bracketed on the interval [a, b] if f(a) and f(b) have opposite sign. A sign

change occurs for singularities as well as roots

a b

f(b)

0

f(a)

a b

f(b)

0

f(a)

Bracketing is used to make initial guesses at the roots, not to accurately estimate the

values of the roots.

ME 350: Finding roots of f(x) = 0 page 8

Bracketing Algorithm (1)

Algorithm 0.1 Bracket Roots

given: f(x), xmin, xmax, n

dx = (xmax − xmin)/n

xleft = xmin

i = 0

while i < n

i← i+ 1

xright = xleft + dx

if f(x) changes sign in [xleft, xright]

save [xleft, xright] for further root-finding

end

xleft = xright

end

ME 350: Finding roots of f(x) = 0 page 9

Bracketing Algorithm (2)

A simple test for sign change: f(a)× f(b) < 0 ?

or in Matlab

if

fa = ...

fb = ...

if fa*fb < 0

save bracket

end

but this test is susceptible to underflow.

ME 350: Finding roots of f(x) = 0 page 10

Bracketing Algorithm (3)

A better test uses the built-in sign function

fa = ...

fb = ...

if sign(fa)~=sign(fb)

save bracket

end

See implementation in the brackPlot function

ME 350: Finding roots of f(x) = 0 page 11

The brackPlot Function

brackPlot is a NMM toolbox function that

• Looks for brackets of a user-defined f(x)

• Plots the brackets and f(x)

• Returns brackets in a two-column matrix

Syntax:

brackPlot(’myFun’,xmin,xmax)

brackPlot(’myFun’,xmin,xmax,nx)

where

myFun is the name of an m-file that evaluates f(x)

xmin, xmax define range of x axis to search

nx is the number of subintervals on [xmin,xmax] used to
check for sign changes of f(x). Default: nx= 20

ME 350: Finding roots of f(x) = 0 page 12

Apply brackPlot Function to sin(x) (1)

>> Xb = brackPlot(’sin’,-4*pi,4*pi)

Xb =

-12.5664 -11.2436

-9.9208 -8.5980

-7.2753 -5.9525

-3.3069 -1.9842

-0.6614 0.6614

1.9842 3.3069

5.9525 7.2753

8.5980 9.9208

11.2436 12.5664

-10 -5 0 5 10

-1

-0.5

0

0.5

1

x

f(
x)

 d
ef

in
ed

 in
 s

in
.m

ME 350: Finding roots of f(x) = 0 page 13

Apply brackPlot to a user-defined Function (1)

To solve

f(x) = x− x1/3 − 2 = 0

we need an m-file function to evaluate f(x) for any scalar or vector of x values.

File fx3.m: Note the use of the array operator.

function f = fx3(x)

% fx3 Evaluates f(x) = x - x^(1/3) - 2

f = x - x.^(1/3) - 2;

Run brackPlot with fx3 as the input function

>> brackPlot(’fx3’,0,5)

ans =

3.4000 3.6000

ME 350: Finding roots of f(x) = 0 page 14

Apply brackPlot to a user-defined Function (2)

>> Xb = brackPlot(’fx3’,0,5)

Xb =

3.4211 3.6842

0 1 2 3 4 5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

x

f(
x)

 d
ef

in
ed

 in
 f

x3
.m

ME 350: Finding roots of f(x) = 0 page 15

Apply brackPlot to a user-defined Function (3)

Instead of creating a separate m-file, we can use an anonymous function object.

>> f = @(x) x - x.^(1/3) - 2;

>> f

f =

function_handle with value:

@(x)x-x.^(1/3)-2

>> brackPlot(f,0,5)

ans =

3.4211 3.6842

Note: When an anonymous function object is supplied to brackPlot, the name of

the object is not surrounded in quotes:

brackPlot(f,0,5) instead of brackPlot(’fun’,0,5)

ME 350: Finding roots of f(x) = 0 page 16

Root-Finding Algorithms

We now proceed to develop the following root-finding algorithms:

• Fixed point iteration

• Bisection

• Newton’s method

• Secant method

These algorithms are applied after initial guesses at the root(s) are identified with

bracketing (or guesswork).

ME 350: Finding roots of f(x) = 0 page 17

Fixed Point Iteration

Fixed point iteration is a simple method. It only works when the iteration function is

convergent.

Given f(x) = 0, rewrite as xnew = g(xold)

Algorithm 0.2 Fixed Point Iteration

initialize: x0 = . . .

for k = 1, 2, . . .

xk = g(xk−1)

if converged, stop

end

ME 350: Finding roots of f(x) = 0 page 18

Convergence Criteria

An automatic root-finding procedure needs to monitor progress toward the root and stop

when current guess is close enough to the desired root.

• Convergence checking will avoid searching to unnecessary accuracy.

• Convergence checking can consider whether two successive approximations to the root

are close enough to be considered equal.

• Convergence checking can examine whether f(x) is sufficiently close to zero at the

current guess.

More on this later . . .

ME 350: Finding roots of f(x) = 0 page 19

Fixed Point Iteration Example (1)

To solve

x− x1/3 − 2 = 0

rewrite as

xnew = g1(xold) = x
1/3
old + 2

or

xnew = g2(xold) =
(
xold − 2

)3

or

xnew = g3(xold) =
6 + 2x

1/3
old

3− x2/3
old

Are these g(x) functions equally effective?

ME 350: Finding roots of f(x) = 0 page 20

Fixed Point Iteration Example (2)

g1(x) = x
1/3

+ 2

g2(x) =
(
x− 2

)3

g3(x) =
6 + 2x1/3

3− x2/3

k g1(xk−1) g2(xk−1) g3(xk−1)

0 3 3 3

1 3.4422495703 1 3.5266442931

2 3.5098974493 −1 3.5213801474

3 3.5197243050 −27 3.5213797068

4 3.5211412691 −24389 3.5213797068

5 3.5213453678 −1.451× 1013 3.5213797068

6 3.5213747615 −3.055× 1039 3.5213797068

7 3.5213789946 −2.852× 10118 3.5213797068

8 3.5213796042 ∞ 3.5213797068

9 3.5213796920 ∞ 3.5213797068

Summary: g1(x) converges, g2(x) diverges, g3(x) converges very quickly

ME 350: Finding roots of f(x) = 0 page 21

Bisection

Given a bracketed root, halve the interval while continuing to bracket the root

a b

f (b1)

x1x2

f (x1)

f (a1)

ME 350: Finding roots of f(x) = 0 page 22

Bisection (2)

For the bracket interval [a, b] the midpoint is

xm =
1

2
(a+ b)

A better formula, one that is less susceptible to round-off is

xm = a+
b− a

2

ME 350: Finding roots of f(x) = 0 page 23

Bisection Algorithm

Algorithm 0.3 Bisection

initialize: a = . . ., b = . . .

for k = 1, 2, . . .

xm = a+ (b− a)/2

if sign (f(xm)) = sign (f(xa))

a = xm
else

b = xm
end

if converged, stop

end

ME 350: Finding roots of f(x) = 0 page 24

Bisection Example

Solve with bisection:

x− x1/3 − 2 = 0

k a b xmid f(xmid)

0 3 4

1 3 4 3.5 -0.01829449

2 3.5 4 3.75 0.19638375

3 3.5 3.75 3.625 0.08884159

4 3.5 3.625 3.5625 0.03522131

5 3.5 3.5625 3.53125 0.00845016

6 3.5 3.53125 3.515625 -0.00492550

7 3.51625 3.53125 3.5234375 0.00176150

8 3.51625 3.5234375 3.51953125 -0.00158221

9 3.51953125 3.5234375 3.52148438 0.00008959

10 3.51953125 3.52148438 3.52050781 -0.00074632

ME 350: Finding roots of f(x) = 0 page 25

Analysis of Bisection (1)

Let δn be the size of the bracketing interval at the nth stage of bisection. Then

δ0 = b− a = initial bracketing interval

δ1 =
1

2
δ0

δ2 =
1

2
δ1 =

1

4
δ0

...

δn =

(
1

2

)n
δ0

=⇒
δn

δ0

=

(
1

2

)n
= 2

−n

or n = log2

(
δn

δ0

)

ME 350: Finding roots of f(x) = 0 page 26

Analysis of Bisection (2)

δn

δ0

=

(
1

2

)n
= 2

−n
or n = log2

(
δn

δ0

)

n
δn

δ0

function

evaluations

5 3.1× 10−2 7

10 9.8× 10−4 12

20 9.5× 10−7 22

30 9.3× 10−10 32

40 9.1× 10−13 42

50 8.9× 10−16 52

ME 350: Finding roots of f(x) = 0 page 27

Convergence Criteria

An automatic root-finding procedure needs to monitor progress toward the root and stop

when current guess is close enough to the desired root.

• Convergence checking will avoid searching to unnecessary accuracy.

• Check whether successive approximations are close enough to be considered the same:

|xk − xk−1| < δx

• Check whether f(x) is close enough zero.

|f(xk)| < δf

ME 350: Finding roots of f(x) = 0 page 28

Convergence Criteria on x

f (x)

true root

tolerance
on x

tolerance
on f (x) x

xk = current guess at the root

xk−1 = previous guess at the root

Absolute tolerance:
∣∣xk − xk−1

∣∣ < δx

Relative tolerance:

∣∣∣∣∣xk − xk−1

b− a

∣∣∣∣∣ < δ̂x

ME 350: Finding roots of f(x) = 0 page 29

Convergence Criteria on f(x)

f (x)

true root

tolerance
on x

tolerance
on f (x) x

Absolute tolerance:
∣∣f(xk)

∣∣ < δf

Relative tolerance:

|f(xk)| < δ̂f max
{
|f(a0)|, |f(b0)|

}
where a0 and b0 are the original brackets

ME 350: Finding roots of f(x) = 0 page 30

Convergence Criteria on f(x)

If f ′(x) is small near the root, it is easy

to satisfy a tolerance on f(x) for a large

range of ∆x. A tolerance on ∆x is more

conservative.

f (x)

x

If f ′(x) is large near the root, it is

possible to satisfy a tolerance on ∆x

when |f(x)| is still large. A tolerance

on f(x) is more conservative.

f (x)

x

ME 350: Finding roots of f(x) = 0 page 31

Newton’s Method (1)

For a current guess xk, use f(xk) and the slope f ′(xk) to predict where f(x) crosses

the x axis.

x1
x2

f(x1)

f(x2)

x3

ME 350: Finding roots of f(x) = 0 page 32

Newton’s Method (2)

Expand f(x) in Taylor Series around xk

f(xk + ∆x) = f(xk) + ∆x
df

dx

∣∣∣∣
xk

+
(∆x)2

2

d2f

dx2

∣∣∣∣∣
xk

+ . . .

Substitute ∆x = xk+1 − xk and neglect second order terms to get

f(xk+1) ≈ f(xk) + (xk+1 − xk) f ′(xk)

where

f
′
(xk) =

df

dx

∣∣∣∣
xk

ME 350: Finding roots of f(x) = 0 page 33

Newton’s Method (3)

Goal is to find x such that f(x) = 0.

Set f(xk+1) = 0 and solve for xk+1

0 = f(xk) + (xk+1 − xk) f ′(xk)

or, solving for xk+1

xk+1 = xk −
f(xk)

f ′(xk)

ME 350: Finding roots of f(x) = 0 page 34

Newton’s Method Algorithm

Algorithm 0.4

initialize: x1 = . . .

for k = 2, 3, . . .

xk = xk−1 − f(xk−1)/f
′(xk−1)

if converged, stop

end

ME 350: Finding roots of f(x) = 0 page 35

Newton’s Method Example (1)

Solve:

x− x1/3 − 2 = 0

First derivative is

f
′
(x) = 1−

1

3
x
−2/3

The iteration formula is

xk+1 = xk −
xk − x1/3

k − 2

1− 1
3x
−2/3
k

ME 350: Finding roots of f(x) = 0 page 36

Newton’s Method Example (2)

xk+1 = xk −
xk − x1/3

k − 2

1− 1
3x
−2/3
k

k xk f ′(xk) f(x)

0 3 0.83975005 -0.44224957

1 3.52664429 0.85612976 0.00450679

2 3.52138015 0.85598641 3.771× 10−7

3 3.52137971 0.85598640 2.664× 10−15

4 3.52137971 0.85598640 0.0

Conclusion

• Newton’s method converges

much more quickly than

bisection

• Newton’s method requires an

analytical formula for f ′(x)

• The algorithm is simple as long

as f ′(x) is available.

• Iterations are not guaranteed to

stay inside an ordinal bracket.

ME 350: Finding roots of f(x) = 0 page 37

Divergence of Newton’s Method

x1

f(x1)

f '(x1) ≈ 0

Since

xk+1 = xk −
f(xk)

f ′(xk)

the new guess, xk+1, will be far from

the old guess whenever f ′(xk) ≈ 0

ME 350: Finding roots of f(x) = 0 page 38

Secant Method (1)

Given two guesses xk−1 and xk, the next guess at the root is where the line through

f(xk−1) and f(xk) crosses the x axis.

x1x2

f(x1)

a

f(b)

f(a)

b

ME 350: Finding roots of f(x) = 0 page 39

Secant Method (2)

Given

xk = current guess at the root

xk−1 = previous guess at the root

Approximate the first derivative with

f
′
(xk) ≈

f(xk)− f(xk−1)

xk − xk−1

Substitute approximate f ′(xk) into formula for Newton’s method

xk+1 = xk −
f(xk)

f ′(xk)

to get

xk+1 = xk − f(xk)

[
xk − xk−1

f(xk)− f(xk−1)

]

ME 350: Finding roots of f(x) = 0 page 40

Secant Method (3)

Two versions of this formula are equivalent in exact math:

xk+1 = xk − f(xk)

[
xk − xk−1

f(xk)− f(xk−1)

]
(?)

and

xk+1 =
f(xk)xk−1 − f(xk−1)xk

f(xk)− f(xk−1)
(??)

Equation (?) is better since it is of the form xk+1 = xk + ∆. Even if ∆ is inaccurate

the change in the estimate of the root will be small at convergence because f(xk) will

also be small.

Equation (??) is susceptible to catastrophic cancellation:

• f(xk)→ f(xk−1) as convergence approaches, so cancellation error in

the denominator can be large.

• |f(x)| → 0 as convergence approaches, so underflow is possible

ME 350: Finding roots of f(x) = 0 page 41

Secant Algorithm

Algorithm 0.5

initialize: x1 = . . ., x2 = . . .

for k = 2, 3 . . .

xk+1 = xk
−f(xk)(xk − xk−1)/(f(xk)− f(xk−1))

if converged, stop

end

ME 350: Finding roots of f(x) = 0 page 42

Secant Method Example

Solve:

x− x1/3 − 2 = 0

k xk−1 xk f(xk)

0 4 3 −0.44224957

1 3 3.51734262 −0.00345547

2 3.51734262 3.52141665 0.00003163

3 3.52141665 3.52137970 −2.034× 10−9

4 3.52137959 3.52137971 −1.332× 10−15

5 3.52137971 3.52137971 0.0

Conclusions

• Converges almost as quickly as

Newton’s method.

• No need to compute f ′(x).

• The algorithm is simple.

• Two initial guesses are necessary

• Iterations are not guaranteed to

stay inside an ordinal bracket.

ME 350: Finding roots of f(x) = 0 page 43

Divergence of Secant Method

x1 x2

f(x3)

x3

f(x2)

f (x1)

f '(x) ≈ 0

Since

xk+1 = xk−f(xk)

[
xk − xk−1

f(xk)− f(xk−1)

]
the new guess, xk+1, will be far from the

old guess whenever f ′(xk) ≈ f(xk−1)

and |f(x)| is not small.

ME 350: Finding roots of f(x) = 0 page 44

Summary of Basic Root-finding Methods

• Plot f(x) before searching for roots

• Bracketing finds coarse interval containing roots and singularities

• Bisection is robust, but converges slowly

• Newton’s Method

. Requires f(x) and f ′(x).

. Iterates are not confined to initial bracket.

. Converges rapidly.

. Diverges if f ′(x) ≈ 0 is encountered.

• Secant Method

. Uses f(x) values to approximate f ′(x).

. Iterates are not confined to initial bracket.

. Converges almost as rapidly as Newton’s method.

. Diverges if f ′(x) ≈ 0 is encountered.

ME 350: Finding roots of f(x) = 0 page 45

fzero Function (1)

fzero is a hybrid method that combines bisection, secant and reverse quadratic

interpolation

Syntax:

r = fzero(’fun’,x0)

r = fzero(’fun’,x0,options)

x0 can be a scalar or a two element vector

• If x0 is a scalar, fzero tries to create its own bracket.

• If x0 is a two element vector, fzero uses the vector as a bracket.

ME 350: Finding roots of f(x) = 0 page 46

Reverse Quadratic Interpolation

Find the point where the x

axis intersects the sideways

parabola passing through

three pairs of (x, f(x))

values.

0 0.5 1 1.5 2
−5

0

5

10

15

20

ME 350: Finding roots of f(x) = 0 page 47

fzero Function (2)

fzero chooses next root as

• Result of reverse quadratic interpolation (RQI) if that result is inside the current

bracket.

• Result of secant step if RQI fails, and if the result of secant method is in inside the

current bracket.

• Result of bisection step if both RQI and secant method fail to produce guesses inside

the current bracket.

ME 350: Finding roots of f(x) = 0 page 48

fzero Function (3)

Optional parameters to control fzero are specified with the optimset function.

Examples:
Tell fzero to display the results of each step:

>> options = optimset(’Display’,’iter’);

>> x = fzero(’myFun’,x0,options)

Tell fzero to use a relative tolerance of 5× 10−9:

>> options = optimset(’TolX’,5e-9);

>> x = fzero(’myFun’,x0,options)

Tell fzero to suppress all printed output, and use a relative tolerance of 5× 10−4:

>> options = optimset(’Display’,’off’,’TolX’,5e-4);

>> x = fzero(’myFun’,x0,options)

ME 350: Finding roots of f(x) = 0 page 49

fzero Function (4)

Allowable options (specified via optimset):

Option type Value Effect

’Display’ ’iter’ Show results of each iteration

’final’ Show root and original bracket

’off’ Suppress all print out

’TolX’ tol Iterate until

|∆x| < max [tol, tol ∗ a, tol ∗ b]
where ∆x = (b−a)/2, and [a, b] is the current bracket.

The default values of ’Display’ and ’TolX’ are equivalent to

options = optimset(’Display’,’iter’,’TolX’,eps)

ME 350: Finding roots of f(x) = 0 page 50

Roots of Polynomials

Complications arise due to

• Repeated roots

• Complex roots

• Sensitivity of roots to small

perturbations in the

polynomial coefficients

(conditioning).

0 2 4 6 8 10
-1

0

1

2

3

x (arbitrary units)

y
=

 f
(x

)
f
1
(x)

 distinct
real roots

f
2
(x)

repeated
real roots

f
3
(x)

complex
 roots

ME 350: Finding roots of f(x) = 0 page 51

Algorithms for Finding Polynomial Roots

• Bairstow’s method

• Müller’s method

• Laguerre’s method

• Jenkin’s–Traub method

• Companion matrix method

ME 350: Finding roots of f(x) = 0 page 52

roots Function (1)

The built-in roots function uses the companion matrix method

• No initial guess

• Returns all roots of the polynomial

• Solves eigenvalue problem for companion matrix

Write polynomial in the form

c1x
n

+ c2x
n−1

+ . . .+ cnx+ cn+1 = 0

Then, for a third order polynomial

>> c = [c1 c2 c3 c4];

>> r = roots(c)

ME 350: Finding roots of f(x) = 0 page 53

roots Function (2)

The eigenvalues of

A =


−c2/c1 −c3/c1 −c4/c1 −c5/c1

1 0 0 0

0 1 0 0

0 0 1 0


are the same as the roots of

c5λ
4

+ c4λ
3

+ c3λ
2

+ c2λ+ c1 = 0.

ME 350: Finding roots of f(x) = 0 page 54

roots Function (3)

The statements

c = ... % vector of polynomial coefficients

r = roots(c);

are equivalent to

c = ...

n = length(c);

A = diag(ones(1,n-2),-1); % ones on first subdiagonal

A(1,:) = -c(2:n) ./ c(1); % first row is -c(j)/c(1), j=2..n

r = eig(A);

ME 350: Finding roots of f(x) = 0 page 55

roots Examples

Roots of

f1(x) = x
2 − 3x+ 2

f2(x) = x
2 − 10x+ 25

f3(x) = x
2 − 17x+ 72.5

are found with

>> roots([1 -3 2])

ans =

2

1

>> roots([1 -10 25])

ans =

5

5

>> roots([1 -17 72.5])

ans =

8.5000 + 0.5000i

8.5000 - 0.5000i

ME 350: Finding roots of f(x) = 0 page 56

