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Overview

e Motivation: ODE's arise as models of many applications
e An example of an exact solution

e Direct substitution as a method of verifying the solutions to ODEs
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Application: Newton’s Law of Motion

Newton's Law of Motion is
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Application: Newton’s Law of Motion

Newton's Law of Motion is

Acceleration is the time derivative of velocity, so
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Application: Newton’s Law of Motion

Newton's Law of Motion is

F' = ma
Acceleration is the time derivative of velocity, so

dv

dt
and

dv F

dt m
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Application: Newton’s Law of Motion

Newton's Law of Motion is

F' = ma
Acceleration is the time derivative of velocity, so
dv
— = qQ
dt
and
dv F
dt m

If F'(t) and v(0) are known, we can (at least in principle) integrate the preceding equation to find v (%)

ME 350: Introduction to numerical integration of ODEs page 5



Application: Newton’s Law of Cooling

The cooling rate of an object immersed in a flowing

fluid is
Q = hA(Ts; — Ty)
where ) is the heat transfer rate, h is the heat /\

transfer coefficient, A is the surface area, T, is the

surface temperature, and T, is the temperature of
the fluid. \/
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Application: Newton’s Law of Cooling

The cooling rate of an object immersed in a flowing

fluid is
Q = hA(T, — Ty T
where ) is the heat transfer rate, h is the heat /\

transfer coefficient, A is the surface area, T, is the

surface temperature, and T, is the temperature of
the fluid. \/

When the cooling rate is primarily controlled by
the convection from the surface, the variation of the
object’s temperature with is described by an ODE.
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Newton’s Law of Cooling

Apply an energy balance

dT T,

me— - = —Q = —hA(Ts — Tw) _/\
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Newton’s Law of Cooling

Apply an energy balance

dT

Assume material is highly conductive = T, = T’

dT
mc— = —hA(T — Tx)
dt
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Newton’s Law of Cooling

Apply an energy balance

dT

Assume material is highly conductive = T, = T’

dT
mc— = —hA(T — Tw)
dt
o dT  hA
T ——(T — Tw) (1)
mcC
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Equation (1) has an analytical solution

Let @ =T — T, so that
do dT

dt dt

and Equation (1) becomes

do hA
-9

dt ~ me

Example: Analytical Solution
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Example: Analytical Solution

Equation (1) has an analytical solution

Let @ =T — T, so that
do dT

dt dt

and Equation (1) becomes

db B hAH
dt  mec
mec

For convenience, define 7 = A and rearrange

do 1
— = ——dt (2)
) T
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Equation (1) has an analytical solution

Let @ =T — T, so that
do dT

dt dt

and Equation (1) becomes

db B hAH
dt  mec
mec

Example: Analytical Solution

Equation (2) can be integrated directly:

For convenience, define 7 = A and rearrange

do 1
— = ——dt
0 T

(2)

In 6

t
——+C
.
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Example: Analytical Solution

Equation (1) has an analytical solution Equation (2) can be integrated directly:
— T _ t
Let @ =T — T, so that mo =24 ¢
d9  dT .
dt  dt Ing —InCy = —=
-
and Equation (1) becomes | v t
n— — ——
9 __hA, @7 t
at = me 0= Cae™7
mc

Applying the initial condition T'(t = 0) = Ty or

For convenience, define 7 = —— and rearrange
hA O(t =0) =Ty — T gives

do 1

— = —— 2 _

0 Tdt ( ) 0 — 008 t/T
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Example: Analytical Solution

Equation (1) has an analytical solution

Equation (2) can be integrated directly:

Let @ =T — T, so that ln@——E—I—C’
do  dT B
dt  dt Inf —InCy = ——
and Equation (1) becomes | v t
n— = ——
9 _ _hA, G2 7 y
dt  mc 0 = Che
For convenience, define 7 = 2 and rearrange Applying the initial condition T'(¢ = 0) = Tp or
hA O(t =0) =Ty — T gives
do 1dt (1)
o T 0 =06e T or | T =T+ (To—Ts)e '™ |.
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Verifying Analytical Solutions

Given a trial solution to an ODE, test the solution against the ODE by direct subsitution.
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Verifying Analytical Solutions

Given a trial solution to an ODE, test the solution against the ODE by direct subsitution.

] : . 1/3 - : dy . L o
Example: Determine whether y = (3t + 1)7/“ is a solution to Tl with y(0) = 1.
Y
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Verifying Analytical Solutions

d 1
Example: Determine whether y = (3t 4+ 1)!/3 is a solution to d—i = — with y(0) = 1.
Y
d
First, compute i
at d 1
—(t+ 1) =B+ 1)70E) = Bt + 1) (%)
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Verifying Analytical Solutions

d 1
Example: Determine whether y = (3t 4+ 1)!/3 is a solution to d—i = — with y(0) = 1.
Y
d
First, compute i
at d 1
—(t+ 1) =B+ 1)70E) = Bt + 1) (%)

Second, substitute the suspected solution into the right hand side of the differential equation

1 1 T o L
v [(3t+1)1/3]7 (Bt+1)23 S o)
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Verifying Analytical Solutions

d 1
Example: Determine whether y = (3t 4+ 1)!/3 is a solution to d_i = — with y(0) = 1.
Y
d
First, compute i
at d 1
—(t+ 1) =B+ 1)70E) = Bt + 1) (%)

Second, substitute the suspected solution into the right hand side of the differential equation

1 1 1 o N
v [(3t+1)1/3]7 (Bt+1)23 S o)

Therefore the left hand side dy/dt reduces to Equation (%), and the right hand side 1/9” reduces to Equation (%x).
Since those two equations are equal, the proposed solution satisfies the differential equation.
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Verifying Analytical Solutions

d 1
Example: Determine whether y = (3t 4+ 1)!/3 is a solution to d—i = — with y(0) = 1.
Y
d
First, compute i
dt
—(St + 13 = —(St +1)7%3(3) = (3t + 1) 7%/3 (%)

Second, substitute the suspected solution into the right hand side of the differential equation

1 1 1 o N
v [(3t+1)1/3]7 (Bt+1)23 S 0

Therefore the left hand side dy/dt reduces to Equation (%), and the right hand side 1/9” reduces to Equation (%x).
Since those two equations are equal, the proposed solution does satisfy the differential equation.

Next, verify the initial condition: y(0) = (3(0) + 1)¥/3 = 1¥/3 = 1.
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Verifying Analytical Solutions

d 1
Example: Determine whether y = (3t 4+ 1)!/3 is a solution to d—i = — with y(0) = 1.
Y
d
First, compute i
dt
—(St + 13 = —(St +1)7%3(3) = (3t + 1) 7%/3 (%)

Second, substitute the suspected solution into the right hand side of the differential equation

1 1 1 o N
v [(3t+1)1/3]7 (Bt+1)23 S 0

Therefore the left hand side dy/dt reduces to Equation (%), and the right hand side 1/9” reduces to Equation (%x).
Since those two equations are equal, the proposed solution does satisfy the differential equation.

Next, verify the initial condition: y(0) = (3(0) + 1)¥/3 = 1¥/3 = 1.

Therefore, since y = (3t + 1)1/3 satisfies the differential equation and the initial condition, it is a solution.
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Next Steps

e Introduce nomenclature for numerical solution of ODEs
e Derive Euler's method

e Demonstrate Euler's method

ME 350: Introduction to numerical integration of ODEs page 23



