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Overview

• Motivation: ODE’s arise as models of many applications

• An example of an exact solution

• Direct substitution as a method of verifying the solutions to ODEs
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Application: Newton’s Law of Motion

Newton’s Law of Motion is

F = ma
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dv
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Application: Newton’s Law of Motion

Newton’s Law of Motion is

F = ma

Acceleration is the time derivative of velocity, so
dv

dt
= a

and
dv

dt
=
F

m

If F (t) and v(0) are known, we can (at least in principle) integrate the preceding equation to find v(t)
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Application: Newton’s Law of Cooling

The cooling rate of an object immersed in a flowing

fluid is

Q = hA(Ts − T∞)
where Q is the heat transfer rate, h is the heat

transfer coefficient, A is the surface area, Ts is the

surface temperature, and T∞ is the temperature of

the fluid.

T∞

m, c
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Application: Newton’s Law of Cooling

The cooling rate of an object immersed in a flowing

fluid is

Q = hA(Ts − T∞)
where Q is the heat transfer rate, h is the heat

transfer coefficient, A is the surface area, Ts is the

surface temperature, and T∞ is the temperature of

the fluid.

When the cooling rate is primarily controlled by

the convection from the surface, the variation of the

object’s temperature with is described by an ODE.

T∞

m, c
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Newton’s Law of Cooling

Apply an energy balance

mc
dT

dt
= −Q = −hA(Ts − T∞)

T∞

m, c
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Newton’s Law of Cooling

Apply an energy balance

mc
dT

dt
= −Q = −hA(Ts − T∞)

Assume material is highly conductive⇒ Ts = T

mc
dT

dt
= −hA(T − T∞)

T∞

m, c
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Newton’s Law of Cooling

Apply an energy balance

mc
dT

dt
= −Q = −hA(Ts − T∞)

Assume material is highly conductive⇒ Ts = T

mc
dT

dt
= −hA(T − T∞)

or
dT

dt
= −

hA

mc
(T − T∞) (1)

T∞

m, c
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Example: Analytical Solution

Equation (1) has an analytical solution

Let θ = T − T∞, so that

dθ

dt
=
dT

dt

and Equation (1) becomes

dθ

dt
= −

hA

mc
θ

ME 350: Introduction to numerical integration of ODEs page 11



Example: Analytical Solution

Equation (1) has an analytical solution

Let θ = T − T∞, so that

dθ

dt
=
dT

dt

and Equation (1) becomes

dθ

dt
= −

hA

mc
θ

For convenience, define τ =
mc

hA
and rearrange

dθ

θ
= −

1

τ
dt (2)
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Example: Analytical Solution

Equation (1) has an analytical solution

Let θ = T − T∞, so that

dθ

dt
=
dT

dt

and Equation (1) becomes

dθ

dt
= −

hA

mc
θ

For convenience, define τ =
mc

hA
and rearrange

dθ

θ
= −

1

τ
dt (2)

Equation (2) can be integrated directly:

ln θ = −
t

τ
+ C

ln θ − lnC2 = −
t

τ

ln
θ

C2

= −
t

τ

θ = C2e
−t/τ
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Example: Analytical Solution

Equation (1) has an analytical solution

Let θ = T − T∞, so that

dθ

dt
=
dT

dt

and Equation (1) becomes

dθ

dt
= −

hA

mc
θ

For convenience, define τ =
mc

hA
and rearrange

dθ

θ
= −

1

τ
dt (2)

Equation (2) can be integrated directly:

ln θ = −
t

τ
+ C

ln θ − lnC2 = −
t

τ

ln
θ

C2

= −
t

τ

θ = C2e
−t/τ

Applying the initial condition T (t = 0) = T0 or

θ(t = 0) = T0 − T∞ gives

θ = θ0e
−t/τ
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Example: Analytical Solution

Equation (1) has an analytical solution

Let θ = T − T∞, so that

dθ

dt
=
dT

dt

and Equation (1) becomes

dθ

dt
= −

hA

mc
θ

For convenience, define τ =
mc

hA
and rearrange

dθ

θ
= −

1

τ
dt (1)

Equation (2) can be integrated directly:

ln θ = −
t

τ
+ C

ln θ − lnC2 = −
t

τ

ln
θ

C2

= −
t

τ

θ = C2e
−t/τ

Applying the initial condition T (t = 0) = T0 or

θ(t = 0) = T0 − T∞ gives

θ = θ0e
−t/τ

or T = T∞ + (T0 − T∞)e−t/τ .
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Verifying Analytical Solutions

Given a trial solution to an ODE, test the solution against the ODE by direct subsitution.
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Verifying Analytical Solutions

Given a trial solution to an ODE, test the solution against the ODE by direct subsitution.

Example: Determine whether y = (3t+ 1)1/3 is a solution to
dy

dt
=

1

y2
with y(0) = 1.
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Verifying Analytical Solutions

Example: Determine whether y = (3t+ 1)1/3 is a solution to
dy

dt
=

1

y2
with y(0) = 1.

First, compute
dy

dt
d

dt
(3t+ 1)

1/3
=

1

3
(3t+ 1)

−2/3
(3) = (3t+ 1)

−2/3
(?)
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Verifying Analytical Solutions

Example: Determine whether y = (3t+ 1)1/3 is a solution to
dy

dt
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1
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with y(0) = 1.
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dy

dt
d

dt
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1

3
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(3) = (3t+ 1)

−2/3
(?)

Second, substitute the suspected solution into the right hand side of the differential equation

1

y2
=

1[
(3t+ 1)1/3

]2 =
1

(3t+ 1)2/3
= (3t+ 1)

−2/3
(??)
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Verifying Analytical Solutions

Example: Determine whether y = (3t+ 1)1/3 is a solution to
dy

dt
=

1

y2
with y(0) = 1.

First, compute
dy

dt
d

dt
(3t+ 1)

1/3
=

1

3
(3t+ 1)

−2/3
(3) = (3t+ 1)

−2/3
(?)

Second, substitute the suspected solution into the right hand side of the differential equation

1

y2
=

1[
(3t+ 1)1/3

]2 =
1

(3t+ 1)2/3
= (3t+ 1)

−2/3
(??)

Therefore the left hand side dy/dt reduces to Equation (?), and the right hand side 1/y2 reduces to Equation (??).

Since those two equations are equal, the proposed solution satisfies the differential equation.
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Verifying Analytical Solutions

Example: Determine whether y = (3t+ 1)1/3 is a solution to
dy

dt
=

1

y2
with y(0) = 1.

First, compute
dy

dt
d

dt
(3t+ 1)

1/3
=

1

3
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−2/3
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Second, substitute the suspected solution into the right hand side of the differential equation

1

y2
=

1[
(3t+ 1)1/3

]2 =
1

(3t+ 1)2/3
= (3t+ 1)

−2/3
(??)

Therefore the left hand side dy/dt reduces to Equation (?), and the right hand side 1/y2 reduces to Equation (??).

Since those two equations are equal, the proposed solution does satisfy the differential equation.

Next, verify the initial condition: y(0) = (3(0) + 1)1/3 = 11/3 = 1.
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Verifying Analytical Solutions

Example: Determine whether y = (3t+ 1)1/3 is a solution to
dy

dt
=

1

y2
with y(0) = 1.

First, compute
dy

dt
d

dt
(3t+ 1)

1/3
=

1

3
(3t+ 1)

−2/3
(3) = (3t+ 1)

−2/3
(?)

Second, substitute the suspected solution into the right hand side of the differential equation

1

y2
=

1[
(3t+ 1)1/3

]2 =
1

(3t+ 1)2/3
= (3t+ 1)

−2/3
(??)

Therefore the left hand side dy/dt reduces to Equation (?), and the right hand side 1/y2 reduces to Equation (??).

Since those two equations are equal, the proposed solution does satisfy the differential equation.

Next, verify the initial condition: y(0) = (3(0) + 1)1/3 = 11/3 = 1.

Therefore, since y = (3t+ 1)1/3 satisfies the differential equation and the initial condition, it is a solution.
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Next Steps

• Introduce nomenclature for numerical solution of ODEs

• Derive Euler’s method

• Demonstrate Euler’s method
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