Euler's Method for Integration of Ordinary Differential Equations for Initial Value Problems

Gerald Recktenwald Portland State University Department of Mechanical Engineering gerry@pdx.edu

Graphical Interpretation of exact solution with initial condition.

Nomenclature for first-order ODE (initial value problem)

$$\frac{dy}{dt} = f(t, y), \quad t \ge 0; \quad y(t = 0) = y_0$$

y(t) = exact solution

Use the slope at (t_0, y_0) to predict y(t > 0). We can compute $f(t_0, y_0)$ exactly because $y_0 = y(t_0)$ is known.

Nomenclature for first-order ODE

$$\frac{dy}{dt} = f(t, y), \quad t \ge 0; \quad y(t = 0) = y_0$$

$$y(t) =$$
 exact solution
 $y(t_j) =$ exact solution evaluated at t_j

Numerical solution at t_1 may use other estimates of slope.

Nomenclature for first-order ODE

$$\frac{dy}{dt} = f(t, y), \quad t \ge 0; \quad y(t = 0) = y_0$$

y(t) = exact solution $y(t_j) = \text{exact solution evaluated at } t_j$ $y_j = \text{approximate solution at } t_j$

Repeat process for step 2: $f(t_1, y_1)$ is an *approximation* to the slope, since $y \approx y(t_1)$.

Nomenclature for first-order ODE

$$\frac{dy}{dt} = f(t, y), \quad t \ge 0; \quad y(t = 0) = y_0$$

y(t) = exact solution $y(t_j) = \text{exact solution evaluated at } t_j$ $y_j = \text{approximate solution at } t_j$ $f(t_j, y_j) = \text{approximate r.h.s. at } t_j$

The numerical solution is a set of discrete points. The dashed red curve is just to "guide your eye".

 Nomenclature for first-order ODE

$$\frac{dy}{dt} = f(t, y), \quad t \ge 0; \quad y(t = 0) = y_0$$

y(t) = exact solution $y(t_j) = \text{exact solution evaluated at } t_j$ $y_j = \text{approximate solution at } t_j$ $f(t_j, y_j) = \text{approximate r.h.s. at } t_j$

Consider a Taylor series expansion in the neighborhood of t_0

$$y(t) = y(t_0) + (t - t_0) \left. \frac{dy}{dt} \right|_{t_0} + \frac{(t - t_0)^2}{2} \left. \frac{d^2y}{dt^2} \right|_{t_0} + \dots$$

Consider a Taylor series expansion in the neighborhood of t_0

$$y(t) = y(t_0) + (t - t_0) \left. \frac{dy}{dt} \right|_{t_0} + \frac{(t - t_0)^2}{2} \left. \frac{d^2y}{dt^2} \right|_{t_0} + \dots$$

Retain only first derivative term and define

$$f(t_0, y_0) \equiv \left. rac{dy}{dt}
ight|_{t_0}$$

Consider a Taylor series expansion in the neighborhood of t_0

$$y(t) = y(t_0) + (t - t_0) \left. \frac{dy}{dt} \right|_{t_0} + \frac{(t - t_0)^2}{2} \left. \frac{d^2y}{dt^2} \right|_{t_0} + \dots$$

Retain only first derivative term and define

$$f(t_0, y_0) \equiv \left. \frac{dy}{dt} \right|_{t_0}$$

to get

$$y(t) \approx y(t_0) + (t - t_0)f(t_0, y_0)$$

or

 $y(t) pprox y(t_0) + hf(t_0, y_0)$

Given $h = t_1 - t_0$ and initial condition, $y = y(t_0)$, compute

 $y_1 = y_0 + h f(t_0, y_0)$

Given $h = t_1 - t_0$ and initial condition, $y = y(t_0)$, compute

 $y_1 = y_0 + h f(t_0, y_0)$ $y_2 = y_1 + h f(t_1, y_1)$

Given $h = t_1 - t_0$ and initial condition, $y = y(t_0)$, compute

$$y_1 = y_0 + h f(t_0, y_0)$$

 $y_2 = y_1 + h f(t_1, y_1)$
 \vdots \vdots
 $y_{j+1} = y_j + h f(t_j, y_j)$

Given $h = t_1 - t_0$ and initial condition, $y = y(t_0)$, compute

$$y_1 = y_0 + h f(t_0, y_0)$$

 $y_2 = y_1 + h f(t_1, y_1)$
 \vdots \vdots
 $y_{j+1} = y_j + h f(t_j, y_j)$

or, shifting indices by 1

$$y_j = y_{j-1} + h f(t_{j-1}, y_{j-1})$$

Use Euler's method to integrate

$$\frac{dy}{dt} = t - 2y \qquad y(0) = 1$$

Use Euler's method to integrate

$$\frac{dy}{dt} = t - 2y \qquad y(0) = 1$$
$$y = \frac{1}{4} \left[2t - 1 + 5e^{-2t} \right]$$

Use Euler's method to integrate

$$\frac{dy}{dt} = t - 2y \qquad y(0) = 1$$
$$y = \frac{1}{4} \left[2t - 1 + 5e^{-2t} \right]$$

Use Euler's method to integrate

$$\frac{dy}{dt} = t - 2y \qquad y(0) = 1$$
$$y = \frac{1}{4} \left[2t - 1 + 5e^{-2t} \right]$$

			Euler	Exact	Error
j	t_j	$f(t_{j-1}, y_{j-1})$	$y_j = y_{j-1} + h f(t_{j-1}, y_{j-1})$	$y(t_j)$	$y_j - y(t_j)$
0	0.0	NA	(initial condition) 1.0000	1.0000	0
1	0.2	0 - (2)(1) = -2.000	1.0 + (0.2)(-2.0) = 0.6000	0.6879	-0.0879

Use Euler's method to integrate

$$\frac{dy}{dt} = t - 2y \qquad y(0) = 1$$
$$y = \frac{1}{4} \left[2t - 1 + 5e^{-2t} \right]$$

				Euler	Exact	Error
	j	t_j	$f(t_{j-1}, y_{j-1})$	$y_j = y_{j-1} + h f(t_{j-1}, y_{j-1})$	$y(t_j)$	$y_j - y(t_j)$
_	0	0.0	NA	(initial condition) 1.0000	1.0000	0
	1	0.2	0 - (2)(1) = -2.000	1.0 + (0.2)(-2.0) = 0.6000	0.6879	-0.0879
	2	0.4	0.2 - (2)(0.6) = -1.000	0.6 + (0.2)(-1.0) = 0.4000	0.5117	-0.1117
	3	0.6	0.4 - (2)(0.4) = -0.400	0.4 + (0.2)(-0.4) = 0.3200	0.4265	-0.1065

Simple MATLAB Implementation

Note: The first index in a MATLAB array is 1, not 0.

Therefore, we need to interpret the formula for Euler's method as having an initial condition at t(1) with a value of y(1). This is not hard, but it does take a conscious shift for us to associate t(1) with y_0 .

But why did we use t_0 and y_0 to designate the initial condition?

Answers: First it's convention. Second it is natural to associate the initial condition with a time of zero. The subscript t_0 reinforces that idea for analytical work.

Simple Matlab Implementation

Euler's method is easy to implement in MATLAB

h = 0.2; % stepsize tn = 1; % stopping time y0 = 1; % initial condition t = (0:h:tn)'; % Column vector of elements with spacing h n = length(t); % Number of elements in the t vector y = y0*ones(n,1); % Preallocate y for speed % Euler scheme; j=1 for initial condition for j=2:n y(j) = y(j-1) + h*(t(j-1) - 2*y(j-1)); end

Simple Matlab Implementation

Euler's method is easy to implement in Matlab

h = 0.2;	%	stepsize			
tn = 1;		stopping time			
y0 = 1;	%	initial condition			
<pre>t = (0:h:tn)'; n = length(t); y = y0*ones(n,1);</pre>	% % %	Column vector of elements with spacing h Number of elements in the t vector Preallocate y for speed			
<pre>% Euler scheme; j for j=2:n y(j) = y(j-1) +</pre>	=1 h*(for initial condition t(j-1) - 2*y(j-1));			
end					

This code is limited because the f(t, y) function is hard-coded. We need a more general solution.

A general implementation of Euler's method separates the evaluation of f (the right hand side function) from the basic algorithm that advances the ODE.

ME 350: Introduction to numerical integration of ODEs

Implementation of Euler's Method

```
function [t,y] = odeEuler(diffeq,tn,h,y0)
% odeEuler Euler's method for integration of a single, first order ODE
%
% Synopsis: [t,y] = odeEuler(diffeq,tn,h,y0)
%
             diffeq = (string) name of the m-file that evaluates the right
% Input:
%
                      hand side of the ODE written in standard form
%
             tn = stopping value of the independent variable
%
             h = stepsize for advancing the independent variable
%
             y0 = initial condition for the dependent variable
%
% Output:
             t = vector of independent variable values: t(j) = (j-1)*h
             y = vector of numerical solution values at the t(j)
%
t = (0:h:tn)';
                        % Column vector of elements with spacing h
n = length(t);
                     % Number of elements in the t vector
y = y0 * ones(n, 1);
                        % Preallocate y for speed
% Begin Euler scheme; j=1 for initial condition
for j=2:n
  y(j) = y(j-1) + h*feval(diffeq,t(j-1),y(j-1));
end
```