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Numerical Integration of ODEs

Graphical Interpretation of exact solution with initial condition. Nomenclature for first-order ODE
(initial value problem)

dy
E:f(t,y), t>0; y(t=0)=uyo

y(t) = exact solution
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Numerical Integration of ODEs

Use the slope at (tg,yo) to predict y(¢t > 0). We can compute Nomenclature for first-order ODE
f(to, yo) exactly because yo = y(to) is known. dy
_:f(tay)a tZO, y(t:O):yO
dt
Slope at ¢, y(t) = exact solution
St
y(t;) = exact solution evaluated at ¢,
Yo T \Exact
solution y(¢)
h
g
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Numerical Integration of ODEs

Numerical solution at t; may use other estimates of slope. Nomenclature for first-order ODE

¥, = numerical
solution at 7, \

dy
Ezf(t,y), t>0; y(t=0)=uyo

o y(t) = exact solution
\ y(t;) = exact solution evaluated at ¢,
v ¥(t,) = exact
’ solution at ¢, y; = approximate solution at ¢;
h
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Numerical Integration of ODEs

Repeat process for step 2:
f(t1,y1) is an approximation to the slope, since y =~ y(t1).

Approximate
slope at 7,
St.p)
Yo Exact
solution y(¢)

h
P
| |
to 4

Nomenclature for first-order ODE

dy
Ezf(t,y), t>0; y(t=0)=yo

y(t) = exact solution
y(t;) = exact solution evaluated at t;
y; = approximate solution at ¢;

f(tj,y;) = approximate r.h.s. at ¢;
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Numerical Integration of ODEs

The numerical solution is a set of discrete points. The dashed red curve Nomenclature for first-order ODE
Is just to “guide your eye”.
dy
— = fty), t20; y(t=0)=yo

y(t) = exact solution

y(t;) = exact solution evaluated at ¢;

% y; = approximate solution at ¢;
o 4+

f(tj,y;) = approximate r.h.s. at ¢;
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Euler’'s Method 1

Consider a Taylor series expansion in the neighborhood of %

(t — t0)* d*y
2 dt2

+ ...

to

y(t) = y(to) + (t — to) C:Z—il

to
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Euler’'s Method 1

Consider a Taylor series expansion in the neighborhood of %

dy (t —to)* d’y
t) = y(t t —ty) — e
to
Retain only first derivative term and define
dy
f(to,yo) = p
t to

ME 350: Introduction to numerical integration of ODEs page 7



Euler’'s Method 1

Consider a Taylor series expansion in the neighborhood of %

dy (t —to)* d’y
t) = y(t t —ty) — ...
y( ) y( 0) ‘I‘( 0) It t 5 172 +
0 to
Retain only first derivative term and define
dy
f(to,yo) = p
t to
to get
y(t) = y(to) + (¢ — to) f (%o, yo)

or

y(t) = y(to) + hf(to, yo)
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Euler’'s Method 2

Given h = t; — tg and initial condition, y = y(ty), compute

y1 = yo + h f(%o, Yo)
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Euler’'s Method 2

Given h = t; — tg and initial condition, y = y(ty), compute

y1 = yo + h f(%o, Yo)
y2 = y1+ h f(t1, y1)
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Euler’'s Method 2

Given h = t; — tg and initial condition, y = y(ty), compute

y1 = yo + h f(to, o)
yo = y1 + h f(t1, y1)

Yi+1 = y; + h f(t5,y;)
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Euler’'s Method 2

Given h = t; — tg and initial condition, y = y(ty), compute

or, shifting indices by 1

y1 = yo + h f(to, o)
yo = y1 + h f(t1, y1)

Yi+1 = y; + h f(t5,y;)

y;j = yj—1+h f(tj-1,9j-1)
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Example: Euler’s Method by Hand

Use Euler’'s method to integrate
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Example: Euler’s Method by Hand

Use Euler’'s method to integrate

dy
— =t -2 0)=1
o y  y(0)
The exact solution is 1
Yy = Z |:2t —1 —|— 56_2t]
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Example: Euler’s Method by Hand

Use Euler’'s method to integrate

dy
— =t -2 0)=1
o y  y(0)
The exact solution is 1
Yy = Z |:2t —1 —|— 56_2t]

Euler Exact Error
il oty | fj—1yi—1) | v =yi—1thf(t_1yi—1) | vt | oy — u(t)
0 | 0.0 | NA | (initial condition) ~ 1.0000 | 1.0000 | 0
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Use Euler’'s method to integrate

The exact solution is

Example: Euler’s Method by Hand

dy

—=t—-2y y(0)=1

dt

y:

1
4

[215 — 14 56_2t]

Euler Exact Error
il ot fti1,95-1) yj=vyj_1+hfltj_1,y5-1) | wty) | yj—u(ty)
0 0.0 NA (initial condition) 1.0000 1.0000 0
1| 02 | 0-(2)(1)=-2.000 1.0 4 (0.2)(—2.0) = 0.6000 | 0.6879 —0.0879
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Example: Euler’s Method by Hand

Use Euler’'s method to integrate

The exact solution is

dy

—=t—-2y y(0)=1

dt

y:

[215 — 14 56_2t]

Euler Exact Error
il ot fti1,95-1) yj =yj—1+hfti—1,y5-1) | w(ty) | yj—ulty)
0 0.0 NA (initial condition) 1.0000 1.0000 0
1| 02 0 — (2)(1) = —2.000 1.0 4 (0.2)(—2.0) = 0.6000 | 0.6879 —0.0879
2 | 0.4 | 0.2-(2)(0.6) = —1.000 0.6 + (0.2)(—1.0) = 0.4000 | 0.5117 —0.1117
3 0.6 0.4 — (2)(0.4) = —0.400 0.4 4+ (0.2)(—0.4) = 0.3200 0.4265 —0.1065
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Simple MATLAB Implementation

Note: The first index in a MATLAB array is 1, not 0.

Therefore, we need to interpret the formula for Euler's method as having an initial condition at t (1) with a
value of y(1). This is not hard, but it does take a conscious shift for us to associate t (1) with yq.

But why did we use tg and yg to designate the initial condition?

Answers: First it's convention. Second it is natural to associate the initial condition with a time of zero. The
subscript tg reinforces that idea for analytical work.
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Simple MATLAB Implementation

Euler's method is easy to implement in MATLAB

h = 0.2; % stepsize

tn = 1; %y stopping time

yo = 1; % initial condition

t = (0:h:tn)’; % Column vector of elements with spacing h
= length(t); %» Number of elements in the t vector

y = yO*ones(n,1); 7% Preallocate y for speed

%»  Euler scheme; j=1 for initial condition
for j=2:n

y(3) = y(G-1) + h*x( t(j-1) - 2*xy(G-1) );
end
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Simple MATLAB Implementation

Euler's method is easy to implement in MATLAB

h =0.2; % stepsize

tn = 1; % stopping time

yO = 1; % initial condition

t = (0:h:tn)’; %» Column vector of elements with spacing h
n = length(t); %» Number of elements in the t vector

y = yO*ones(n,1); 7 Preallocate y for speed

%  Euler scheme; j=1 for initial condition
for j=2:n

y(j) = y(G-1) + hx( t(G-1) - 2xy(j-1) );
end

This code is limited because the f(t, y) function is hard-coded. We need a more general solution.

A general implementation of Euler's method separates the evaluation of f (the right hand side function) from the basic
algorithm that advances the ODE.
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Implementation of Euler’s Method

h
h
h
h
h
h
h
h
h
h
h
h

t
n

y

h

odeEuler

function [t,y] = odeEuler(diffeq,tn,h,y0)
Euler’s method for integration of a single, first order ODE

Synopsis: [t,y] = odeEuler(diffeq,tn,h,y0)

diffeq = (string) name of the m-file that evaluates the right

hand side of the ODE written in standard form

Input:

tn =

h =

yo =
Output: t = vector of

y = vector of
= (0:h:tn)’; %
= length(t); %
= yO*ones(n,1); %

end

stopping value of the independent variable
stepsize for advancing the independent variable
initial condition for the dependent variable

independent variable values: t(j) = (j-1)*h
numerical solution values at the t(j)

Column vector of elements with spacing h
Number of elements in the t vector
Preallocate y for speed

Begin Euler scheme; j=1 for initial condition

for j=2:n
y(G) = y(j-1) + hxfeval(diffeq,t(j-1),y(j-1));

ME 350: Introduction to numerical integration of ODEs

page 21



