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Numerical Integration of ODEs

Graphical Interpretation of exact solution with initial condition.

y0

t0

Exact
solution y(t)y(t0) = y0

initial
condition

Nomenclature for first-order ODE

(initial value problem)

dy

dt
= f(t, y), t ≥ 0; y(t = 0) = y0

y(t) = exact solution
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Numerical Integration of ODEs

Use the slope at (t0, y0) to predict y(t > 0). We can compute

f(t0, y0) exactly because y0 = y(t0) is known.

Slope at t0
f(t0,y0)

t1

h

y0

t0

Exact
solution y(t)

Nomenclature for first-order ODE

dy

dt
= f(t, y), t ≥ 0; y(t = 0) = y0

y(t) = exact solution

y(tj) = exact solution evaluated at tj
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Numerical Integration of ODEs

Numerical solution at t1 may use other estimates of slope.

t1

h

y1 = numerical
solution at t1

y(t1) = exact
solution at t1

y0

t0

Nomenclature for first-order ODE

dy

dt
= f(t, y), t ≥ 0; y(t = 0) = y0

y(t) = exact solution

y(tj) = exact solution evaluated at tj

yj = approximate solution at tj
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Numerical Integration of ODEs

Repeat process for step 2:

f(t1, y1) is an approximation to the slope, since y ≈ y(t1).

Approximate
slope at t1
f(t1,y1)

t1

h

y0

t0

Exact
solution y(t)

Nomenclature for first-order ODE

dy

dt
= f(t, y), t ≥ 0; y(t = 0) = y0

y(t) = exact solution

y(tj) = exact solution evaluated at tj

yj = approximate solution at tj

f(tj, yj) = approximate r.h.s. at tj
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Numerical Integration of ODEs

The numerical solution is a set of discrete points. The dashed red curve

is just to “guide your eye”.

t2 t3 t4

h h h

t1

h

y0

t0

Nomenclature for first-order ODE

dy

dt
= f(t, y), t ≥ 0; y(t = 0) = y0

y(t) = exact solution

y(tj) = exact solution evaluated at tj

yj = approximate solution at tj

f(tj, yj) = approximate r.h.s. at tj
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Euler’s Method 1

Consider a Taylor series expansion in the neighborhood of t0

y(t) = y(t0) + (t − t0)
dy

dt

∣∣∣∣
t0

+
(t − t0)

2

2

d2y

dt2

∣∣∣∣∣
t0

+ . . .
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Euler’s Method 1

Consider a Taylor series expansion in the neighborhood of t0

y(t) = y(t0) + (t − t0)
dy

dt

∣∣∣∣
t0

+
(t − t0)

2

2

d2y

dt2

∣∣∣∣∣
t0

+ . . .

Retain only first derivative term and define

f(t0, y0) ≡
dy

dt

∣∣∣∣
t0
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Euler’s Method 1

Consider a Taylor series expansion in the neighborhood of t0

y(t) = y(t0) + (t − t0)
dy

dt

∣∣∣∣
t0

+
(t − t0)

2

2

d2y

dt2

∣∣∣∣∣
t0

+ . . .

Retain only first derivative term and define

f(t0, y0) ≡
dy

dt

∣∣∣∣
t0

to get

y(t) ≈ y(t0) + (t − t0)f(t0, y0)

or

y(t) ≈ y(t0) + hf(t0, y0)

ME 350: Introduction to numerical integration of ODEs page 8



Euler’s Method 2

Given h = t1 − t0 and initial condition, y = y(t0), compute

y1 = y0 + h f(t0, y0)
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Euler’s Method 2

Given h = t1 − t0 and initial condition, y = y(t0), compute

y1 = y0 + h f(t0, y0)

y2 = y1 + h f(t1, y1)
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Euler’s Method 2

Given h = t1 − t0 and initial condition, y = y(t0), compute

y1 = y0 + h f(t0, y0)

y2 = y1 + h f(t1, y1)

... ...

yj+1 = yj + h f(tj, yj)
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Euler’s Method 2

Given h = t1 − t0 and initial condition, y = y(t0), compute

y1 = y0 + h f(t0, y0)

y2 = y1 + h f(t1, y1)

... ...

yj+1 = yj + h f(tj, yj)

or, shifting indices by 1

yj = yj−1 + h f(tj−1, yj−1)
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Example: Euler’s Method by Hand

Use Euler’s method to integrate
dy

dt
= t − 2y y(0) = 1
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Example: Euler’s Method by Hand

Use Euler’s method to integrate
dy

dt
= t − 2y y(0) = 1

The exact solution is

y =
1

4

[
2t − 1 + 5e

−2t
]
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Example: Euler’s Method by Hand

Use Euler’s method to integrate
dy

dt
= t − 2y y(0) = 1

The exact solution is

y =
1

4

[
2t − 1 + 5e

−2t
]

Euler Exact Error

j tj f(tj−1, yj−1) yj = yj−1 + h f(tj−1, yj−1) y(tj) yj − y(tj)

0 0.0 NA (initial condition) 1.0000 1.0000 0

ME 350: Introduction to numerical integration of ODEs page 15



Example: Euler’s Method by Hand

Use Euler’s method to integrate
dy

dt
= t − 2y y(0) = 1

The exact solution is

y =
1

4

[
2t − 1 + 5e

−2t
]

Euler Exact Error

j tj f(tj−1, yj−1) yj = yj−1 + h f(tj−1, yj−1) y(tj) yj − y(tj)

0 0.0 NA (initial condition) 1.0000 1.0000 0

1 0.2 0 − (2)(1) = −2.000 1.0 + (0.2)(−2.0) = 0.6000 0.6879 −0.0879
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Example: Euler’s Method by Hand

Use Euler’s method to integrate
dy

dt
= t − 2y y(0) = 1

The exact solution is

y =
1

4

[
2t − 1 + 5e

−2t
]

Euler Exact Error

j tj f(tj−1, yj−1) yj = yj−1 + h f(tj−1, yj−1) y(tj) yj − y(tj)

0 0.0 NA (initial condition) 1.0000 1.0000 0

1 0.2 0 − (2)(1) = −2.000 1.0 + (0.2)(−2.0) = 0.6000 0.6879 −0.0879

2 0.4 0.2 − (2)(0.6) = −1.000 0.6 + (0.2)(−1.0) = 0.4000 0.5117 −0.1117

3 0.6 0.4 − (2)(0.4) = −0.400 0.4 + (0.2)(−0.4) = 0.3200 0.4265 −0.1065
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Simple Matlab Implementation

Note: The first index in a Matlab array is 1, not 0.

Therefore, we need to interpret the formula for Euler’s method as having an initial condition at t(1) with a

value of y(1). This is not hard, but it does take a conscious shift for us to associate t(1) with y0.

But why did we use t0 and y0 to designate the initial condition?

Answers: First it’s convention. Second it is natural to associate the initial condition with a time of zero. The

subscript t0 reinforces that idea for analytical work.
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Simple Matlab Implementation

Euler’s method is easy to implement in Matlab

h = 0.2; % stepsize

tn = 1; % stopping time

y0 = 1; % initial condition

t = (0:h:tn)’; % Column vector of elements with spacing h

n = length(t); % Number of elements in the t vector

y = y0*ones(n,1); % Preallocate y for speed

% Euler scheme; j=1 for initial condition

for j=2:n

y(j) = y(j-1) + h*( t(j-1) - 2*y(j-1) );

end
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Simple Matlab Implementation

Euler’s method is easy to implement in Matlab

h = 0.2; % stepsize

tn = 1; % stopping time

y0 = 1; % initial condition

t = (0:h:tn)’; % Column vector of elements with spacing h

n = length(t); % Number of elements in the t vector

y = y0*ones(n,1); % Preallocate y for speed

% Euler scheme; j=1 for initial condition

for j=2:n

y(j) = y(j-1) + h*( t(j-1) - 2*y(j-1) );

end

This code is limited because the f(t, y) function is hard-coded. We need a more general solution.

A general implementation of Euler’s method separates the evaluation of f (the right hand side function) from the basic

algorithm that advances the ODE.
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Implementation of Euler’s Method

function [t,y] = odeEuler(diffeq,tn,h,y0)

% odeEuler Euler’s method for integration of a single, first order ODE

%

% Synopsis: [t,y] = odeEuler(diffeq,tn,h,y0)

%

% Input: diffeq = (string) name of the m-file that evaluates the right

% hand side of the ODE written in standard form

% tn = stopping value of the independent variable

% h = stepsize for advancing the independent variable

% y0 = initial condition for the dependent variable

%

% Output: t = vector of independent variable values: t(j) = (j-1)*h

% y = vector of numerical solution values at the t(j)

t = (0:h:tn)’; % Column vector of elements with spacing h

n = length(t); % Number of elements in the t vector

y = y0*ones(n,1); % Preallocate y for speed

% Begin Euler scheme; j=1 for initial condition

for j=2:n

y(j) = y(j-1) + h*feval(diffeq,t(j-1),y(j-1));

end

ME 350: Introduction to numerical integration of ODEs page 21


