Euler's Method for Integration of Ordinary Differential Equations for Initial Value Problems

Gerald Recktenwald
Portland State University
Department of Mechanical Engineering
gerry@pdx.edu

Numerical Integration of ODEs

Graphical Interpretation of exact solution with initial condition.

Nomenclature for first-order ODE (initial value problem)

$$
\frac{d y}{d t}=f(t, y), \quad t \geq 0 ; \quad y(t=0)=y_{0}
$$

$$
y(t)=\text { exact solution }
$$

Numerical Integration of ODEs

Use the slope at $\left(t_{0}, y_{0}\right)$ to predict $y(t>0)$. We can compute $f\left(t_{0}, y_{0}\right)$ exactly because $y_{0}=y\left(t_{0}\right)$ is known.

Nomenclature for first-order ODE
$\frac{d y}{d t}=f(t, y), \quad t \geq 0 ; \quad y(t=0)=y_{0}$
$y(t)=$ exact solution
$y\left(t_{j}\right)=$ exact solution evaluated at t_{j}

Numerical Integration of ODEs

Numerical solution at t_{1} may use other estimates of slope.

Nomenclature for first-order ODE

$$
\frac{d y}{d t}=f(t, y), \quad t \geq 0 ; \quad y(t=0)=y_{0}
$$

$$
\begin{aligned}
y(t) & =\text { exact solution } \\
y\left(t_{j}\right) & =\text { exact solution evaluated at } t_{j} \\
y_{j} & =\text { approximate solution at } t_{j}
\end{aligned}
$$

Numerical Integration of ODEs

Repeat process for step 2 :
$f\left(t_{1}, y_{1}\right)$ is an approximation to the slope, since $y \approx y\left(t_{1}\right)$.

Nomenclature for first-order ODE

$$
\frac{d y}{d t}=f(t, y), \quad t \geq 0 ; \quad y(t=0)=y_{0}
$$

$$
\begin{aligned}
y(t) & =\text { exact solution } \\
y\left(t_{j}\right) & =\text { exact solution evaluated at } t_{j} \\
y_{j} & =\text { approximate solution at } t_{j} \\
f\left(t_{j}, y_{j}\right) & =\text { approximate } \text { r.h.s. at } t_{j}
\end{aligned}
$$

Numerical Integration of ODEs

The numerical solution is a set of discrete points. The dashed red curve is just to "guide your eye".

Nomenclature for first-order ODE

$$
\begin{aligned}
\frac{d y}{d t} & =f(t, y), \quad t \geq 0 ; \quad y(t=0)=y_{0} \\
y(t) & =\text { exact solution } \\
y\left(t_{j}\right) & =\text { exact solution evaluated at } t_{j} \\
y_{j} & =\text { approximate solution at } t_{j} \\
f\left(t_{j}, y_{j}\right) & =\text { approximate r.h.s. at } t_{j}
\end{aligned}
$$

Euler's Method 1

Consider a Taylor series expansion in the neighborhood of t_{0}

$$
y(t)=y\left(t_{0}\right)+\left.\left(t-t_{0}\right) \frac{d y}{d t}\right|_{t_{0}}+\left.\frac{\left(t-t_{0}\right)^{2}}{2} \frac{d^{2} y}{d t^{2}}\right|_{t_{0}}+\ldots
$$

Euler's Method 1

Consider a Taylor series expansion in the neighborhood of t_{0}

$$
y(t)=y\left(t_{0}\right)+\left.\left(t-t_{0}\right) \frac{d y}{d t}\right|_{t_{0}}+\left.\frac{\left(t-t_{0}\right)^{2}}{2} \frac{d^{2} y}{d t^{2}}\right|_{t_{0}}+\ldots
$$

Retain only first derivative term and define

$$
\left.f\left(t_{0}, y_{0}\right) \equiv \frac{d y}{d t}\right|_{t_{0}}
$$

Euler's Method 1

Consider a Taylor series expansion in the neighborhood of t_{0}

$$
y(t)=y\left(t_{0}\right)+\left.\left(t-t_{0}\right) \frac{d y}{d t}\right|_{t_{0}}+\left.\frac{\left(t-t_{0}\right)^{2}}{2} \frac{d^{2} y}{d t^{2}}\right|_{t_{0}}+\ldots
$$

Retain only first derivative term and define

$$
\left.f\left(t_{0}, y_{0}\right) \equiv \frac{d y}{d t}\right|_{t_{0}}
$$

to get

$$
y(t) \approx y\left(t_{0}\right)+\left(t-t_{0}\right) f\left(t_{0}, y_{0}\right)
$$

or

$$
y(t) \approx y\left(t_{0}\right)+h f\left(t_{0}, y_{0}\right)
$$

Euler's Method 2

Given $h=t_{1}-t_{0}$ and initial condition, $y=y\left(t_{0}\right)$, compute

$$
y_{1}=y_{0}+h f\left(t_{0}, y_{0}\right)
$$

Euler's Method 2

Given $h=t_{1}-t_{0}$ and initial condition, $y=y\left(t_{0}\right)$, compute

$$
\begin{aligned}
& y_{1}=y_{0}+h f\left(t_{0}, y_{0}\right) \\
& y_{2}=y_{1}+h f\left(t_{1}, y_{1}\right)
\end{aligned}
$$

Euler's Method 2

Given $h=t_{1}-t_{0}$ and initial condition, $y=y\left(t_{0}\right)$, compute

$$
\begin{array}{cc}
y_{1}= & y_{0}+h f\left(t_{0}, y_{0}\right) \\
y_{2} & =y_{1}+h f\left(t_{1}, y_{1}\right) \\
\vdots & \vdots \\
y_{j+1} & =y_{j}+h f\left(t_{j}, y_{j}\right)
\end{array}
$$

Euler's Method 2

Given $h=t_{1}-t_{0}$ and initial condition, $y=y\left(t_{0}\right)$, compute

$$
\begin{array}{cc}
y_{1}= & y_{0}+h f\left(t_{0}, y_{0}\right) \\
y_{2} & =y_{1}+h f\left(t_{1}, y_{1}\right) \\
\vdots & \vdots \\
y_{j+1} & =y_{j}+h f\left(t_{j}, y_{j}\right)
\end{array}
$$

or, shifting indices by 1

$$
y_{j}=y_{j-1}+h f\left(t_{j-1}, y_{j-1}\right)
$$

Example: Euler's Method by Hand

Use Euler's method to integrate

$$
\frac{d y}{d t}=t-2 y \quad y(0)=1
$$

Example: Euler's Method by Hand

Use Euler's method to integrate

The exact solution is

$$
\frac{d y}{d t}=t-2 y \quad y(0)=1
$$

$$
y=\frac{1}{4}\left[2 t-1+5 e^{-2 t}\right]
$$

Example: Euler's Method by Hand

Use Euler's method to integrate

$$
\frac{d y}{d t}=t-2 y \quad y(0)=1
$$

The exact solution is

$$
y=\frac{1}{4}\left[2 t-1+5 e^{-2 t}\right]
$$

			Euler	Exact	Error
j	t_{j}	$f\left(t_{j-1}, y_{j-1}\right)$	$y_{j}=y_{j-1}+h f\left(t_{j-1}, y_{j-1}\right)$	$y\left(t_{j}\right)$	$y_{j}-y\left(t_{j}\right)$
0	0.0	NA	(initial condition) 1.0000	1.0000	0

Example: Euler's Method by Hand

Use Euler's method to integrate

$$
\frac{d y}{d t}=t-2 y \quad y(0)=1
$$

The exact solution is

$$
y=\frac{1}{4}\left[2 t-1+5 e^{-2 t}\right]
$$

			Euler	Exact	Error
j	t_{j}	$f\left(t_{j-1}, y_{j-1}\right)$	$y_{j}=y_{j-1}+h f\left(t_{j-1}, y_{j-1}\right)$	$y\left(t_{j}\right)$	$y_{j}-y\left(t_{j}\right)$
0	0.0	NA	(initial condition) 1.0000	1.0000	0
1	0.2	$0-(2)(1)=-2.000$	$1.0+(0.2)(-2.0)=0.6000$	0.6879	-0.0879

Example: Euler's Method by Hand

Use Euler's method to integrate

$$
\frac{d y}{d t}=t-2 y \quad y(0)=1
$$

The exact solution is

$$
y=\frac{1}{4}\left[2 t-1+5 e^{-2 t}\right]
$$

			Euler	Exact	Error
j	t_{j}	$f\left(t_{j-1}, y_{j-1}\right)$	$y_{j}=y_{j-1}+h f\left(t_{j-1}, y_{j-1}\right)$	$y\left(t_{j}\right)$	$y_{j}-y\left(t_{j}\right)$
0	0.0	NA	(initial condition) 1.0000	1.0000	0
1	0.2	$0-(2)(1)=-2.000$	$1.0+(0.2)(-2.0)=0.6000$	0.6879	-0.0879
2	0.4	$0.2-(2)(0.6)=-1.000$	$0.6+(0.2)(-1.0)=0.4000$	0.5117	-0.1117
3	0.6	$0.4-(2)(0.4)=-0.400$	$0.4+(0.2)(-0.4)=0.3200$	0.4265	-0.1065

Simple Matlab Implementation

Note: The first index in a Matlab array is 1 , not 0 .
Therefore, we need to interpret the formula for Euler's method as having an initial condition at t (1) with a value of $\mathrm{y}(1)$. This is not hard, but it does take a conscious shift for us to associate $\mathrm{t}(1)$ with y_{0}.

But why did we use t_{0} and y_{0} to designate the initial condition?

Answers: First it's convention. Second it is natural to associate the initial condition with a time of zero. The subscript t_{0} reinforces that idea for analytical work.

Simple Matlab Implementation

Euler's method is easy to implement in Matlab

```
h = 0.2; % stepsize
tn = 1; % stopping time
y0 = 1; % initial condition
t = (0:h:tn)'; % Column vector of elements with spacing h
n = length(t); % Number of elements in the t vector
y = y0*ones(n,1); % Preallocate y for speed
% Euler scheme; j=1 for initial condition
for j=2:n
    y(j) = y(j-1) +h*( t(j-1) - 2*y(j-1) );
end
```


Simple Matlab Implementation

Euler's method is easy to implement in Matlab

```
h = 0.2; % stepsize
tn = 1; % stopping time
y0 = 1; % initial condition
t = (0:h:tn)'; % Column vector of elements with spacing h
n = length(t); % Number of elements in the t vector
y = y0*ones(n,1); % Preallocate y for speed
% Euler scheme; j=1 for initial condition
for j=2:n
    y(j) = y(j-1) +h*( t(j-1) - 2*y(j-1) );
end
```

This code is limited because the $f(t, y)$ function is hard-coded. We need a more general solution.
A general implementation of Euler's method separates the evaluation of f (the right hand side function) from the basic algorithm that advances the ODE.

Implementation of Euler's Method

```
function [t,y] = odeEuler(diffeq,tn,h,y0)
% odeEuler Euler's method for integration of a single, first order ODE
%
% Synopsis: [t,y] = odeEuler(diffeq,tn,h,y0)
%
% Input: diffeq = (string) name of the m-file that evaluates the right
                hand side of the ODE written in standard form
%
%
% ln = stopping value of the independent variable
% y0 = initial condition for the dependent variable
%
% Output: t = vector of independent variable values: t(j) = (j-1)*h
% y = vector of numerical solution values at the t(j)
t = (0:h:tn)'; % Column vector of elements with spacing h
n = length(t); % Number of elements in the t vector
y = y0*ones(n,1); % Preallocate y for speed
% Begin Euler scheme; j=1 for initial condition
for j=2:n
    y(j) = y(j-1) + h*feval(diffeq,t(j-1),y(j-1));
end
```

