To prepare for the lab exercises, download the meanFixNaN.m, tanxInvxPlot.m, and tanxInvxPlotAnon.m functions from the class web site.

You will also need to download brackPlot.m, and bisect.m for the rootfinding exercises.

Practice with User-Defined Functions

1. Run the meanFixNaN, tanxInvxPlot and tanxInvPlotAnon functions and verify that you can read and describe how those codes work.
2. Create a modified version of tanxInvxPlot and tanxInvPlotAnon that can plot

$$
f(x)=\tan (a x)-\frac{1}{b x}
$$

Test your function with $a=1$ and $b=20$.

Root-finding with brackPlot and bisect

1. Write a stand-alone m-file called myfx to evaulate

$$
\begin{equation*}
f(x)=x-x^{1 / 3}-2=0 \tag{1}
\end{equation*}
$$

Your m-file should only have one input, x, and return one value $f(x)$. Note that both x and $f(x)$ can be vectors. Your m-file should only evaluate $f(x)$. It should not generate a vector of x values. It should not plot $y=f(x)$.
2. Test that your myfx function from the previous exerise is working by writing a new m-file, say plotMyfx that calls myfx to generate data for a plot of $f(x)$ on the interval $0 \leq x \leq 5$.
3. Write another (new) m-file function called fxroot that uses the brackPlot function to find the brackets for roots of the $f(x)$ defined by Equation (1) on the interval $0 \leq x \leq 5$. Store the brackets in a matrix, say xb .
Since the brackPlot function plots $f(x)$ on the designated interval, you no longer need to separately create vectors of x and $f(x)$ values in order to plot $f(x)$ as you did with plotMyfx.
4. Add to fxroot a call to the bisect function to refine the find the root within the bracket interval produced by the call to brackPlot.
5. Continue your modification of fxroot by substituting the root returned by bisect back into the $f(x)$ function to demonstrate that you have found a true root. Use a fprintf statement to print both the root and $f(x)$ at the root.

Root-finding with a Nested Function to Define $f(x)$

The goal of this exercise is to write a new version of the code to find the roots of Equation (1). The new version uses a nested function instead of a separate m -file function to define $f(x)$. The final version of the code is not much different from the fxroot function.

1. Make a copy of the fxroot function that you used to complete the preceding exercise. Call the new function fxrootNested. In the following exercises, make one change at a time and to test your function after completing each step.
2. Add a nested function to the fxrootNested m-file to evaluate the $f(x)$ in Equation (1). In other words, the nested m-file replaces the external m -file you used with fxroot.
3. Modify your call to the brackPlot function so that brackPlot uses your newly written nested function.
Hint: If your nested function is called myfun, you will need to pass the function handle to brackPlot with the following syntax.
```
% -- Define the nested function
function z = myfun(x)
    z = ...
end
xb = brackPlot( @myfun, ... )
```

Note the © in @myfun.
4. Given the bracket found in the preceding step, use the bisect function to refine the root. Evaluate and print the value of $f(x)$ at the root. Hint: r = bisect (@myfun, ...).

The result of the preceding steps is a single m-file (called fxrootNested that runs brackPlot to find the bracket containin the root, and bisect to refine the root.

Root-finding when $f(x)$ has multiple roots and singularities

1. Write a single m-file that finds and plots the roots of

$$
\begin{equation*}
\tan (a x)=\frac{1}{x} \tag{2}
\end{equation*}
$$

for $a=1$ in the interval $0<x \leq 5 \pi$. Why do we avoid $x=0$?
Verify that each root returned by bisect is truly a root, and not a singularity.
2. Modify your solution to the preceding exercise so that it solves finds the roots in the same interval for any value of a. Find the roots in $0<x \leq 5 \pi$ for $a=0.5,1.5,2.0$.

