
ME 350 Lab Exercise 4 if constructs, while loops
Fall 2017

Practice Reading if Constructs

What is the output of the following command sequences? Some of the sequences
may print messages that are not correct or are consistent with the numerical
and logical statements. The goal is to practice seeing both correct and incorrect
code. When we are debugging, we are looking for incorrect code.

1. What is printed when the following code is executed?

z = 17;

x = sqrt(z);

if x<5

fprintf(’z is less than 25\n’)

end

What is printed for the preceding code if z = 35 was used instead?

2. What is printed when the following code is executed?

z = 17;

x = sqrt(z);

if x<5

fprintf(’z is less than 25\n’)

else

fprintf(’z is greater than 25\n’)

end

What is printed for the preceding code if z = 35 was used instead?

3. Is this code correct?

z = 17;

x = sqrt(z);

if x<5 && x>6

fprintf(’z is less than 25\n’)

else

fprintf(’z is greater than 36\n’)

end

4. Does the output make sense? Are the printed messages consisten with the
logic of the if. . . else construct?

z = 17;

x = sqrt(z);

if x>5 && x<6

fprintf(’z is greater than 25\n’)

else

fprintf(’z is less than 36\n’)

end

5. Is the message in the fprintf statement consistent with the logic of the
if construct?

z = 17;

x = sqrt(z);

if x>5 && x<6

fprintf(’z is between 25 and 36\n’)

end

ME 350: Lab Exercise 4 Winter 2017 page 2/6

6. The following code might not do what you think.

x = linspace(0,10);

y = zeros(size(x));

for i = 1:length(x)

if x<0

y = 0;

elseif x<3

y = 1.4;

elseif x<7

y = 2.7;

else

y = 7;

end

end

plot(x,y,’.’)

7. This code works as expected. Can you explain the difference between this
(following) code block and the preceding code block?

x = linspace(0,10);

y = zeros(size(x));

for i = 1:length(x)

if x(i)<0

y(i) = 0;

elseif x(i)<3

y(i) = 1.4;

elseif x(i)<7

y(i) = 2.7;

else

y(i) = 7;

end

end

plot(x,y,’.’)

ME 350: Lab Exercise 4 Winter 2017 page 3/6

Equality tests are susceptible to roundoff errors

Does the code in Example 1 and Example 2 do what you expect?

Example 1:

x = 30*pi/180;

f = 1 - sin(x)^2 - cos(x)^2; % Identity: sin(x)^2 + cos(x)^2 = 1

if f==0

disp(’Formula is correct’)

else

disp(’Formula is incorrect’)

end

Example 2:

s = 2.6;

v = s + 0.6;

w = s + 0.2 + 0.2 + 0.2;

if v == w

disp(’Addition works’)

else

disp(’Addition is broken’)

end

In general, avoid exact tests for equality

Redesign the tests to avoid round-off trouble

Example 1 Revised:

x = 30*pi/180;

f = 1 - sin(x)^2 - cos(x)^2; % Identity: sin(x)^2 + cos(x)^2 = 1

delta = 5.0e-9; % delta is tolerance on "equality" test

if abs(f)<delta

disp(’Formula is correct’)

else

disp(’Formula is incorrect’)

end

Example 2 Revised:

s = 2.6;

v = s + 0.6;

w = s + 0.2 + 0.2 + 0.2;

delta = 5.0e-9; % delta is tolerance on "equality" test

if abs(v-w) < delta

disp(’Addition works’)

else

disp(’Addition is broken’)

end

ME 350: Lab Exercise 4 Winter 2017 page 4/6

Practice with if Constructs

Finding the Maximum Value in a Vector

What does the following code do?

function xmax = mymax(x)

xmax = x(1);

for i=2:length(x)

if x(i)>xmax

xmax = x(i);

end

end

What built-in function performs the same task? Write an m-file to test whether
this function works by comparing it to the outcome of the built-in max function.

Hint :

x = 300*rand(...)

err = mymax(x) - max(x);

Is this a situation where “close enough” applies, or would an exact match be
appropriate?
How would you use mymax to find the maximum absolute value in a vector?

Testing properties of distributions generated by randn

1. Download the testStats function from the lab web site.

2. Modify the testStats function so that it also prints the number of sample
values that are greater than two standard deviations from the mean. Keep
the code for counting and printing the number of sample values that are
greater than one standard deviation from the mean.

• Create a variable to store the counts. Hint : create n2

• Add a test to determine whether to increase the count.

• Add an fprintf statement to display n2 and n2/n.

3. Modify the plot so that the decoration includes a vertical dashed lines at
±2σ

In completing the preceding assignment two students developed two different
versions of the code. Do these codes produce different results? If they produce
the same results, is there an advantage to using on approach over the other?

Version A:

dx = abs(x(i)-xave);

if dx > sig

n1 = n1 + 1;

end

if dx > 2*sig

n2 = n2 + 1;

end

Version B:

dx = abs(x(i)-xave);

if dx > sig

n1 = n1 + 1;

if dx > 2*sig

n2 = n2 + 1;

end

end

ME 350: Lab Exercise 4 Winter 2017 page 5/6

Automatic truncation of iterative sequences

Background

Iteration is a common component of numerical algorithms. In the most abstract
form an iteration generates a sequence of scalar values xk, k = 1, 2, 3, The
sequence converges to a limit ξ if

|xk − ξ| < δ for all k > N

where δ is a small number called the convergence tolerance. In this case we say
that the sequence has converged to within the tolerance δ after N iterations.
The problem with this statement of convergence is that in general the limit ξ
is not known unless (for a convergent iteration) the value of k is allowed to
approach infinity.

In a practical calculation it is important to be able to detect convergence as
soon as the tolerance is met, not after k →∞. At convergence one is in essence
declaring that xk is “close enough” to the unknown value of ξ.

Fortunately the preceding condition of convergence is equivalent to

|x` − xk| < δ for all `, k > N

In practice the test is expressed as

|xk − xk−1| < δ when k > N (1)

where k is an iteration counter. Equation (1) says that an sequence converges
when successive values of the iteration differ by less than a tolerance. This is
not a foolproof criterion, but it’s a good start.

Many numerical methods involve iterations that we hope converge toward a
limit. The index k is the iteration counter, and δ is a convergence tolerance.

We implementing a convergence test in a numerical method, have a choice
to use either an absolute or a relative convergence criterion

|xk − xk−1| < δa

∣∣∣∣xk − xk−1

xk−1

∣∣∣∣ < δr (2)

where δa and δr are absolute and relative convergence tolerances, respectively.

Iterative Calculation of
√
x

Consider the iterative formula for approximating
√
x.

rk =
1

2

(
rk−1 +

x

rk−1

)
(3)

1. Using the newtsqrtShell.m m-file in Listing 1 as a starting point, create
a new m-file called newtsqrta that implements an absolute convergence
tolerance for the approximation to

√
x.

Note the first if statement in newtSqrtShell is a test to make sure that
the input is positive.

if x<0, error(’Negative input to newtsqrt not allowed’); end

ME 350: Lab Exercise 4 Winter 2017 page 6/6

It is good practice to check that the inputs to your function are within an
acceptable range. It is better to get this error message than some strange
computational result.

2. Write a testsqrt function that calls your newtsqrta function for a range
of x values and plots the absolute and relative error.

3. Using the newtsqrta.m m-file created in the preceding exercise as a start-
ing point, implement a relative convergence tolerance for the approxima-
tion to

√
x. Call this new function newtsqrtr.

4. Write a testsqrtr function that calls your newtsqrtr function for a range
of x values and plots the absolute and relative error.

function r = newtsqrt(x,delta,maxit)

% newtsqrt Use Newton’s method to compute the square root of a number.

% Convergence is determined with an absolute tolerance.

%

% Synopsis: r = newtsqrt(x,delta,maxit)

%

% Input: x = number for which the square root is desired

% delta = (optional) absolute convergence tolerance. Default: delta = 5e-9

% Iterations continue until abs(r-rold) < delta, where r and rold

% are the current and previous estimates of the square root

% maxit = (optional) maximum number of iterations. Default: maxit = 25

%

% Output: r = square root of x to within delta/2

if x<0, error(’Negative input to newtsqrt not allowed’); end

if x==0, r=x; return; end

if nargin<2, delta = 5e-9; end

if nargin<3, maxit=25; end

r = x/2; rold = x; % Initialize, making sure that convergence test fails on first try

it = 0;

while % *** YOUR CODE GOES HERE ***

rold = r; % Save old value for convergence test

r = 0.5*(rold + x/rold); % Update the guess

it = it + 1; % Increment the iteration counter

end

end

Listing 1: The newtsqrtShell.m m-file has an incomplete implementation Newton’s
method for computing

√
x.

