
ME 350 Lab Exercise 3 for loops, fprintf, if constructs
Fall 2017

Practice Reading for Loops

For each of the following code snippets, fill out the table to the right with the
values displayed when the code snippet is executed. After you have evaluated
the code manually (i.e., without using Matlab), create an m-file with these
code snippets to check your work.

1. Loop 1:

x = 10.0;

for i = 1:4

x = x/2.0;

disp([i x]);

end

disp(’At end of the loop, x =’)

disp(x)

i x

1

2

3

4

At the end of the loop, x =

2. Loop 2:

x = 10.0;

for i = 1:4

fprintf(’%3d %8.5f\n’,i,x)

x = x/2.0;

end

fprintf(’At end of loop, x = %8.5f’,x);

i x

1

2

3

4

At the end of the loop,
x =

3. Loop 3:

m = 3;

n = 3;

fprintf(’\n i j i+j\n’)

for i = 1:m

for j = 1:n

fprintf(’%3d %3d %4d\n’,i,j,i+j);

end

end

i j i+j

1

1

1

ME 350: Lab Exercise 3 Winter 2017 2/5

4. Loop 4: Use the space to the right to show the output of running the
demoDouble function with the default input parameters. Work out the
pattern “by hand” before you enter the code in Matlab or download it
from the Lab web page.

function demoDouble(m,n)

if nargin<1, m=4; end

if nargin<2, n=5; end

fprintf(’\nBegin double loop:\n\n ’)

fprintf(’%3d’,1:n)

fprintf(’\n +’)

for j=1:n

fprintf(’---’);

end

fprintf(’\n’)

for i = 1:m

fprintf(’%3d |’,i)

for j = 1:n

fprintf(’%3d’,i+j);

end

fprintf(’\n’)

end

end

A Practical Example

for loops are most often used when each element in a vector or matrix is to be
processed.

Syntax

for index = expression

block of statements

end

Example: Sum of elements in a vector

x = rand(1,50); % create a row vector of random values, as an example

sumx = 0; % initialize the sum

for k = 1:length(x) % length(x) returns the number of elements in x

sumx = sumx + x(k);

end

1. Write an m-file called mySum that accepts an input vector, x, and returns
the sum of the elements in x. This amounts to putting a function wrapper
around the preceding code block.

2. Write an m-file called testSum that compares the output of your mySum

function with the built-in sum function. Use random inputs with x =

rand(100,1) as test vectors.

updated 2017-01-30 23:40

ME 350: Lab Exercise 3 Winter 2017 3/5

Focus on the for Statement

The following three examples are nearly identical. The only difference is in the
“for” expression. The body of the loop has the same code to print values of
theta in degrees and radians, and print the value of the sine of theta.

The goal of these three exercises is to get you to think about how the code
in the for statement controls the execution. The code in Loop 7 is the recom-
mended way to perform these calculations.

Finally, note that the “...” in the fprintf statement allows us to break
the long line into two lines that better fit onto the page. The ... is legitimate
Matlab syntax. If you type this code into Matlab you don’t need to use the
... to break the fprintf statement in two separate lines.

1. Loop 5:

fprintf(’ theta\n (rad) (deg) sin(theta)\n’)

for theta = [0 pi/4.0 pi/2.0 3*pi/4.0 pi]

fprintf(’ %6.4f %5.0f %6.4f\n’,...

theta,theta*180.0/pi,sin(theta));

end

theta

2. Loop 6:

fprintf(’ theta\n (rad) (deg) sin(theta)\n’)

theta = 0:pi/4.0:pi;

for i = length(theta)

fprintf(’ %6.4f %5.0f %6.4f\n’,...

theta(i),theta(i)*180.0/pi,sin(theta(i)));

end

theta

3. Loop 7:

fprintf(’ theta\n (rad) (deg) sin(theta)\n’)

theta = 0:pi/4.0:pi;

for i = 1:length(theta)

fprintf(’ %6.4f %5.0f %6.4f\n’,...

theta(i),theta(i)*180.0/pi,sin(theta(i)));

end

theta

updated 2017-01-30 23:40

ME 350: Lab Exercise 3 Winter 2017 4/5

Putting for Loops to Work

1. Download the drawSmile.m m-file from the
web page for the lab exercise. Without
altering the code in drawSmile.m, write
another m-file, say sineSmile.m that
draws smiley faces centered at 10 points
along a sine curve in the range [0, 2π]. The
result should look like the plot to the right.

0 1 2 3 4 5 6

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

2. The infinite series for sin(x) is

sin(x) = x− x3

3!
+
x5

5!
− x7

7!
+ . . .+

(−1)k−1x2k−1

(2k − 1)!
+ . . . (1)

Download the nTermSine1 function from the lab web page. nTermSine1

is a straightforward implementation of this series in Equation (1). Get
acquainted with the nTermSine1 function by running these commands

(a) s = nTermSine1(pi/4)

(b) s = nTermSine1(pi/4) - sin(pi/4)

(c) s = nTermSine1(pi/4,3) - sin(pi/4)

(d) s = nTermSine1(pi/4,10,true)

3. Create a new m-file called testSineSeries to perform the following tasks.

(a) Generate a vector of x values in the range 0 ≤ x ≤ π.

(b) Run nTermSine1 to create a vector of 5-term approximations to
sin(x) over the range of x values.

Hint

theta = linspace(...); % Range of angles

sinApprox = zeros(size(theta)); % Pre-allocate for efficiency

for i = 1:length(theta)

sinApprox(i) = ...

end

err = ... % absolute error

plot(theta,err,’.’)

DO NOT change any code in nTermSine1.m, and DO NOT copy
any code from nTermSine1.m into your testSineSeries.m file.

(c) Store the approximate values from the sine series in sinApprox and
compare these with the value returned by the built-in sin function.
In the preceding code snippet, err is the absolute error.

(d) What happens to the error if the range of θ values used in the test
is extended to 0 ≤ θ ≤ 2π?

Note that the loop is required because unlike the built-in sin function that
can accept a vector of values of input, the first input value to nTermSin1

must be a scalar value.

updated 2017-01-30 23:40

ME 350: Lab Exercise 3 Winter 2017 5/5

function s = nTermSine1(x,n,verbose)

% nTermSine1 Evaluate the n-term series approximation to sin(x)

% Simplest approach: evaluate each term from scratch

%

% Synopsis: s = nTermSine(x)

% s = nTermSine(x,n)

% s = nTermSine(x,n,verbose)

%

% Input: x = argument of sine, i.e. compute sin(x)

% n = (optional) number of terms to evaluate. Default: n = 5

% verbose = (optional) flag to control printing of intermediate

% results. Default: verbose = false, no printing

%

% Output: s = n-term approximation to sin(x)

if nargin<2, n=5; end

if nargin<3, verbose=false; end

% -- Initialize the series and print deader if desired

term = x;

s = term;

sgn = 1;

if verbose

fprintf(’\n i sign k term s\n’);

fprintf(’ %4d %4d %4d %18.13f %8.5f\n’,1,sgn,1,term,s);

end

% -- Loop for terms 2 to n

for i=2:n

sgn = -sgn; % switch sign of term

k = 2*i - 1;

term = sgn*(x^k)/factorial(k);

s = s + term;

if verbose, fprintf(’ %4d %4d %4d %18.13f %8.5f\n’,i,sgn,k,term,s); end

end

Listing 1: The nTermSine1 function is a straightforward implementation of the the series
approximation to sin(x).

updated 2017-01-30 23:40

