
ME 350 Lab Exercise 1 Introduction to Matlab
Winter 2017

These exercises are meant to give you practice with Matlab in the computer
lab while the instructor is available to help. It is quite likely that you will not
be able to finish these exercises. The goal is to learn, and not to rush through
the examples. Please complete these exercises in your private study time if you
don’t finish them before the end of class time. Also, please finish these exercises
before you start the homework.

For the plotting examples, practice copying one or more plots into a MS
Word document. Upload the document, along with a sample of the m-files you
created to the D2L dropbox for Lab 1.

Interactive Matlab Practice

Use Matlab to perform the following calculations.

1. Define r, s, t

r = 30

s = 50

t = r/s

Now, set s = 30. Before checking with Matlab, decide for yourself, what
is the value of t after the value of s has been changed?

2. Enter the following expressions in the command window.

x = [1 5 10 15]

y = x/5

z = exp(-y)

Note that Matlab will echo the results if you do not end each line with
a semicolon.

3. Given x, y and z from the previous exercise, enter the following commands

r = x/y

s = x./y

t = x*y

u = x.*y

v = exp(-0.1*x)*sin(x)

w = exp(-0.1*x).*sin(x) % Notice the "."

Discuss the results of executing these statements with a neighbor in the
lab. Enter “help ./” and “help .*” in the command window. Alterna-
tively you can enter “doc ./ and “doc .*”.

4. Given x, y and z from the previous exercises, enter the following com-
mands. Discuss the results with a neighbor in the lab.

p = x*y’

q = x(:)

r = q’*q

disp(x)

disp(x’)

disp(q)

ME 350: Lab 01 worksheet Winter 2017 page 2/4

5. Given the x and y values from the previous exercises, enter the following
commands. Note that the syntax of the fprintf command is very partic-
ular about the use of ’ and , as well as other characters inside the first
argument.

disp(x)

disp(x(3))

fprintf(’%10.7f\n’,x)

fprintf(’\n\t w(4) = %12.7f\n’,y(4))

fprintf(’\n\t w(1) = %12.7e\n’,y(1))

6. Use the built-in sin function to compute sin(30◦), sin(60◦), and sin(90◦).
What does this tell you about the way that angles are represented in
Matlab?

Downloading and Running Matlab Functions

1. Download the quadraticRoots.m file from the Lab web page. Hint : Right
click on the link and use “Save as . . . ” (or “Save link as . . . ”) to put the
m-file in a good location. Hint2: A good location would be in a folder like
N:\ME350\Lab\01.

2. Orient the Matlab file browser so that the quadraticRoots function is
visible.

Full path is shown here

Files in current folder

are displayed here

3. Run the following commands

quadraticRoots(1,5,2)

quadraticRoots(-3,5,2)

r = quadraticRoots(1,5,2)

How do you know whether these are the correct values for the roots of the
quadratic equation. Refer to the Examples web page that describes the
quadraticRoots function,
http://web.cecs.pdx.edu/~gerry/class/ME350/example/quadraticRoots.

html

ME 350: Lab 01 worksheet Winter 2017 page 3/4

Plotting Data

For each of the following exercises, create an m-file function that carries out
the Matlab calculations. Create a separate m-file for each exercise. In other
words, do not reuse the same m-file. Store your m-files in a folder for this lab.
As suggested above, a good location would be in a folder like N:\ME350\Lab\01.

Example: Plot sin(θ) for −2π ≤ θ ≤ 2π.

The following function plots sin(θ) for −2π ≤ θ ≤ 2π. The code is stored in
sinePlot.m

function sinePlot

% sinePlot Demonstrate plot of sin(theta) on -2*pi <= theta <= 2*pi

theta = linspace(-2*pi, 2*pi); % Create a row vector

y = sin(theta); % y is a vector w/ same "shape" as theta

plot(theta,y); % Plot with solid line connecting points

xlabel(’\theta’); % \theta draws greek letter "theta"

ylabel(’sin(\theta)’);

end

Exercises

1. Plot sin(θ) and cos(θ) on the same axes with solid lines connecting the
sin(θ) values and open circles at the values of cos(θ).

Hint : There are two primary ways to add two or more curves to the same
plot. In this situation, where it is possible to evaluate and store y = sin(θ)
and z = cos(θ) in advance, the preferred way is like this:

theta = ...

y = sin(theta);

z = cos(theta);

plot(theta,y,’-’,theta,z,’o’);

In other situations, where it is not possible to compute both curves in
advance, i.e., where the second curve is only known at a later point in a
sequence of calculations, the following approach is necessary.

theta = ...

y = sin(theta);

plot(theta,y,’-’)

% ... do some more calculations ...

z = cos(theta);

hold(’on’)

plot(theta,z,’o’);

hold(’off’)

Novice programmers tend to overuse the hold(’on’)/hold(’off’) method,
which can sometimes cause unexpected behavior in the plots.

2. Plot y = exp(−1.5t)sin(4t) for 0 ≤ t ≤ 5π. Hint: The array operator .*

is needed in only one place.

ME 350: Lab 01 worksheet Winter 2017 page 4/4

3. Execute the following statements. (Remember : you are saving these state-
ments in a function m-file with a unique name.)

x = linspace(0,3);

y = 10*exp(-2*x);

plot(x,y);

grid(’on’);

figure(’Name’,’Semilog version’); % A simple "figure" will suffice

semilogy(x,y);

grid(’on’)

Discuss with a neighbor in the lab:

(a) How is using figure different from using hold(’on’)/hold(’off’)?

(b) What other plot commands allow logarithmic scaling?

(c) What is the advantage of using semilogy(x,y) instead of plot(x,log(y))?

4. Plot the data in the T1 and dT2 arrays

T1 = [32.50, 32.9, 33.07, 34.91, 36.28, 37.73];

dT2 =[9.45, 9.17, 9.05, 8.72, 8.58, 8.09];

as open circles, and on the same axes plot the function

T = 16.5518 − 0.2230127 dT

as a dashed red line. Add a legend with

legend(’Data’,’Linear fit’)

Add axis labels with

xlabel(’T_1 ({^\circ}C)’);

ylabel(’\Delta T_2 ({^\circ}C)’);

Note that the {^\circ} and \Delta are included to demonstrate how it
is possible to insert mathematical symbols in plot annotations. A simpler
version of axis labels, like the following, is OK.

xlabel(’T1 (C)’);

ylabel(’dT2 (C)’);

