Serial.print in a Nutshell Gerald Recktenwald
October 27, 2020 gerry@pdx.edu

Introduction

The Serial Monitor is part of the Arduino IDE that can receive text messages from a running
Arduino sketch. The communication between the Arduino and the Serial Monitor uses the USB
cable. Therefore, the Serial Monitor only works when the Arduino board is tethered to the host
computer that is running the Arduino IDE.

Figure 1 is an annotated screenshot of a Serial Monitor window running on a Macintosh com-
puter. The Serial Monitor on a Windows computer will have a slight different appearance, but will
have the same user interface controls.

See https://www.arduino.cc/reference/en/language/functions/communication/serial/print/.

Printing to the Serial Monitor
Starting the Serial Monitor

You must first call Serial.begin, usually in the setup() function of your Arduino sketch.

1. Serial.begin(9600) and Serial.begin(115200) are common. Those commands set the
baud rate to 9600 and 115200, respectively. The baud rate is the number of bits per second®.

2. The valid baud rates for the communication between the Arduino and your PC are shown in
Figure 1. A 9600 baud rate is usually sufficient. Recent example sketches from vendors like

1See, e.g., https://en.wikipedia.org/wiki/Baud.

© @® /dev/cu.usbserial-DA01I2TS
Send

and Serial.printin() appears here

i Output from Serial.print()

Autoscroll Show timestamp Newline 9600 baud o Clear output
¥ 9600 baud

19200 baud
Uncheck to stop text from scrolling. 38400 baud Allowable baud rates
Not recommended unless you need to 57600 baud for communication
temporarily copy data. 74880 baud between Arduino and PC

115200 baud

230400 baud

250000 baud

Figure 1: Image of the Serial Monitor showing options for freezing the display and adjusting the baud
rate.

ME 120 :: Serial.print in a Nutshell 2

Adafruit use the higher 115200 baud rate.

3. Baud rate is also set in the Serial Monitor. The value specified in Serial.begin must be
consistent with the value in the Serial Monitor so that the Arduino and your PC can talk to
each other.

Waiting for the Serial Monitor to Start

1. On Arduino UNO boards, the connection between the board and the Serial Monitor program
will be reset in these circumstances.

e When a new sketch is successfully uploaded to the board.

e When the reset button on the board is pressed.

2. For boards with native USB support, like the Arduino Leonardo, Arduino Due and Feather
nRF52840, the connection between the board and the Serial Monitor is not automatically
reset. When starting a sketch it is usually necessary wait for the Serial object in the sketch
to establish a connection with the USB port on the host computer. One way to wait for the
serial connection is to include these lines in the setup function of your sketch.

Serial.begin(nnnn);
while (!Serial) yield();

where nnnn is the baud rate. The while (!Serial) test will be true (Serial is false and
ISerial is true) until the serial port is ready?. The call to yield(); tells the multitasking
scheduler that the current Arduino sketch will let other threads run to completion.

3. Warning: If your Arduino is not connected to your host computer via USB, e.g., if you are
running on battery power, the while (!Serial) yield(); code will hang your sketch. If
a serial port connection cannot be established, the sketch will stay in the while(...) loop
indefinitely. Therefore, be sure to remove while (!Serial) yield(); code when compiling
your sketch for untethered operation.

Use of Printing Commands in Arduino Sketches

1. Serial.print(x) prints the value of x (converted to a string) to the Serial monitor.

2. Serial.println(x) prints the value of x (converted to a string) to the Serial monitor and
advances the cursor to the next line.

3. Only one value (one x) can be printed at a time.

4. The x in Serial.print(x) or Serial.println(x) can be a string or a single number. The
number can be either an integer or a floating point value.
e If x is an integer, Serial.print (x) prints the string version of the value stored in x

o If x is a floating point value, Serial.print(x) prints the string representing the four
most significant digits of x.

2See e.g., https://www.arduino.cc/reference/en/language/functions/communication/serial/ifserial/ and
https://arduino.stackexchange.com/questions/4556/what-does-the-line-while-serial-do-in-an-arduino-program.

ME 120 :: Serial.print in a Nutshell 3

e When numerical values are printed, two arguments can be used in the Serial.print()
and Serial.println() commands. The second argument determines the format or
precision of numerical value. See https://www.arduino.cc/reference/en/language/
functions/communication/serial/print/, and the output from Listing 1.

e Controlling horizontal position with spaces or tabs is helpful when one or more numerical
values are printed on the same line in the Serial Monitor. Listing 2 and Listing 4 show
examples of controlling the horizontal space between subsequent print commands.

5. Horizontal cursor position

e The cursor location is the starting position of the next Serial.print or Serial.println
statement. The cursor is analogous to the insertion point for text input in a word pro-
Cessor.

e The cursor is left at the end of the string printed by Serial.print(x), or it is left at
the start of the next line after the string printed by Serial.println(x).

e The horizontal position of the start of a Serial.print(x) or Serial.println(x) can be
controlled by adding the special characters \t (tab) or \n (newline) as discussed below.
The horizontal position can also be controlled with one or more Serial.print("...")
statements that print additional characters without moving to the next line.

6. The argument of Serial.print(x) or Serial.println(x) can be a string enclosed in double
quotes, for example,

Serial.print("Hello, world")

e The string can include any number of tab characters (\t) or new line characters (\n).

e A tab adds horizontal space. In the Serial Monitor, tabs are expanded to 8 spaces or
advances to an integral number of 8 spaces from the left margin. See the output from
Listing 2.

A tab can be used to indent a first line or add space between two subsequent Serial.print ()
commands.

A new line advances the cursor to the next row in the Serial Monitor.

e Examples:
Serial.print("\t x = ") adds a tab (8 blank spaces) and a space before “x
= 7 is printed
Serial.print ("\tx = ") adds a tab before “x = ” is printed. The lack of space

between \t and x is OK.

Serial.print("My message ...\n\n") prints "My message ..." followed by
one blank line. The first "\n” advances the cursor to the line after “End of
setup” and the second ”\n” adds a blank line.

Serial.println("My message ...\n") is equivalent to
Serial.print("My message ...\n\n").

ME 120 :: Serial.print in a Nutshell

Examples

Use of Format Specifiers

// File: demoSerialPrint.ino

//

// Demonstrate features of Serial.print and Serial.println

void setup() {

}

int n
float

Serial

Serial
Serial
Serial
Serial

Serial
Serial
Serial
Serial
Serial

= 12345;
x = 12.3456789;

.begin(9600) ;

.println("Print n:");
.println(n);
.println(n,BIN);
.println(n,HEX);

.println("\nPrint x:");
.println(x);
.println(x,0);
.println(x,2);
.println(x,4);

void loop() {} // intentionally blank

Listing 1: Code to demonstrate features of the Serial

Output from the demoSerialPrint sketch in Listing 1:

Print n:
12345

11000000111001

3039

Print x:
12.35
12
12.35
12.3457

.print command.

ME 120 :: Serial.print in a Nutshell 5

Horizontal Spaces and Tabs

// File: demoSerialPrintSpaces.ino

//

// Demonstrate ways of adding horizontal spaces in sequences of Serial.print
// and Serial.println commands

void setup() {

int n = 12345;
float x = 12.3456789, y, z;

Serial.begin(9600) ;

y = 2%x;
z sqrt(x);

Serial.println("\nPrint x, y and z with different horizontal spacing:");
Serial.print ("\t");

Serial.print(x);

Serial.print (" ")

Serial.print(y);

Serial.print("\t");

Serial.println(z);

Serial.println("0123456789012345678901234567890123456789"); // indicate position

Serial.println("\nPrint n with different tab spacings:");

Serial.print("\t");

Serial.print(n);

Serial.print ("\t\t");

Serial.print(n);

Serial.print (" "); // 8 spaces

Serial.println(n);

Serial.println("0123456789012345678901234567890123456789"); // indicate position
}

void loop() {} // intentionally blank

Listing 2: Code to demonstrate how to print columns of numbers with Serial.print and
Serial.println.

Output from the demoSerialPrintSpaces sketch in Listing 2:

Print x, y and z with different horizontal spacing:
12.35 24.69 3.51
0123456789012345678901234567890123456789

Print n with different tab spacings:
12345 12345 12345
0123456789012345678901234567890123456789

ME 120 :: Serial.print in a Nutshell 6

Labeling Parameters of a Mathematical Function

// File: demoSerialPrintParameters.ino

//
// Use Serial.print and Serial.println to print labeled
// parameters, e.g. constants used in a math formula.

void setup() {

int i;
float c1 =5, c2 = -3.0, t = 0.732194, y;

Serial.begin(9600) ;
Serial.println("\nParameters of an exponential decay function");

Serial.print("\n\tcl = "); Serial.println(cl);
Serial.print("\tc2 = "); Serial.println(c2);

Serial.print("\nEvaluate y = cl*exp(c2*t) at t = ");
Serial.println(t,5);

y = clxexp(c2xt);
Serial.print("\n\ty = "); Serial.println(y,5);

}

void loop() {} // intentionally blank

Listing 3: Code to demonstrate how to print labelled parameters of a mathematical function with
Serial.print and Serial.println.

Output from the demoSerialPrintParameters in Listing 3:

Parameters of an exponential decay function

cl =5.00
c2 = -3.00
Evaluate y = cl*exp(c2*t) at t = 0.73219

y = 0.55591

ME 120 :: Serial.print in a Nutshell

Printing Columns

//
//
/7
//

#define PI 3.1415926535897932

File: demoSerialPrint.ino

Demonstrate how to print a table of numbers with
Serial.print and Serial.println

void setup() {

}

int i,n = 5;
float dtheta, theta, s,c,t;

Serial.begin(9600) ;
Serial.println("\ntheta

dtheta =

theta

0.5%PI/float(n);

= 0.0;

for (i=1; i<=n; i++) {
s = sin(theta);
c = cos(theta);
t = tan(theta);

}

Serial.
Serial.
Serial.
Serial.
Serial.
Serial.
Serial.

print (theta,4);

print (" ")
print(s,4);
print (" ");
print(c,4);
print (" ")

println(t,4);

theta += dtheta;

sin(theta)

void loop() {} // intentionally blank

cos(theta)

// Excess digits included

tan(theta)");

Listing 4: Code to demonstrate how to print columns
Serial.println.

of numbers with Serial.print and

Output from the demoSerialPrintTable sketch in Listing 4:

theta

0.0000
0.3142
0.6283
0.9425
1.2566

sin(theta) cos(theta)

0.0000
0.3090
0.5878
0.8090
0.9511

1.0000
0.9511
0.8090
0.5878
0.3090

tan(theta)
0.0000
0.3249
0.7265
1.3764
3.0777

