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Abstract

The Printed Circuit Board Convection Analysis Tools (PCBCAT) are computer programs for pre-
dicting the thermal performance of convectively cooled printed circuit boards. The tools consist
of three programs: a preprocessor, a depth-averaged (DA) model, and a three-dimensional energy
equation model. The flow field is obtained by solving the depth-averaged momentum and continuity
equations for the fluid layer above the electronic components. The two-dimensional DA velocity field
data is then incorporated into a solution for the three-dimensional temperature field in the fluid and
electronic components. By solving the conjugate heat transfer problem the need to specify a heat
transfer coefficient is eliminated. By solving the DA flow equations instead of the three-dimensional
Navier-Stokes equations the computing time is reduced substantially.

The physical problem to be analyzed is specified via commands in a plain text file which is
parsed by the PCBCAT preprocessor. The commands allow the user to describe features of the
domain in a succinct, physically intuitive way. User-extensible libraries of material properties and
electronic devices are provided to simplify the problem specification and to eliminate errors in
creating the problem description file. No reference to node numbers or grid lines is required. Based
on the descriptive commands in the user-created text file, the preprocessor generates the grid and
additional control variables used in the analysis. Output from PCBCAT analysis codes is in the
form of plain text summaries and field data stored in Hierarchical Data Format (HDF). HDF is a
standard that can be read by many commercial and public domain visualization packages.

This manual provides a complete reference to the installation and use of the PCBCAT.
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Downloading the PCBCAT Via the Internet

As of this writing the PCBCAT codes are only available for SUN workstations. A port to Win-
dows/NT is in progress. Contact the author (gerry@me.pdx.edu) for updated information, and
check the ftp site and the PCBCAT home page for new versions.

The latest version of the PCBCAT can be obtained by anonymous ftp with the steps given below,
or by pointing a web browser to http://www.me.pdx.edu/~gerry/PCBCAT/ and following the links
to the “Download” page.

To download the files with anonymous ftp use the following commands

ftp ee.pdx.edu
(login with username ‘‘anonymous’’ and give
your full e-mail address as password)

cd pub/users/gerry/PCBCAT
mget *
quit

Additional instructions are in the ReadMe file on the ftp server.
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Chapter 1

Introduction

The Printed Circuit Board Convection Analysis Tools (PCBCAT) are a collection of computer
programs for analyzing convective heat transfer from electronic packages mounted on printed circuit
boards. The PCBCAT are based on a novel computational fluid dynamics (CFD) model developed
at Portland State University. A variant of the control volume finite difference technique is used
to simulate the coolant flow, the thermal convection in the fluid above the board, and the heat
conduction in the components attached to the board. A two-dimensional solution of the flow field
is coupled with a three-dimensional model of heat transport by conduction and convection. This
model eliminates the need for specification of heat transfer coefficients as is necessary in conventional
conduction-based analysis codes. It also is significantly faster and easier to use than fully three-
dimensional CFD models.

The PCBCAT have a minimal, text-based user interface. The user builds a model by creating a
plain text file containing commands with associated arguments. This file is read by a preprocessor
which interprets the user commands and creates another file that controls the analysis codes. Results
of the analysis are summarized in the text files. The two and three dimensional field data created
by the anlaysis programs is stored in a standard binary format for input to visualization programs.

The programs were developed to run on Unix workstations. Ports to other platforms are planned.

1.1 Overview of the Manual

This manual provides both an introduction to and a reference for the PCBCAT. Details of the
underlying mathematical models are presented in separate publications [6, 7]. Chapter 2 is a tutorial
that introduces all of the procedures necessary for running the tools. I recommend that you work
through the tutorial before attempting to build complex board models.

Chapter 3, Building Models with PCBCAT, provides conceptual orientation to model develop-
ment. It should be useful in explaining how to express a physical feature of a board with the
available PCBCAT commands. Sections in Chapter 3 need not be read sequentially. Chapter 4
describes the various output files created by the PCBCAT. You will need to become familiar with
these files in order to get useful results from running the analysis codes. Chapter 5, Command
Glossary, presents the syntax of each PCBCAT command. After working through the tutorial you
should skim Chapters 3, 4, and 5 to develop a general awareness of the layout of the manual and
the types of information you might find there.

The sample problems presented in the manual are of two basic types. Those in the Tutorial
involve PCBCAT models of a relatively simple physical situations. The purpose of these tutorial
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2 CHAPTER 1. INTRODUCTION

problems is to cleanly present the procedure for specifying a particular feature, e.g., a heat generating
device, a partial inlet, etc. The problems in Chapter 6, Examples, are complete models of experiments
performed by other researchers. These sample problems are presented so that you can run the tools
and develop your own opinion of their accuracy and applicability.

Instructions for installing the tools and organizing the working directories on the hard disk of
your workstation are given in the Appendix A. I recommend that if you are not familiar with
installing software on Unix workstations that you consult with your system administrator.

1.2 Typographic Conventions

The manual contains descriptive text and Unix commands, though very few system level commands
are necessary to run the PCBCAT. You should know how to make and maneuver in directories and
run a text editor such as vi or emacs. In this manual Unix commands that you are asked to enter
are shown in monospaced font. For example, to list the files in the current you type

ls

To execute this command enter the letters “ls” on the command line and press the “return” key.
Whenever the output of a Unix commands is shown in the manual it is also displayed in monospaced
font. For example, if you had typed the preceding command in the pcbcat directory the output
would probably look like

bin example tutorial

Monospaced font is also used for the names of PCBCAT commands, and for the names of files
created by the PCBCAT.

1.3 A Quick Guide for the Impatient

This manual is intended to be direct and to the point, so there really is no quick guide. For users
who think in terms of check lists here are the steps to get up and running with the PCBCAT

1. Install the PCBCAT as described in Appendix A.

2. Work through at least the first tutorial problem in Chapter 2.

3. Identify an example problem from Chapter 6 that is closest to the problem you are trying to
solve. Copy the corresponding input file from the example directory and modify it until the
model it describes fits your situation.

4. Consult the remaining chapters as necessary.



Chapter 2

Tutorial

This chapter is an introduction to the PCBCAT tools and the process of building models of circuit
boards for the tools to analyze. The example problems presented here are simplified models of
electronic cooling situations. Though simplistic, these models contain the essential features of more
complicated board layouts. I recommend that you work through the first three models in succession.
The example files in Chapter 6 will be easier to read and edit after you work through the tutorials.

I use the word “model” to refer to the collection PCBCAT commands that specify a physical
problem of interest. These commands are contained in a plain text file that I will refer to as a “user
input file”. The process of building a model involves editing the commands in the user input file.

In the following sections I assume that you have already installed the PCBCAT. Consult Ap-
pendix A for installation instructions. Before proceeding with the tutorial make sure you have set
the PCBCATDIR environment variable as described in Appendix A.

2.1 Cooling a Single Block

In this section I present the steps necessary to run the PCBCAT for a simple cooling problem
involving laminar and turbulent flow past a single heated block in a channel. This tutorial exercise
demonstrates

• the basic components of a PCBCAT model
• the structure of the user input file
• how to run the PCBCAT tools
• the files generated by the PCBCAT tools
• how to switch between laminar and turbulent flow models

2.1.1 The Physical Model

The physical situation is depicted by the sketches in Figure 2.1 and Figure 2.2. Fluid enters the
domain through the y-z plane at x = 0 and exits through the y-z plane at x = 30 cm. I use the
compass point convention to refer to directions and faces of the domain (see Section 3.2.1). Imagine
a compass lying in the x-y plane, and oriented such that north is in the direction of increasing y.
Then east is in the direction of increasing x. In the plan view representation in Figure 2.2, the

3
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inlet outlet

x
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U, T1

Figure 2.1: Schematic of the physical problem for tutorial exercise number 1.
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Figure 2.2: Plan view showing the block location for tutorial exercise number 1.

far right boundary is the east face of the domain, and the far left boundary is the west face of the
domain. The top and bottom boundaries of the plan view are the north and south faces. This
naming convention can be extended to the three-dimensional domain in Figure 2.1. The x-y planes
at z = 0 and z = zmax are called the “up” and “down” faces since up and down are directions like
north, south, east and west. Using this direction naming convention the domain can be described
as having an inlet on the west face, an outlet on the east face, and a block attached to the “down”
face.

2.1.2 The block1 Input File

A block is the simplest model of an electronic device. Although you could build your own input file
from scratch I suggest that you start with the file block1, which is found in the tutorial directory.
You will not need to change anything in this file to run the first exercise. Before running the tools,
however, look at the contents of the block1 file with a text editor such as vi, emacs or the Sun
text editor. For your convenience the block1 file is also presented in Figure 2.3. The file contains
blank lines and comment statements. A PCBCAT comment begins with the # character, and can
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be located anywhere in the input file. The preprocessor ignores all text from the # character to the
end of the line. Blank lines, like comments, can be added anywhere to enhance readability. Lines
that are not comments or blank must be valid PCBCAT commands.

All PCBCAT commands begin with keywords, which must be in all capital letters. Examples of
keywords in Figure 2.3 are FILE_NAME, DOMAIN, CV_SIZE and COOLANT. Chapter 5 gives a complete
description of each PCBCAT command. Following the keyword is a sequence of arguments that sup-
ply information necessary for the preprocessor to execute the corresponding command. Arguments
are either character strings or numbers. Some commands have no arguments, e.g., INTERACTIVE
and VERBOSE, while other commands have one or more arguments. For example, the FILE_NAME
command has one string argument, which is the base name of output files created for this model.
The DOMAIN command has three numerical arguments, xlen, ylen, and zlen, which are the physical
lengths of the domain in the x, y and z directions.

The commands in Figure 2.3 will now be described in the order of their appearance. The first
command, FILE_NAME, specifies a text string, “block1_”, as the base name from which the PCBCAT
will construct output file names1. The DOMAIN command sets the extent of the overall calculation
domain. It has three arguments which are floating point values specifying the x, y and z dimensions
of the domain in meters. The CV_SIZE command sets the maximum allowable size of the control
volumes in each coordinate direction. These tolerances, and the geometric data for objects in the
domain are all that is needed to specify the computational grid.

The next group of preprocessor commands set parameters that affect the overall model. The
COOLANT command tells the preprocessor that the fluid in the domain has the thermophysical prop-
erties of air, as defined in the material database. The ITER_CONTROL command sets the convergence
tolerance and the maximum number of iterations for the DA and 3D models. The “medium” con-
vergence tolerance defines several numerical tolerances on residuals of the linear equations that are
solved in the analysis programs (see section 3.5.2). The FLOW_REGIME command specifies whether
or not turbulence model is to be used. When the argument is “laminar” the effective viscosity and
diffusivity are equal to their molecular values. When the argument is “turbulent”, the turbulence
model described in [6] is used.

The FLOW_FIELD command determines whether a uniform flow field or the depth-averaged flow
field is to be used in solution to the 3D energy equation. A uniform flow field is not meaningful
in all cases. In this simple example the results of solving the energy equation with a uniform flow
field could be compared with the results of using the DA flow field. The “depth_ave” argument
means that the DA flow field will be calculated. Finally, the FLOW_PROFILE command is used to
select the z-direction variation of the velocities. Choosing “fully_dev” for the argument of the
FLOW_PROFILE command means that the vertical profiles will be computed with the fully-developed
profile consistent with the argument of the FLOW_REGIME command.

The INLET command has several parameters. The first is “west”, a text string that specifies
the face on which the inlet is located. The next four arguments of the INLET command give the
location of the inlet on the west face. For this simple example the inlet covers the entire face. It’s
possible, as shown in the next example, that inlets and outlets cover only part of a domain face. The
last four arguments of the INLET command assign the inlet temperature (10◦C), and inlet velocity
components, (vx, vy, vz) = (1.131, 0, 0).

1The underscore character appears at the end of “block1” because the grid size parameters are appended to
the argument of the FILE NAME command to create the file name. Ending the FILE NAME argument with a numeric
character might result in a potentially misleading name of the file in the operating system. Suppose that the analysis
was performed on a 133 × 23 grid and the filename was specified with “FILENAME block1”. Then one of the output
files created by the PCBCAT codes would be named block133x23.DAout, which would appear to contain the results
of a calculation on a 133× 23 grid, not a 133× 23 grid.
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# PCBCAT example problem "block1": flow past a single heated block.

# Set the base name used to construct output file names

FILE_NAME block1_

# Define a 30 x 20 x 4 (cm) computational domain

DOMAIN 0.30 0.20 0.04 # dimensions in meters

# Set the largest allowable control volume sizes

CV_SIZE 0.01 0.01 0.002

# Global parameters that control the solution

COOLANT air

ITER_CONTROL medium 50

FLOW_REGIME turbulent

FLOW_FIELD depthAve

FLOW_PROFILE fully_dev

# The inlet and outlet cover the entire east and west boundaries

INLET west 0.0 0.20 0.0 0.04 10.0 1.1310 0.0 0.0

OUTLET east 0.0 0.20 0.0 0.04

# North, South, Up and Down boundaries are adiabatic walls

BOUND north fluxBC 0.0 wall

BOUND south fluxBC 0.0 wall

BOUND up fluxBC 0.0 wall

BOUND down fluxBC 0.0 wall

# Locate a 5cm x 5cm x 1cm aluminum block in the center of the duct

BLOCK heater aluminum 2.0 1 0.125 0.05 0.075 0.05 0.01

# Probe locations are scaled to overall domain dimensions

PROBE relative 0.50 0.5 0.125

PROBE relative 0.75 0.5 0.5

Figure 2.3: PCBCAT input file for cooling of a single block in a channel.
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Boundary conditions are prescribed with the BOUND command. The first argument specifies
the face, the second and third arguments define the thermal boundary conditions, and the fourth
argument prescribes the hydrodynamic boundary condition. Since the east and west boundaries
are already defined as the inlet and outlet, respectively, only the remaining four domain boundaries
need to be treated. All four are adiabatic, as indicated by the “fluxBC 0.0” values of the second
and third arguments. The “wall” value of the fourth argument selects a solid boundary for which
no-slip hydrodynamic boundary conditions will be applied.

The heated block is specified with the BLOCK command. The arguments specify the block ma-
terial properties (“aluminum”), its total power dissipation, (“2.0” Watts), it’s heating status (“1”
indicating that the heater is on), and the location and size of the block. The heating status is re-
dundant with the total power dissipation, in apparent violation of the principle that the user should
have to specify the absolute minimum amount of information necessary. In this case the design
principle was relaxed so that a user could turn off a heating element without having to reset its
nominal power setting.

The last two lines of the input file define two probes via the PROBE command. The first argument
of the PROBE command is either “relative” (as in Figure 2.3) or “absolute”. A “relative” probe
position means that the preprocessor will interpret the last three arguments as fractions of the x, y
and z dimensions of the domain. For example the first probe in Figure 2.3 is located in the geometric
center of the x-y plane and one eighth of the z-direction domain length from the bottom plane. The
alternative is to locate the probe by the absolute coordinate position, in meters.

2.1.3 Running the PCBCAT

To run the PCBCAT with the block1 model type

cp $PCBCATDIR/example/block1 .
runcat block1

Do not skip the period at the end of the cp command shown above.
The computer will hesitate for a minute or so (depending on the speed of your workstation)

while the preprocessor and analysis codes are running. Figure 2.4 shows the typical screen output
for running the block1 model.

2.1.4 Output Files Generated by the PCBCAT tools

The PCBCAT tools create plain text and binary files. For now I will only be concerned with the
plain text output. Refer to Chapter 4 for more information on both types of files.

The plain output of the depth-averaged model is in file block1_33x23.DAout

2.2 Cooling an Array of Blocks

This exercise involves analyzing laminar and turbulent flow past an array of four heated blocks in a
channel. This is a small variation on the preceding exercise. This exercise demonstrates how to

• locate multiple blocks on a board
• selectively turn heat generation of a block on or off
• define inflow and outflow boundaries that do not cover an entire face of the domain.
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euler: runcat block1 example

PCBCAT preprocessor successfully parsed block1 input file

DA model finished in 10.833333 seconds

Min and max field values are 10.000000 and 80.237785

3D model finished in 8.550000 seconds

euler: ls block1_*

block1_.dav block1_33x23.DAout block1_33x23x10.geom

block1_.prout block1_33x23x10.3Dout block1_33x23x10.hdf

euler:

Figure 2.4: Screen output from the PCBCAT while running the model described in the “block1” user
input file. The execution times will depend on the speed of the computer. Note that the command
line prompt (for this computer) is “euler:”. Your command line prompt will be different.

The steps are

• runcat tutorial/block4

• edit block4 to turn off one of the heaters
• copy block4 to block4r
• restrict the inlet



Chapter 3

Building Models with the
PCBCAT

This Chapter provides information on how to create PCBCAT models. In this context a model
consists of the list of PCBCAT keywords and arguments that specify features of a physical situation,
and that control the algorithms in the PCBCAT codes. Whereas the information in Chapter 5 is
organized according to each PCBCAT command, the information in this Chapter is organized by
the ways in which commands might interact. Specifically this Chapter describes the structure of
the input file, the conventions used in defining model features, the hierarchy in which flow field
descriptions are organized, and the general issues concerning control of the analysis programs. This
chapter is intended to be a general reference. Its subsections can be read in any order.

3.1 Organization of Model Information

3.1.1 Structure of the Input File

There are very few constraints on the structure of the input file. It must be a plain text file. Each
line must be either (1) blank, (2) a comment statement, or (3) a valid keyword followed by valid
arguments for that keyword.

The user input file can contain any number of blank lines and comment statements. PCBCAT
comments begin with the # character, and can be located anywhere in the input file. The preprocessor
ignores all text from the # character to the end of the line. Blank lines, like comments, can be added
anywhere to enhance readability. Lines that are not comments or blank must be valid PCBCAT
commands.

Commands always begin with a keyword which is always in all captial letters. You can think
of the keywords as the command name. Keywords can be specified in nearly any order. Some
keywords toggle state changes in the preprocessor. These keywords affect the way that arguments
of subsequent keywords are interpreted by the preprocessor.

The DOMAIN command is mandatory and it can only be preceded in the user input file by com-
mands that do not refer to the dimensions of the domain. Any command that locates an object
(e.g. BLOCK, DEVICE, INLET, and PATCH) must follow the DOMAIN command because the preprocessor
checks to make sure each object fits into the domain. If your user input file contains one of these
commands before the DOMAIN command the preprocessor will print an error message and stop.

9



10 CHAPTER 3. BUILDING MODELS WITH THE PCBCAT

x

y

east

north

south

west

south

up

east

x

z y

Compass-point directions in 2D Compass-point directions in 3D

Figure 3.1: Face and direction naming convention used to identify faces of objects in the domain.

Although, with the exception of state-changing commands, the PCBCAT commands in the user
input file can be in any order, enforcing a little structure will help reading and debugging the input
files. We recommend that you write your input files using the style of user input files given in
the Tutorial and Examples chapters. The beginning of the input file should contain the domain
size, coolant type and parameters that control the numerical solution. Following that the boundary
conditions, including inflow and outflow boundaries, should be specified. The rest of the user input
file should list the BLOCKs, DEVICEs, etc., that are located on the board. Regardless of whether you
follow this style, choosing a style and sticking with it will make your use of the PCBCAT more
trouble free. Documentation of the model with comment statements is also highly recommended.

3.2 Specifying Physical Features

3.2.1 Face Naming Conventions

In order to apply boundary conditions or to locate objects in the domain a convention for indicating
coordinate directions is needed. The PCBCAT commands refer to directions with the compass point
naming convention, which is illustrated in Figure 3.1. First consider the two-dimensional domain
depicted in the left half of Figure 3.1. The “east” and “west” faces correspond to the maximum
and minimum values of x, respectively. Similarly the “north” and “south” faces correspond to the
maximum and minimum values of y, respectively. This convention extends to three dimensions as
shown in the right half of Figure 3.1. The “up” and “down” faces correspond to the maximum and
minimum values of z, respectively.

3.2.2 Domain Dimensions

The calculation domain is always a three-dimensional, brick-shaped region of space. The size of the
domain is given in meters with the DOMAIN command. The x, y, and z axes form a right-handed
coordinate system. The face-naming conventions (see Section 3.2.1) are defined in terms of the
coordinate directions so it is important that the orientation of the calculation domain be consistent
with the placement and orientation of boundary conditions, DEVICE objects, etc.
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Command Description
BOUND specify the boundary condition on an entire face of the domain
INLET locate the inlet and specify inlet velocity and temperature
OUTLET locate the outlet
PATCH locate a boundary condition on a surface of the domain

Table 3.1: PCBCAT commands used to specify boundary conditions.

B.C. Type Applies to
DIRICHLET thermal boundary conditions only
FLUXBC thermal boundary conditions only
SYMMETRY hydrodynamic or thermal boundary conditions
WALL hydrodynamic boundary conditions only

Table 3.2: Boundary condition type specifiers for use with commands in Table 3.1.

3.2.3 Boundary Conditions

There are three common mathematical boundary conditions: Dirichlet, Neumann and mixed. These
may be independently applied to each of the field variables on each surface of the calculation domain.
The temperature field will be used for purposes of demonstration. Dirichlet conditions prescribe a
fixed value on the boundary. For example the temperature at the inlet may be held at 15◦C.
Neumann conditions involve a specified slope in the direction normal to the boundary. A zero slope
in the temperature profile corresponds to an insulated boundary. A nonzero slope corresponds to a
prescribed heat flux. Mixed boundary conditions involve a relationship between the slope and the
value at the interface. A convective thermal boundary is an example of a mixed boundary condition.
The current version of the PCBCAT does not provide a mechanism for specifying mixed boundary
conditions.

Boundary conditions are applied with one of the commands in Table 3.1. The BOUND command
applies a boundary condition to an entire face of the domain. The INLET, OUTLET, and PATCH
commands apply boundary conditions on a rectangular subregion on any one of the six bounding
surfaces of the domain. The BOUND and PATCH commands specify the thermal and hydrodynamic
boundary conditions on solid walls using the arguments in Table 3.2. The thermal and hydrodynamic
boundary conditions are specified with separate parameters. Thermal boundary conditions may be
either DIRICHLET, FLUXBC or SYMMETRY. Hydrodynamic boundary conditions may be either WALL or
SYMMETRY. If you wish to specify flow across a boundary segment you must use either the INLET or
the OUTLET commands.

3.2.4 Inlets and Outlets

Flow enters the domain at an inlet, and leaves at an outlet. In the current version of the PCBCAT
only one inlet and one outlet may be specified for a given problem.

An outlet boundary is specified with the OUTLET command. The arguments of the OUTLET
command are the position of the four corners of the outlet surface. In the PCBCAT analysis codes
zero-gradient boundary conditions are applied to all dependent variables on the outlet surface. The
magnitude of the normal component outlet velocity is also constrained by an overall mass balance.
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At each outer iteration of the DA model∑
inlet

(
�V · n̂A

)
=

∑
outlet

(
�V · n̂A

)

where n̂ is the outward normal to the surface area, A.
In the 3D model the outlet velocity depends on how the flow field in the domain is computed

(cf. section 3.4). The most basic characteristic of the flow field is controlled by the FLOW_FIELD
command. If the flow field is uniform (FLOW_FIELD uniform) the velocity vector at the outlet
is uniform and equal to the velocity vector at the inlet. If the flow field is computed with the
depth-averaged model (FLOW_FIELD Depth_ave the velocity profile over the inlet surface if further
determined by the arguments of the FLOW_PROFILE and FLOW_REGIME commands.

An inlet boundary is specified with the INLET command. In addition to the position of the
inlet surface, the arguments of the INLET command define the velocity and temperature of the fluid
at the inlet. Note that all three components of the inlet velocity vector must be prescribed at an
inlet surface. Regardless of the arguments of the FLOW_FIELD, FLOW_PROFILE, and FLOW_REGIME
commands, the velocity profile over the inlet surface is uniform. In other words the inlet velocity
components over the entire inlet surface are equal to the velocity components specified with the
INLET command.

3.2.5 Objects in the Domain

All physical features in the calculation domain are specified via their name, geometric dimensions,
and additional properties unique to each object type. There are four types of objects: block, device,
patch and probe. Each object types correspond to PCBCAT commands of the same name.

3.2.6 Blocks

Blocks are brick-shaped objects that may or may not have an internal volumetric heat source. Blocks
are used to simulate simplistic electronic devices or solid obstacles that deflect the coolant. Blocks
are always attached to the “down” surface of the domain. A block is added to the domain with the
BLOCK keyword.

3.2.7 Devices

Devices are models of electronic components. Adding an electronic device to the calculation domain
requires that the geometric dimensions, material properties, and rated power of the device is already
defined in the device database. See Chapter 7 for instructions on creating entries in the device
database. The DEVICE keyword selects a device from the database and places it in the domain.
Devices are always attached to the “down” surface of the domain.

Locating a device in the domain requires choosing it by name, locating it on the x-y plane of
the PCB, and specifying its orientation. Entries in the device database are defined in terms of an
internal Cartesian coordinate system, which is represented by the (xd, yd) axes in Figure 3.2. The
orientation of a device is prescribed by the direction in which its internal x-axis points. Thus, a
device with an “east” orientation has its internal x-direction aligned with the x-direction of the
coordinate system that defines the printed circuit board. A device with a “west” orientation is
rotated 180 degrees so that its internal x-direction is aligned with the negative x-direction of the
PCB. Devices with “north” and “south” orientations are rotated 90 and 270 degrees, respectively,
as shown in Figure 3.2. The orientation of a device is chosen with the orientation argument of
the DEVICE keyword. The orientation argument is mandatory, even for east-oriented devices.
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Figure 3.2: Allowable orientations of devices in the calculation domain.

3.2.8 Patches

Patch objects provide a flexible approach to applying boundary conditions. Patches are attached to
one of the six bounding surfaces of the calculation domain. There is no way to specify an internal,
heat-generating patch.

3.2.9 Probes

A probe is a passive object used in selectively reporting the velocity and temperature at a point.
A probe does not affect the solution, and it may be located anywhere in the domain. There is no
internal limit on the number of probes specified by the user.

After the 3D code completes the solution to the temperature field, the velocity and temperature
at each probe location is computed by interpolating between the velocity and temperature values at
the nearest grid points. The location of a probe is specified with the PROBE command.

3.3 Coolant and Material Properties

Thermophysical properties of all materials, fluid and solid, are specified in a user-maintained material
database. The user does not enter material property data directly in the user input file. Instead
the user specifies a material name, which corresponds to an entry in the material database. For
example, for an air-cooled PCB the input file would contain the command

COOLANT air

The material database must contain an entry specifying the thermophysical properties of air. The
default database contains the entry

air 1.2047 1004.0 25.63e-3 1.817e-5
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Figure 3.3: Two dimensional (elevation view) representation of the velocity profile used in the
PCBCAT model. The shaded boxes labeled “device” are electronic components attached to the
bottom surface of the domain.

where the first entry is the name of the material, “air”, and the numerical entries are, respectively
the density, specific heat, thermal conductivity, and viscosity of the air. If the preprocessor cannot
match the material name in the input file with a material in the database it prints an error message
and aborts the analysis. Comparison of material names is not case sensitive.

For additional information on the material database refer to Chapter 8.

3.4 Specifying Flow Fields

The user chooses the type of velocity profile with a combination of three keywords:

• FLOW_FIELD

• FLOW_PROFILE

• FLOW_REGIME

The FLOW_FIELD keyword determines how the flow varies in the x-y plane. Choices are “no_flow”,
for no flow anywhere in the domain, “uniform”, for a uniform (constant) velocity vector everywhere
in the domain, and “depth_ave”, for a solution to the depth-averaged velocity field in the x-y plane.

The FLOW_PROFILE determines how the velocity field varies in the z direction, i.e., the direction
normal to the plane of the PCB. This command only makes sense if the flow field is computed by
the depth-averaged model.

For any circuit board, define the fluid gap, hg as the distance from the top of the tallest electronic
component to the lid of the fluid layer. This fluid gap is depicted in Figure 3.3. We then arbitrarily
assert that all the flow is confined to this gap. This is at least qualitatively consistent with ex-
perimental and numerical results obtained by other researchers, see, e.g. [2, 4]. The assumption of
a uniform gap for the flow is used only in the 3D model. The DA model includes the changes in
bottom surface topology. The velocity field satisfying the depth-averaged continuity and momentum
equations reflects the blockage effects of electronic devices and other obstacles.

The FLOW_REGIME determines whether a laminar or turbulent flow model is used. This in turn
determines the effective viscosity and the shape of the profile.
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3.4.1 Fully-Developed Laminar Velocity Profiles

3.4.2 Fully-Developed Turbulent Velocity Profiles

3.5 Controlling the Solution

The PCBCAT consist of numerical models of momentum, mass and energy conservation. These
conservation principles are approximated by the control volume finite difference method [5]. The
user can control the accuracy of the numerical approximation by adjusting the grid size (resolution)
and the tolerance on the iterative solution procedure. The grid and convergence tolerance interact
in affecting the overall behavior of the solution. In this section these issues are discussed and a
strategy for obtaining efficient and reliable solutions is presented.

In general the time to reach a solution will increase as the grid resolution increases and as the
convergence tolerance is tightened.

The amount of memory (RAM) needed to solve a given problem increases as the grid resolution
increases. Adding objects to the domain causes a much smaller increase in memory requirements
than does increasing the grid resolution. There is no limit on size of the grid or the number of
objects in a given problem so long as the computer running the model has sufficient memory. If you
are unable to complete an analyis because your computer does not have adequate memory you will
have to decrease the grid resolution by increasing the arguments of the CV_SIZE command.

3.5.1 Grid Resolution

The number of control volumes in the domain is determined by the overall extent of the domain,
the number of objects and their placement in the domain, and the parameters set in the CV_SIZE
command. For a given problem only the CV_SIZE parameters can be arbitrarily adjusted, but it is
important to recognize the other factors that affect the grid used in the analysis.

PCBCAT commands are used to locate objects in the calculation domain without direct reference
to the grid system used in the analysis.

After the preprocessor reads the commands from the input file it assembles three lists from
edges of all objects in the domain. One list is constructed for each coordinate system. Each list
is sorted and redundant edges — those within the tolerances specified in the DISTOL command —
are eliminated. The result is the three edge lists that are required to locate all objects to within
the user-specified tolerance. These edges form a relatively coarse three-dimensional grid called the
object grid. Figure 3.4 shows the projection of an object grid on the “down” face of the domain.
The parameters in the CV_SIZE command are used to subdivide the object grid further into what
is called the analysis grid. The analysis grid is consistent with the object grid in that it has control
volume faces that are aligned with the edges of the objects in the domain.

This grid definition procedure has important consequences for PCBCAT model development. If
you specify sufficiently large tolerances with the CV_SIZE command the analysis grid and the object
grid will be identical. This is an advantage because the finite volume method used in the analysis
will satisfy the mass, momentum and energy conservation (to within user tolerance) even on the
coarsest grids. Thus, during the early phase of model development the goal in setting the grid size
is to make it coarse enough that the execution time will be short.

As you refine the grid the number of control volumes will not necessarily increase in proportion
to the reduction in the CV_SIZE parameters. This is especially true for complex models consisting of
many physical objects because the object grid is unlikely to have uniform spacing. The representative
object grid in Figure 3.4 shows that whenever objects are nearly, but not exactly aligned, the object
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Figure 3.4: Object edges form an object grid. This figure shows a two-dimensional grid defined by
five arbitrary objects (shaded).

grid will have closely spaced grid lines. In this situation, halving the CV_SIZE parameters will not
necessarily double the number of analysis grid lines.

For a given problem, the domain size is set by the dimensions of the printed circuit board you are
trying to model. The PCBCAT analysis grid size depends on these dimensions and the arguments
of the CV_SIZE command. For two problems of different physical size, the same settings in the
CV_SIZE command will result in different numbers of control volumes. In other words the optimal
grid tolerances will not be universal for problems with significantly different physical scales.

3.5.2 Convergence

The PCBCAT models involve solution of large sets of linearized algebraic equations. These equa-
tions are derived from the control-volume finite-difference approximation to the depth-averaged flow
equations and the three-dimensional energy conservation equation [6].

In the depth-averaged model the SIMPLER algorithm [5] is used to enforce mass conservation
while the momentum and continuity equations are solved sequentially. The linear equations are
solved iteratively: from an initial guess the solution is updated until the equations are solved to
within a user-specified tolerance. In the PCBCAT these tolerances are chosen by a specifying
“loose”, “medium”, or “tight” as the first argument of the ITER_CONTROL command. To understand
the meaning of these terms it is first necessary to introduce some terminology.

Convergence of the u, v and p equations.

The depth-averaged flow model solves equations for the depth-averaged velocity components, ū and
v̄, and the depth-averaged pressure, p̄. These field variables are defined on a staggered, finite-
volume grid. Each control volume roughly1 corresponds to a discrete value of each of ū, v̄, and p̄.

1The pressure boundary conditions and the staggered control volumes lead to slight disparities in the number of
unknown velocities on the boundaries.
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The SIMPLER algorithm involves sequentially solving the equations for each of the discrete fields.
The set of equations for any one of these discrete fields can be written

Ax = b (3.1)

where A is a matrix of coefficients, x is a vector of unknowns, and b is a vector of source terms. The
x vector is obtained by writing the set of nodal values for one of the fields, say ū, in order from one
corner of the domain to the opposite corner. The finite-volume method allows the partial differential
equation for the conservation of the x variable to be approximated by the set of linearized equa-
tions 3.1. One step in the numerical approximation, therefore, involves converting the continuous
problem into a discrete problem amenable to solution by digital computer. This step is done for you
by the PCBCAT analysis codes. Another step involves solving this linear equation set. This second
step is controlled by the parameters of the ITER_CONTROL command.

An iterative solution involves constructing a sequence of approximations, x(k) : k = 1, 2, . . . ,
which approaches the solution to equation 3.1 as k increases. Here k is the iteration counter, and
x(k) is understood to be the approximation to the x vector at iteration k, not x raised to the kth

power. Even for very large values of k we do not expect equation 3.1 to be solved exactly. The
closeness of the kth iterate to the true solution can be measured by the size of the residual vector

r(k) = b−Ax(k) (3.2)

Only if x(k) is exactly equal to the true solution of equation 3.1 then r(k) will be identically zero. In
practice r(k) will decrease at the iterations procede. The tolerance specified with the ITER_CONTROL
command determines when the residual is small enough.

To measure the size of the residual we use the L2 norm

‖r(k)‖2 =
n∑

i=1

r
(k)
i

where n is the number of internal nodes in the calculation domain. If A is a well-conditioned matrix,
the approximate solution, x(k) will be close to the true solution when the normalized residual

ηk =
‖r(k)‖2

‖b(k)‖2

(3.3)

is small [3].
The iterations in the depth-averaged model are repeated until ηk

u < ε, ηk
v < ε, and the mass

correction tolerance (see following section) is met. The first argument of the ITER_CONTROL command
corresponds to the ε values listed in Table 3.3. The same value of ε is applied to the ηk

u and ηk
v .

A separate convergence tolerance is not applied to the discrete p equation because the the mass
correction tolerance is a more sensitive indicator of convergence than the normalized residual of the
p equation. In any case the ηk

p values are printed as part of the convergence history in the “DAout”
file (see Section 4.3).

Convergence of mass corrections.

The depth-averaged momentum and mass conservation equations are coupled, non-linear partial
differential equations. The SIMPLER algorithm [5] is a robust procedure for resolving the coupling
in this set of equations. In SIMPLER, the discrete equations for ū, v̄, and p̄ are solved sequentially.
First the equation for p̄ is solved while the values of ū and v̄ are temporarily held constant. Then the
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ε Energy Balance
(Watt)

Loose 5× 10−3 0.5
Medium 5× 10−5 0.05
Tight 5× 10−7 0.025

Table 3.3: Convergence tolerances obtained with the ITER CONTROL command.

ū equation is solved with v̄ and p̄ held constant. Next the v̄ equation is solved with constant ū and
p̄. Before the p̄− ū− v̄ sequence is repeated the velocity field is corrected so that mass conservation
holds for flow into and out of every control volume in the domain. Consult the book by Patankar [5]
for more details.

The corrections to the velocity field are obtained by solving an auxiliary equation for a quantity
called the pressure correction. Before the pressure correction equation is solved, there are errors
in local mass conservation which correspond to local mass sources and sinks. The largest mass
source/sink is an indication of how poorly the continuity equation is satisfied. Note that there
are no real mass sources or sinks in the velocity field. These source/sink terms are an artifact of
the iterative solution, and the size of the sources/sinks are an indication of how far the iterations
are from convergence. Normalizing the maximum mass source/sink by the largest cell-based mass
flux gives a reliable and relatively problem-independent indication of convergence for the continuity
equation.

The absolute value of the maximum, normalized mass source/sink is given the symbol Smax.
Because Smax is normalized the same magnitude of the tolerance parameter, ε, from Table 3.3 is
also used to determine convergence of the mass corrections. In other words, the local continuity
equation is converged when Smax < ε.

Convergence of the T equations.

The three-dimensional energy equation is a linear partial differential equation. The 3D code solves
the discrete approximation to this PDE obtained with the control-volume finite-difference method.
The equations for the nodal temperatures can be put into the form of equation 3.1, and convergence
of the iterative solution to this set of equations follows the same principles discussed in the preceding
sections. The 3D code iterates until ηk

T < ε where the value of ε depends on the argument of the
ITER_CONTROL command as indicated by Table 3.3.

Convergence of the energy balance.

The control-volume finite-difference method conserves energy. When the three-dimensional energy
equation has converged a global energy balance should also hold. This energy balance is calculated
as another indication of the convergence of the iterative calculations. The energy balance tolerances
used by the PCBCAT are listed in Table 3.3. Note that the tolerance on the energy balance is not
normalized.

3.5.3 Recommended Strategy for Model Development

As you gain familiarity with the PCBCAT you will probably develop your own technique for de-
veloping models. Here is recommended a strategy for model development that will help you build
models efficiently and with greater confidence in the final results.
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In general do not expect to obtain reliable results on a new problem from just one run of the
PCBCAT. A good strategy is to start with a coarse grid and refine it systematically. The PCBCAT
is designed to make grid refinement as easy as possible.

Since the execution time increases nonlinearly with the grid size, it makes sense to debug your
model with the coarsest grid that is feasible. Regardless of the grid resolution parameters specified
in the CV_SIZE command, the PCBCAT will use a grid that is sufficient to locate all physical objects
at the exact locations you request.

Before you make any grid refinements it makes sense to verify that your model not only converges,
but that it is consistent with your physical intuition. Here are some questions to ask during this
early phase of model development.

• Have the mass corrections (Smax) decreased significantly during solution of the depth-averaged
flow equations?

• Do the velocities at the first probe location oscillate? If so, do the Smax values oscillate?
Oscillations of more than one or two percent indicate potential model problems.

• Is an energy balance obtained at the end of the calculation?
• Are the flow velocities consistent with the flow regime (laminar or turbulent) specified with
the FLOW_REGIME command?

• Are the device temperatures reasonable, given what you know about the board design and the
range of flow rates appropriate for this design?

Once these questions are answered to your satisfaction you should begin grid refinement. At this
stage all the physical features of the model are fixed, only grid tolerance and solution convergence
parameters will be altered in the grid refinement stage.

The goal of grid refinement is to solve the problem on a sequence of finer grids until the compu-
tational grid itself no longer has an effect on the results. When this occurs the solution is said to be
grid independent. Figure 3.5 is a sample worksheet that can help organize a grid refinement study.
You may want to develop your own worksheet using Figure 3.5 as a model.

Ideally you will only need to change the grid tolerance parameters with the CV_SIZE command.
In practice, you may also need to to loosen the convergence tolerance (cf. ITER_CONTROL command)
in order to maintain acceptable solution times for the finest grids. The grid refinement worksheet
has columns for the three grid tolerances, xcv, ycv, and zcv along with a column for the convergence
tolerance. These four values are specified before the simulation is run.

After each run, fill in the remaining columns of the grid worksheet. The grid size parameters, L1,
m1, and n1 are determined by the geometric complexity of the problem along with the tolerances
specified with the CV_SIZE command. As discussed in section 3.5.1, decreasing any one of the grid
tolerances by a factor of two will not necessarily result in a corresponding doubling of the number
of control volumes in that direction.

Record the iterations necessary to obtain convergence for both the DA and 3D models. Be
careful to note whether the calculations were stopped because the convergence tolerances were met,
or whether the maximum number of iterations specified with the ITER_CONTROL parameter were
exceeded. If the upper limit of iterations was reached before convergence you should increase this
limit or loosen the convergence tolerance. If the solutions do not converge after many, say 500 to
1000 iterations, then there is probably an error in your model.

The remaining columns of the worksheet are for recording the energy balance, and junction
temperatures for devices in the domain. Extra columns are provided for any other variables you
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Grid Tolerance Grid Size

L1 m1 n1
Convergence

Tolerance
Iterations Energy
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Tj,1 Tj,2

xcv ycv zcv DA 3D

Figure 3.5: Sample worksheet used to determine when a grid-independent solution is obtained..

wish to monitor. The energy balance should always converge to a small fraction of the total energy
input for the problem. As you refine the grid the number of iterations needed to reach an acceptable
energy balance may increase.

The calculations can be said to have reached grid independence when the junction temperatures
(along with other monitored variables you have selected) do not change when the grid is significantly
refined. You should at least attempt to increase the number of control volumes (L1, m1, and n1) by
a factor of 2 or 4 during the grid refinement. This goal may not be practical if your computer has
limited memory or is too slow.



Chapter 4

Output from the PCBCAT

This chapter gives information on the output files created by the PCBCAT. All of the numerical
results are saved in plain text files or binary files. Plain text files are meant to be read by the user.
They contain summary information useful for further engineering analysis, such as calculation of
heat transfer coefficients. Binary files contain field data meant either to be read by the 3D energy
equation model or by visualization software.

Throughout this chapter excerpts from PCBCAT output file will be examined. These file come
from the example problems in the tutorial Chapter. You may want to refer to those example
problems for additional information.

4.1 File Formats and File Names

Each run of the PCBCAT creates several files. For these files, the type of file as well as the physical
problem it relates to can be deduced from the file extension according to the convention summarized
in Table 4.1.

The name of a typical PCBCAT output file looks like

basename︸ ︷︷ ︸
FILE NAME

45x35x25︸ ︷︷ ︸
grid

.3Dout︸ ︷︷ ︸
ext.

When the PCBCAT creates a new file it uses the string supplied by the FILE_NAME command as a
base. The complete file name is constructed by adding characters to indicate the grid size and the
kind of data contained in the file.

The grid size is encoded in a substring of the form “LxM” for depth-averaged output files and
“LxMxN” for three-dimensional output files. The L, M, and N parameters are the size of the grid in
the x, y, and z directions, respectively. In the preceding example, L = 45, M = 35 and N = 25.
The content of the file is indicated by the file extension according to the convention summarized in
Table 4.1.

Consider the effect of including the following lines in the PCBCAT input file

FILE_NAME motherBoard

DOMAIN 0.28 0.18 0.0254

CV_SIZE 0.005 0.005 0.001

The text output from the DA model will be stored in the file called motherBoard56x36.DAout and
the text output of the 3D model will be stored in motherBoard56x36x26.3Dout.

21
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Extension File type and contents
.3Dout text file summary of results from the 3D energy equation model
.DAout text file summary of results from the depth-averaged flow model
.cntl temporary text file read by 3D and DA models
.dav PCBCAT binary file containing the depth-averaged velocity field
.geom text file of geometry data for input to AVS postprocessing
.hdf Hierarchical Data Format (HDF) binary file of field data

Table 4.1: Meaning of file name extensions for files created during a run of the PCBCAT.

The FILE_NAME command is optional. If there is no FILE_NAME command in the user input file
the base name “pcbcat” is used for all output files.

While the base name and grid refer to a specific run of the PCBCAT, the file extension indicates
the type of data contained in the file. The .cntl extension is reserved for the temporary file,
pcbcat.cntl, that is created by the preprocessor. This file is a translation of the user input file
into a form suitable for input to the DA and 3D analysis codes. Under normal operation the runcat,
runda, and rune scripts delete the pcbcat.cntl file after the analysis codes are finished.

The DAout file is a plain text summary of the results from the depth-averaged model. Refer to
Section 4.3 for a detailed description of a typical DAout file.

The dav extension is used for the binary file containing the depth-averaged velocity field. This file
is the mechanism by which the depth-averaged velocity field is transferred to the three-dimensional
energy equation. You will not be able to read the contents of this file, but you will want to save it
until the analysis with the 3D model is complete. Of course, each time the depth-average model is
run a new dav file is created. The 3D code looks for a dav file with the appropriate base name and
grid dimensions. If one is not found the 3D code prints an error message and stops.

The 3Dout file is a plain text summary from the solution to the three-dimensional energy equation.
The contents of this file are described in Section 4.4. The 3D code also creates files with geom and HDF
extensions. The geom file is read by the pick_pcbcat AVS module as described in Section 4.5.1. If
you do not have AVS installed then the geom file is of no use. The HDF file contains the computational
grid and temperature field stored in Hierarchical Data Format (HDF). A variety of visualization
postprocessing packages can read HDF files. Refer to Section 4.5 for more information.

4.2 The PCBCAT Preprocessor

The preprocessor converts the commands in the user input file to a format that is easily read by the
analysis codes. The preprocessor output is always stored in the file pcbcat.cntl (cf. Figure A.2),
which is a plain text file. During normal operation (including error handling) the runcat script
cleans up after itself by deleting the pcbcat.cntl file.

If the user input file contains the VERBOSE command the preprocessor creates an additional
file named fname.prout, where “fname” is the string specified in the FILE_NAME command. The
fname.prout is used for debugging and it will be of little use to the average PCBCAT user.

4.3 Depth-Averaged Model

The DA model creates the fnameLxM.dav and fnameLxM.DAout files. The “L” and “M” in the file
name indicate the size of the grid used in the analysis. The fname.dav file contains the depth-
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Depth-Averaged Computation in Cartesian coordinates

------------------------------------------------------

u-v-p coupling enforced with the SIMPLER algorithm

L1,m1 = 33 23

xLen,yLen,zLen = 0.3000 0.2000 0.0400

rhof,cpf,conductf,muf = 1.20 1004.00 0.0256 1.82e-05

Initial interior velocity field set to:

U = 0 V = 0 W = 0

Figure 4.1: Example of the list of control parameters in the block1 33x23.DAout file.

averaged velocity field stored in binary format for reading by the three-dimensional energy equation
model. Reading and writing binary files is more efficient than reading and writing plain text files.
You will not be able to read the fnameLxM.dav file with a plain text editor.

The fnameLxM.DAout file is a text-only summary of the analysis. The first line of fnameLxM.DAout
lists the name of the file and the time it was created. The rest of fnameMxN.DAout is divided into
major sections, each of which is indicated by a heading and underlining. The first section, an exam-
ple of which is shown in Figure 4.1, lists a summary of the parameters controlling execution. The
number of nodes in the x and y directions is given by the values of L1 and m1. The values of L1
and m1 should be equal to the “L” and “M” in the file name. The physical length the domain in
each coordinate direction is indicated by xLen, yLen, and zLen. These dimensions are in meters
and should correspond exactly to the arguments of the DOMAIN command in the user input file. The
fluid properties are the density, rhof, (kg/m3), specific heat at constant pressure, cpf, (J/kg/K),
the thermal conductivity, conductf (W/M/K), and the dynamic viscosity, muf, (Pa · s). The prop-
erty values should equal the values in the material database for the fluid selected by the COOLANT
command.

The last piece of information in this section indicates the velocity field used as an initial guess
for the solution. The initial velocity field is always zero.

The next section of the fnameLxM.DAout file summarizes the convergence of the flow field calcu-
lations. An excerpt of this section from a sample PCBCAT run is shown in Figure 4.2. Immediately
following the heading is an indicator of the monitored probe position. This probe is either the
first probe specified by the user in the user-input file, or, if no probes are specified, a point in the
geometric center of the domain.

The convergence data is presented in columns of numbers. The first column, labelled iter is
the iteration number for the outer iterations of the SIMPLER algorithm. Each “iter” involves a
solution to the ū, v̄, and p̄ equations, along with solution to the pressure correction equations and
subsequent correction of the velocity field so that local continuity is enforced.

The second column of the iteration history is the value of the Smax parameter discussed in
section 3.5.2. For the results presented in Figure 4.2 the value of Smax is reduced by four orders of
magnitude in 47 iterations. This indicates convergence of the local continuity equation as well as
the pressure correction calculations.
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Convergence History

-------------------

Velocities monitored at probe position:

(xprobe,yprobe) = (0.225000,0.100000)

iter smax Umon Vmon normres[U] normres[V] normres[P]

1 7.66e-01 1.51e+00 -1.91e-02 7.07e-01 2.24e+00 3.02e-02

2 4.37e-01 1.48e+00 -1.79e-02 7.07e-01 2.24e+00 5.00e-02

3 1.17e-01 1.48e+00 -1.57e-02 7.07e-01 2.24e+00 1.79e-01

...
...

...

46 1.15e-04 1.20e+00 -1.35e-02 2.52e-05 4.66e-04 7.26e-07

47 9.44e-05 1.20e+00 -1.35e-02 2.52e-05 4.66e-04 6.07e-07

Figure 4.2: Example of the convergence history in a .DAout file

The Umon and Vmon colunms are the x and y velocity components at the monitored probe location.
For a converged solution these values should become constant. The last three columns are the
normalized residuals of the ū, v̄, and p̄ equations. Refer to section 3.5.2 for a definition of the
normalized residual. The solution has converged when the normalized residual values have been
reduced by several orders of magnitude. The desired degree of residual reduction is specified by
the argument of the ITER_CONTROL command. Refer to section 3.5.2 and Chapter 5 for additional
information.

The last section of the fnameLxM.DAout file presents the overal results of the calculations. This
includes the total mass flow and Reynolds number of the flow through the domain, as well as
information for the user-defined objects in the domain. The Reynolds number is based on the
hydraulic diameter of the calculation domain, which for complicated problems may not be that
meaningful. The Reynolds number based on hydraulic diameter is

Re =
ρŪDh

µ

where Ū is the average velocity, Dh is the hydraulic diameter, and ρ and µ are the fluid properties.
The value of Ū is easily computed from the flow through the inlet. The hydraulic diameter is

Dh =
4A
P

where A is the cross-sectional area of the duct and P is the wetted perimeter. For a complicated
circuit board with a partially obstructed inlet or outlet, the hydraulic diameter may not be the
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Label BC Type
D Dirichlet
F Specified Flux (Neumann)
S Symmetry
I Inlet
O Outlet
W Wall

Table 4.2: One character labels used to indicate the type of boundary condition.

appropriate length scale. The PCBCAT analysis codes deduce the A and P values from heuristic
rules about the location of the inlets and outlets. The value of Re is provided as a convenience to
the user.

The rest of the .DAout file contains information for each of the user-defined objects in the
calculation domain. The objects are either probes, surfaces, blocks or devices.

The probe summary lists the position, velocities and temperatures at the location of the probe.
The (x, y, z) velocity components are (u, v, w), respectively. For the DA model the w velocity
component and the temperature are zero because these values are not computed by the model.

The surface summary is organized by domain face. Only user-defined surfaces are presented.
(The PCBCAT defines internal surfaces as necessary to cover those parts of a domain face that
are not explicitly specified by the user.) For each face, the first column of the summary gives the
surface number, starting with zero and ending with ns − 1, where ns is the number of user-defined
surfaces on that face. The second column is the name given to the surface as the first argument of
the surface-defining command, cf. INLET, OUTLET, or PATCH. The third column is a single character
indicating the type of boundary condition applied at the surface. The relationship between the
boundary condition label and the type is summarized in Table 4.2 The fourth column of the surface
summary is the average surface temperature. If the surface has a Dirichlet boundary condition the
temperature will be that specified by the user. Otherwise it will be the average temperature resulting
from the solution to the energy equation. (In the DA model the wall temperature is always zero,
because the energy equation is not solved.)

The fifth and sixth columns are the average heat flux and the total heat transfer rate for the
surface. If the surface has a Neumann (FluxBC) boundary condition, the heat flux and total heat
transfer rate will be the values specified by the user. Otherwise these values are calculated from the
solution to the energy equation. Note that the overall heat transfer rates for all surfaces on a face
will add up to the corresponding value (for that face) appearing in the global energy balance.

The remaining columns give the location and extent of the surface as defined by its origin and
length in each coordinate direction. Consider the outlet surface located on the east face in Figure 4.3.
This surface has no x-direction extent so its origin (xOrg) and length (xLen) in the x-direction are
both zero. The outlet covers the entire east face which is 20 cm wide and 4 cm high. This corresponds
to y and z origins both equal to zero, a y length of 20, and a z length of 4.

The block summary follows a format very similar to that of the surface summary. The material
properties of the the blockare listed.

NO DEVICE SUMMARY YET
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4.4 Energy Equation Model

The 3D energy equation model creates three files with extensions 3Dout, HDF and geom. The 3Dout
file is a text-only summary of the analysis. The HDF and geom files contain the field and object-based
data designed to be imported into visualization programs.

The temperature field calculated by the 3D energy equation model is stored in fname.HDF in
Hierarchical Data Format (HDF). This format was developed at the University of Illinois and is in
the public domain. Many visualization packages can import HDF files. We have written interactive
modules for the AVS visualization system that allow the user to import the HDF output from
PCBCAT along with the problem description data saved in fname.geom (see section 4.5.1 and
reference [8]). With this system users can render a three-dimensional model of the circuit board,
and using mouse input, interactively query the objects in the domain.

4.5 Viewing the HDF Field Data

The three-dimensional field data is stored in HDF files. With this data you can look at the flow
and temperature fields over the devices on the circuit board. There are several commercial and
public domain visualization systems that can read the HDF files written by the PCBCAT models.
HDF-reading software from three sources, AVS, NCSA and Spyglass, are briefly described below.

4.5.1 AVS

AVS is a software package specifically designed for visualization of scientific data [1]. AVS software is
organized into modules which perform specific data manipulation or rendering tasks. By connecting
modules together the AVS user achieves the desired representation of his/her data.

We have written an AVS module that superimposes the three-dimensional geometry of a PCB-
CAT model onto a rendering of the temperature field data [8]. The pick_pcbcat AVS module reads
the fnameLxMxN.geom and fnameLxMxN.HDF files. The geom file supplies the geometric description
of the PCBCAT objects in the domain. The HDF file contains the computational grid and the field
data used by AVS to render the field. Refer to that paper for more information on using AVS with
the PCBCAT.

4.5.2 NCSA Tools

HDF was invented at the National Center for Supercomputing Applications (NCSA) at the Univer-
sity of Illinois. This group has also written public domain visualization programs for a variety of
computer platforms. The programs can be downloaded by anonymous ftp from ftp.uiuc.edu. The
NCSA tools read the HDF files created by the PCBCAT.

4.5.3 Spyglass Tools

Spyglass, Inc. was formed by some of the original team of programmers from NCSA. Spyglass
sells commercial version of the NCSA tools for the most popular computer platforms. All of these
programs are capable of reading the HDF files created by the PCBCAT.
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Flow Field Summary

------------------

Mass flow through the domain = 1.8167e-03 kg/s

Volumetric flow through the domain = 1.5080e-03 m^3/s

Re based on hydraulic diameter = 833.2

Summary Results for User-Defined Objects

----------------------------------------

Values of the field variables at each probe

-------------------------------------------

i x (cm) y (cm) z (cm) u (cm/s) v (cm/s) w (cm/s) T (C)

0 22.50 10.00 2.00 19.35 -0.23 0.00 0.00

1 15.00 10.00 2.00 21.66 0.05 0.00 0.00

2 7.50 10.00 2.00 18.81 0.23 0.00 0.00

User-defined surfaces on the east face

---------------------------------------

n label BC T q Qeast xOrg xLen yOrg yLen zOrg zLen

(C) (W/cm^2) (W) (cm) (cm) (cm) (cm) (cm) (cm)

0 Outlet O 0.00 0.000 0.00 0.0 0.0 0.0 20.0 0.0 4.0

User-defined surfaces on the west face

---------------------------------------

n label BC T q Qwest xOrg xLen yOrg yLen zOrg zLen

(C) (W/cm^2) (W) (cm) (cm) (cm) (cm) (cm) (cm)

0 inlet I 15.00 0.000 0.00 0.0 0.0 0.0 20.0 0.0 4.0

Summary data for 1 blocks in the domain

-----------------------------------------

Label Qtot Tave rho cp conduct xOrg xLen yOrg yLen zOrg zLen

(W) (C) kg/m^3 J/kg/K W/m/C (cm) (cm) (cm) (cm) (cm) (cm)

heater 2.0 0.00 2770.0 875.0 1.77e+02 12.50 5.00 5.50 5.00 0.00 1.00

DA model finished in 8.000000 seconds

Figure 4.3: Example of the overall summary and results for user-defined objects in the .DAout file





Chapter 5

Command Glossary

This chapter lists the PCBCAT preprocessor commands used to specify printed circuit board models.
The commands can be loosely classified as one of the following types

• Solution and Execution Control
• Domain Specification
• Flow Field
• Object Location
The Solution and Execution Control commands are listed in Table 5.1. These commands either

control the numerical solution procedure or else specify some aspect of how the PCBCAT codes will
run on your particular computer. The Domain Specification commands are listed in Table 5.2. These
commands define the physical lengths and length tolerances in the calculation domain. The Flow
Field commands are listed in Table 5.3. These commands define the fluid properties and specify
how the depth-averaged flow field is to be interpreted in the three-dimensional energy equation
model. The Object Specification commands are listed in Table 5.4. These commands are used to
add physical objects to the calculation domain.

The remainder of this chapter consists of detailed descriptions of each of the commands. The
commands appear in alphabetical order and are described in a standard format. First a statement of
the command’s purpose is given. Following that is a synopsis of how the command and its arguments
are to appear in the input file to the preprocessor. The arguments are described, first by specifying
the type of value — string, integer or floating point value — and then with a verbal description of
the values appropriate for each argument. Some commands do not have any arguments. Additional
information, if appropriate, is provided in a “Notes” section at the end of the command description.
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Command Type Description
FILE_NAME optional specify the base name for all output files
INTERACTIVE optional flag to control prompting during execution
ITER_CONTROL optional sets the numerical tolerance on the solution
MATERIAL_DBASE optional sets path to user’s material database file
VERBOSE optional flag to turn on extra output

Table 5.1: Solution and execution control commands.

Command Type Description
CV_SIZE optional set maximum sizes for control volumes
DISTOL optional set tolerances on minimum meaningful distance
DOMAIN required sets the physical size of the domain

Table 5.2: Domain specification commands.

Command Type Description
COOLANT required define the fluid properties
FLOW_FIELD optional specify whether or not to compute the flow field
FLOW_PROFILE optional specify z-direction variation of velocity profiles
FLOW_FIELD optional specify whether the flow is laminar or turbulent

Table 5.3: Object specification commands.

Command Type Description
BLOCK optional locate a solid, three-dimensional block in the domain
BOUND optional specify the boundary condition on an entire face of the domain
DEVICE optional locate an electronic device in the domain
INLET optional locate the inlet and specify inlet velocity and temperature
OUTLET optional locate the outlet
PATCH optional locate a boundary condition on a surface of the domain
PROBE optional locate a velocity and temperature probe in the domain

Table 5.4: Domain specification commands.
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# Comment Statement

Purpose: Provide a mechanism for documenting user input files. Text appearing in a comment
statement is ignored by the preprocessor. Comment statements must begin with the
# character in the first column. Comment statements and blank lines may appear
anywhere in the user input file.

Synopsis: # any text

Arguments: none

Notes: Comment statements are not required, but strongly recommended.
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BLOCK

Purpose: Define a uniform block of solid material in the domain. The block can be heated with
a uniform heat source. Blocks can also be used to specify thermally passive barriers or
electronic components with negligible heat dissipation. See also the DEVICE keyword
for a way to specify a more realistic description of an IC package. Blocks defined with
the BLOCK keyword are always located on the bottom of the domain. If a PC board
is defined, then the blocks are located on top of the PC board, which, by definition,
is located on the bottom of the domain. See the BOARD keyword for a way to define
a PC board.

Synopsis: BLOCK label material Qin heated xorg xlen yorg ylen height

Arguments:

label (string) a user-defined label for the block. The label can be up to 16
characters long and must not contain any spaces. Examples of valid labels
are “Heater 1”, “PassiveDevice”.

material (string) the name of a material in the material database. The material
name is used to look up density, specific heat and thermal conductivity
of the block. Edit the material database (default file is material.data) to
change property values or define new materials

Qin (float) total rate of heat dissipation (W) in the block. This is not the
volumetric heat generation rate. The value of Qin is ignored if heated=0.

heated (integer) flag used to indicate whether the block is heated or not. This
allows the user to “turn off” a heater block while keeping the nominal
value of the heat dissipation rate stored as a constant in the data file.

xorg (float) x-direction origin of the block

xlen (float) x-direction length of the block

yorg (float) y-direction origin of the block

ylen (float) y-direction length of the block

height (float) z-direction length of the block. The z-direction origin of the block
is either the bottom surface of the domain, or the top surface of the PC
board if the BOARD keyword is used.
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BOUND

Purpose: Prescribe a boundary condition on an entire face in the domain. See PATCH for
specification of a boundary condition over a limited surface on the boundary

Synopsis: BOUND face thermBC Tin flowBC

or

BOUND face thermBC Qin flowBC

Arguments:

face (string) specifies one of the primary six faces to which the boundary condi-
tion patch is to be applied. Valid values of face are “west”, “east”, “south”
“north”, “down”, and “up”.

thermBC (string) that defines the type of thermal boundary condition being imposed.
It must be one of the following: “Dirichlet”, “FluxBC”, or “Symmetry”

thermBC (string) that defines the type of thermal boundary condition being imposed.
It must be one of the following: “Dirichlet”, “FluxBC”, or “Symmetry”

Tin (float) temperature of the boundary if thermBC = DIRICHLET

Qin (float) total heat transfer from the boundary if thermBC = FLUXBC. The value
of Qin is ignored if thermBC = SYMMETRY because a symmetry boundary has
zero heat flux by definition.

flowBC (string) that defines the type of flow boundary condition being imposed. It
must be one of the following: “wall”, or “symmetry”.

Notes: This is an optional key word. The default boundary conditions for all surfaces are
no-flow, adiabatic (FLUXBC with Qin = 0.0) boundaries.
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COOLANT

Purpose: To prescribe the coolant flowing through the domain. In a convection problem the
interpretation of the coolant is straightforward. The COOLANT keyword is also used in
pure conduction analysis to specify the material comprising the bulk of domain. Con-
sider a heat conduction problem in which a single solid material is subjected to various
thermal boundary conditions. In this problem the “coolant” is the solid material, i.e.,
it is the material that occupies the bulk of the domain. Input Specification

Synopsis: COOLANT material

Arguments:

material (string) the name of a material in the material database.
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CV SIZE

Purpose: Define limits on the control volume sizes. This is a very important keyword because
it directly affects the accuracy and execution time of the model. The sizes in the
arguments are the maximum allowable sizes in the respective coordinate directions.
The mesh is made finer when any of the sizes are reduced. Finer meshes will, in
general, be more accurate. Finer meshes will also take much longer to achieve a
solution.

Synopsis: CV_SIZE xcv_size ycv_size zcv_size

Arguments:

xcv size (float) maximum allowable size of the control volume in the x-direction

ycv size (float) maximum allowable size of the control volume in the y-direction

zcv size (float) maximum allowable size of the control volume in the z-direction

Notes: This specification can not be omitted. xcv_size, ycv_size and zcv_size must be
large than zero.
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DEVICE

Purpose: Add a predefined electronic device model the domain. The geometric features, mate-
rial properties and nominal power dissipation of the device are defined in the device
database.

Synopsis: DEVICE name orientation xorg yorg powerLevel

Arguments:

name (string) the name of the device to be placed in the domain. The name
must match the name of one of the devices in the device database.

orientation (string) orientation direction of the device. The orientation argu-
ment sets the alignment of the internal directions of a device with the
coordinate directions in the calculation domain. Valid alignment val-
ues are “east”, “west”, “north”, and “south”. See the reference manual
for additional information.

xorg (float) x-direction origin of the block

yorg (float) y-direction origin of the block

powerLevel (float) the power level of the device, expressed as a percent of the
nominal power defined in the device database. powerLevel = 0.5 for
50 percent power, 1.0 for 100 percent power, and 1.25 for 125 percent
power, etc.
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DEVICE DBASE

Purpose: Specify the path to a user-defined device database. This command allows an alterna-
tive device database to be used in defining the physical characteristics of electronic
devices. The device database is only read by the preprocessor. The default database
is device.data and is located in the pcbcat/dbase directory. Refer to Chapter A
for additional information.

Synopsis: DEVICE_DBASE pathname

Arguments:

pathname (string) the path name to the database file.
Suppose that you wish to use your own device database, which is contained
in a file named “myDevices.dat”. (Refer to Chapter 7 for a discussion on
how to create a custom device database.) You must not only tell the PCB-
CAT the name of this file, but also its location in your directory structure.
This information is contained in the full path to the file. Suppose that the
myDevices.dat file is located in the directory /usr/home/joe/pcb. The
PCBCAT command for setting the path to this device database would be

DEVICE_DBASE /usr/home/joe/pcb/myDevices.dat

Notes: This keyword is optional. If no DEVICE_DBASE keyword is used, device definitions will
be read from the default database “device.data”. If you request devices that are not
in the device database the PCBCAT preprocessor will print an error message and
stop. You will then need to either edit the default device database or provide your
own device database. The PCBCAT uses only one device database, either the default
or the database specified with the DEVICE_DBASE command.
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DISTOL

Purpose: Set the size of distance tolerances used in aligning objects within the domain. Distance
tolerances are needed for two reasons. First of all the calculations in the model are
susceptible to round-off. The preprocessor determines the location of objects in the
domain by aligning the edges of the objects to the “object grid”. The alignment
is always performed to within the current values of the distance tolerances. If an
exact match were required the comparison might fail due to the finite precision of the
floating point numbers used in the calculations.

The second reason for specifying distance tolerances is in the interest of computational
efficiency. If the edges of two objects in the domain are nearly aligned, say to within a
specified distance, it is reasonable to assume that they are exactly aligned. If the edges
of two objects are very close, but are greater than the distance tolerance, then an extra
plane of control volumes will be inserted into the computational domain. Though
these extra control volumes may not effect the accuracy of the calculation, they will
certainly add to the solution time. Thus, in those situations where devices are almost
exactly aligned, the user may reduce the solution time by increasing the distance
tolerance. Note that there are distance tolerances in each coordinate direction, and
these tolerances are specified independently.

Synopsis: DISTOL distolx distoly distolz

Arguments:

distolx (float) distance tolerance in the x-direction

distoly (float) distance tolerance in the y-direction

distolz (float) distance tolerance in the z-direction

Notes: This keyword is optional. The default distance tolerances are distolx = distoly =
distolz = 5× 10−7 m.
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DOMAIN

Purpose: Define the physical size of the computational domain. All objects (blocks, devices,
inlets, patches, etc.) must fit within the domain.

Synopsis: DOMAIN xlen ylen zlen

Arguments:

xlen (float) x-direction length of the domain

ylen (float) y-direction length of the domain

zlen (float) z-direction length of the domain



40 CHAPTER 5. COMMAND GLOSSARY

FILE NAME

Purpose: Provide a unique base name to be used in constructing output file names. Suppose
that you are analyzing a mother board. You could specify “FILE NAME mother-
Board”. The output from the depth-averaged model would then be in a file called
motherBoard.DAout, and the output from the energy equation model would be in a
file called “motherBoard.3Dout”

Synopsis: FILE_NAME filename

Arguments:

filename (string) the base name of the output file.

Notes: This keyword can be omitted. If no FILE_NAME keyword is used, a default name
“pcbcat” will be used as output file name.
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FLOW FIELD

Purpose: Specify how the x-y variation of the velocity field. The velocity field must be defined
before the energy equation will be solved. In most cases users will want to compute
the flow field with the depth-averaged model. In some cases, however, either no flow
or a uniform flow is desired. For example a uniform flow might apply to a regular
array of components mounted in a card cage.

Synopsis: FLOW_FIELD type

Arguments:

type (string) one of the following “No flow”, “Uniform” or “Depth ave”. If type =
“No flow”, the velocity field is zero everywhere and a pure conduction analysis
is performed. If type = “Uniform” the velocity field is taken to be a con-
stant and uniform value throughout the flow gap. In other words if If type =
“Uniform” there is no x-y variation in the the velocity field. The z-direction
variation is specified with the FLOW_PROFILE keyword. If type = “Depth ave”
the velocity field is computed by the depth-averaged model. The default flow
type is “Depth ave”.
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FLOW PROFILE

Purpose: Specify the velocity variation across the gap. This keyword applies only if FLOW_FIELD
= “uniform” or FLOW_FIELD = “depth ave”

Synopsis: FLOW_PROFILE type

Arguments:

type (string) one of the following “Uniform” or “Fully dev”. If type = Uniform,
the velocity profile is a constant, i.e., plug flow. If type = “Fully dev” the
shape of the velocity profile is defined by the profile for fully-developed laminar
or turbulent flow between parallel plates. The user selects the flow regime
(laminar or turbulent) with the FLOW_REGIME keyword. The default flow type
is “Fully dev”.
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FLOW REGIME

Purpose: Selects whether laminar or turbulent velocity profiles and effective viscosity distribu-
tions are used. This keyword affects the shape of the velocity profile specified by the
FLOW_PROFILE keyword.

Synopsis: FLOW_REGIME type

Arguments:

type (string) either “Laminar” or “Turbulent”. The default flow type is “Laminar”.
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INLET

Purpose: Define the location of the inlet and fluid properties there.

Synopsis: If face = “east’ or face = “west”:

INLET face yorg ylen zorg zlen Tin Uin Vin Win

or if face = “east’ or face = “west”:

INLET face xorg xlen zorg zlen Tin Uin Vin Win

Arguments:

face (string) specifies the face on which the inlet is located. Valid values of face are
“west”, “east”, “south”, and “north”. The value of face determines the meaning
of the next four input values, which specify the origin and length of the plane
that defines the inlet surface.

xorg (float) x-direction origin of the inlet

xlen (float) x-direction length of the inlet

yorg (float) y-direction origin of the inlet

ylen (float) y-direction length of the inlet

zorg (float) z-direction origin of the inlet

zlen (float) z-direction length of the inlet

Tin (float) temperature (◦C) of the coolant at the inlet

Uin (float) x-direction mean velocity of the inlet

Vin (float) y-direction mean velocity of the inlet

Win (float) z-direction mean velocity of the inlet

Notes: Inlets cannot be located on the up or down boundary. The preprocessor uses the
absolute value of the normal velocity component to specify the inlet velocity. In other
words the flow is guaranteed to be into the domain. The user must take care, however,
to specify the correct signs of the tangential velocity components.
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INTERACTIVE

Purpose: Allow the user to choose between running the program in interactive mode or running
in batch mode. This is primarily useful for debugging the program.

Synopsis: INTERACTIVE

Arguments: none

Notes: This is an optional keyword. If the INTERACTIVE keyword is present the program
runs in interactive mode, and the user is prompted for some inputs during execution.
In batch mode the values of all control values are either default values or values
specified in the user input file. This feature is used primarily for debugging and may
be eliminated in future releases.
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ITER CONTROL

Purpose: Specify the tolerance used to determine whether the models have converged.

Synopsis: ITER_CONTROL convergeLevel maxit

Arguments:

convergeLevel (string) qualitative description of the convergence criteria. Three lev-
els of convergence can be chosen: “loose”, “medium” or “tight”. The
tighter the convergence criteria the more iterations will be needed in
general. Refer to Section 3.5.2 and Table 3.3 in Chapter 3 for more
information.

maxit (integer) maximum number of iteration. This is an upper limit, set
by the user, to prevent the program from running indefinitely.
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MATERIAL DBASE

Purpose: Specify the path to material database. This command allows an alternative ma-
terial database to be used in defining all material properties used in the analysis.
The material database is only read by the preprocessor. The default database is
material.data and is located in the pcbcat/dbase directory. Refer to Chapter A
for additional information.

Synopsis: MATERIAL_DBASE pathname

Arguments:

pathname (string) the path name to the database file.
Suppose that you wish to use your own material database, which is con-
tained in a file named “myMaterial.dat”. (Refer to Chapter 8 for a dis-
cussion on how to create a custom material database.) You must not only
tell the PCBCAT the name of this file, but also its location in your di-
rectory structure. This information is contained in the full path to the
file. Suppose that the myMaterial.dat file is located in the directory
/usr/home/joe/pcb. The PCBCAT command for setting the path to this
material database would be

MATERIAL_DBASE /usr/home/joe/pcb/myMaterial.dat

Notes: This keyword is optional. If no MATERIAL_DBASE keyword is used, material properties
will be read from the default database “material.data”. If you specify materials that
are not in the material database the PCBCAT preprocessor will print an error message
and stop. You will then need to either edit the default material database or provide
your own material database. The PCBCAT uses only one material database, either
the default or the database specified with the MATERIAL_DBASE command.
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OUTLET

Purpose: Define the location of the outlet.

Synopsis: if face = “west” or face = “east”:

OUTLET face yorg ylen zorg zlen

or if face = “north” or face = “south”:

OUTLET face xorg xlen zorg zlen

Arguments:

face (string) specifies the face on which the outlet is located. Valid values of face
are west, east, south, north, down, and up. The value of face determines the
meaning of the next four input values, which specify the origin and length of
the outlet.

xorg (float) x-direction origin of the outlet

xlen (float) x-direction length of the outlet

yorg (float) y-direction origin of the outlet

ylen (float) y-direction length of the outlet

zorg (float) z-direction origin of the outlet

zlen (float) z-direction length of the outlet

Notes: Outlets cannot be located on the up or down boundary.



49

PATCH

Purpose: Specify a uniform heat flux patch over a limited area on the domain boundary. This is
useful for simulating experimental data sets involving idealized electronic components.

Synopsis: if face = up or face = down:

PATCH label face xorg xlen yorg ylen thermBC (T or Qin) heated

or if face = west or face = east:

PATCH label face yorg ylen zorg zlen thermBC (T or Qin) heated

or if face = north or face = south:

PATCH label face xorg xlen zorg zlen thermBC (T or Qin) heated

Arguments:

label (string) a user-defined label for the patch. The label can be up to 16 char-
acters long and must not contain any spaces. Example of valid labels are
“Heater1”, “Heater 1”, “base patch”.

face (string) specifies the face on which the heated patch is located. Valid values
of face are “west”, east, “south”, “north”, “down”, and “up”. The value
of face determines the meaning of the next four input values, which specify
the origin and length of the patch.

xorg (float) x-direction origin of the patch

xlen (float) x-direction length of the patch

yorg (float) y-direction origin of the patch

ylen (float) y-direction length of the patch

zorg (float) z-direction origin of the patch

zlen (float) z-direction length of the patch

thermBC (string) that defines the type of thermal boundary condition being imposed.
It must be one of the following: “Dirichlet”, “FluxBC”, or “Symmetry”

Tin (float) temperature of the boundary if thermBC = DIRICHLET

Qin (float) total heat transfer from the boundary if thermBC = FLUXBC. The value
of Qin is ignored if thermBC = SYMMETRY because a symmetry boundary has
zero heat flux by definition.

flowBC (string) that defines the type of flow boundary condition being imposed. It
must be one of the following: “wall”, or “symmetry”.

heated (integer) use “1” if the patch is heated, “0” if the patch is unheated. This
flag allows the patch to be turned on and off without adjusting the total
heat transfer rate (Qin).

Notes: Only one argument, T or Qin, is specified after the thermBC argument.
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PROBE

Purpose: Specify a point at which the velocity and temperature is to be reported. Think
of a probe as a instrument capable of simultaneously measuring all three velocity
components and the temperature. You may locate a probe anywhere in the domain,
including within solid objects.

Synopsis: PROBE scale_type xprobe yprobe zprobe

Arguments:

scale type (string) specifies the interpretation of the next three position variables. If
position_type=“absolute” the position variables are the absolute coor-
dinates of the probe. If position_type=“relative” the position variables
are interpreted as fractions of the domain dimension in each coordinate
direction. Thus

Probe relative 0.5 0.5 0.5

puts the probe in the geometric center of the three-dimensional domain,
regardless of the actual physical size of the domain.

xprobe (float) probe position in x-direction

yprobe (float) probe position in y-direction

zprobe (float) probe position in z-direction
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VERBOSE

Purpose: Allow the user some primitive control on the amount of output created by the prepro-
cessor and the analysis codes. This keyword turns on an internal flag, which causes
messages on the progress of the calculations to be printed to the screen (or standard
output).

Synopsis: VERBOSE

Arguments: none

Notes: This is an optional keyword that may be useful in debugging.





Chapter 6

Example Models

This Chapter describes a set of additional example problems distributed with the PCBCAT. These
examples involve simulations of experiments performed by other researchers.
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Chapter 7

Device Database

Electronic devices are added to a PCBCAT model with the DEVICE command, which specifies the
location and orientation of a device. The dimensions, material properties, and nominal power
dissipation rate of devices are all defined in the device database. This allows for a logical break
between the definition of a device and its use in a particular PCBCAT model. Devices are defined
only once in the device database. A given device can then be added to a PCBCAT model with a
minimum of effort. This also helps to reduce the chance of data entry error.

One of the parameters of the DEVICE command is the power level at which the device is operating
on a particular board. The nominal power level is defined in the database and the actual operating
power level is controlled by the scaling factor in the DEVICE command.

This chapter describes the creation and management of entries in the device database.
Entries in the device database are a combination of strings and numbers. The strings are used

to label the device (i.e., give it a name) and to specify the materials from which the device is made.
The numbers in the database specify the physical dimensions of the device its nominal power.

label power
packageMaterial xLenp yLenp zLenp
dieMaterial xOrgd xLend yOrgd yLend zOrgD zLend
baseMaterial zLenb
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Chapter 8

Material Database

Material properties for fluids and objects used in the analysis are defined by property values stored
in a material database. All materials used in the analysis must have their thermophysical properties
defined in the database. The database is a plain text file that can be modified with any text
processor.

Each PCBCAT user can build and maintain a customized material database. At run time the
database for a particular model is specified by the MATERIAL_DBASE command. Alternatively a user
can modify the default database, “material.data”, which is located in the pcbcat/dbase directory
(see Appendix A).

The database is a plain text file with the structure depicted in Figure 8.1. The default material
database provided with the PCBCAT distribution is shown in Figure 8.2. The thermophysical
properties of a particular material appear on one line of the file. The first entry is the name of
the material. The name may be any continuous character string of up to 31 characters. Upper
and lower case alphabetic characters and numbers are allowed, but the material names are not case
sensitive. Spaces are not permitted in material names, and the special characters “/” and “\” should
not be used. Thus “air”, “HighTempEpoxy”,and “Si-C” are valid names, whereas “Silicon die” and
“Sn/Pb” are not valid names.

Material properties are assigned by matching the material name specified in the user input file
(see, e.g., the COOLANT and BLOCK keywords) with material names in the first column of the material
database. The match is made without considering the case of the characters in the material name.
It is essential that the user spells the material the same way in both the material database and in
the user input file. If the preprocessor cannot match a material name in the user input file with a
material name in the database, the program prints an error message and quits.

Following the material name are the density (kg/m3), specific heat (J/kg/m3), thermal conduc-
tivity (W/m/K) and dynamic viscosity (Pa/s) or (kg/m/s). These data are separated by spaces
or tabs, no commas. The material properties are in SI units only. For fluids, be sure to specify cp,
the specific heat at constant pressure, not cv, the specific heat at constant volume. For solids the
viscosity should be a large value such as 1.0 × 1015. The absolute magnitude of the solid viscosity
is arbitrary so long as it is several orders of magnitude larger than any of fluid viscosity values.
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name1 ρ1 cp,1 k1 µ1

name2 ρ2 cp,2 k2 µ2

...
...

...
...

...

Figure 8.1: Structure of material database file

water 998.2 4182.0 0.6 1.003e-3
air 1.2047 1004.0 25.63e-3 1.817e-5
aluminum 2770.0 875.0 177.0 1.0e15
steel 7854.0 434.0 60.5 1.0e15
copper 8933.0 385.0 401.0 1.0e15
epoxy 1200 1750.0 3.0 1.0e15
SiliconDioxide 2220 745.0 1.38 1.0e15

Figure 8.2: Default material database file supplied with the PCBCAT distribution.
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Appendix A

Installing and Running the
PCBCAT on a SUN Workstation

This appendix gives instructions for installing the PCBCAT tools on a SUN workstation. The
instructions depend somewhat on how you obtained the PCBCAT distribution archive.

The PCBCAT are available via anonymous ftp from ftp.ee.pdx.edu. Refer to the cover pages
of this manual for instructions on downloading the files via the internet. The PCBCAT may also be
obtained on floppy disk or tape for a nominal fee by writing to the author. Getting the PCBCAT
from the internet is strongly recommended since this will result in the quickest turn around. You
will also be able to get future upgrades to the codes and documentation this way.

Once you have a copy of the installation archive on your computer you must perform the following
steps before you can run the PCBCAT

1. unpack the archive

2. add the pcbcat/bin directory to your default search path

3. define the PCBCATDIR environment variable

These steps are described in more detail below. In addition it is a good idea to run the test problems
provided with the PCBCAT distribution. This will give you some experience with the tools and, more
importantly, it will assure you that the tools have been installed successfully. Refer to section A.6
for a quick test of the installation. Chapters 2 and 6 provide additional example problems.

A.1 Installing the PCBCAT Archive Obtained
by Anonymous ftp

The instructions in this section assume that you have a copy of the PCBCAT installation archive on
your local workstation. This will be the case if you have downloaded the archive from the anonymous
ftp server at Portland State University.

Installation of the tool set involves uncompressing the archive and unpacking a tar archive. First
create a working directory for the tools. It is a good idea to call this directory pcbcat or some other
mnemonic name. If more than one user will be running the PCBCAT you should install the tools in a
central directory, e.g., /usr/local/pcbcat. Doing so will probably require the intervention of your
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system administrator. If you install the PCBCAT for your private use then any subdirectory of your
home directory will work. In the remainder of this chapter we will simply refer to the installation
directory as pcbcat.

Copy the pcbcat.tar.Z file to the pcbcat directory. Change your current working directory to
pcbcat (i.e., cd pcbcat) and type

uncompress pcbcat.tar.Z
tar -xvf pcbcat.tar

In the preceding command the distinction between upper and lower case characters is important.
Executing the “tar -xvf pcbcat.tar” command will extract all the files and directories for the
tools. This should take about one minute. Assuming that the installation was successful, skip to
section A.3

A.2 Installing the Sun bar Archive on Diskette

This section gives instructions for installing the PCBCAT tools from a 3.5 inch diskette.
Installation of the tool set involves unpacking a SUN bar archive. First create a working directory

for the tools. It is a good idea to call this directory pcbcat or some other mnemonic name. If more
than one user will be running the PCBCAT you should install the tools in a central directory, e.g.,
/usr/local/pcbcat. Doing so will probably require the intervention of your system administrator.
If you install the PCBCAT for your private use then any subdirectory of your home directory will
work. In the remainder of this chapter we will simply refer to the installation directory as pcbcat.

Insert the 3.5 inch diskette into the drive located on the right side of your workstation. Change
your current working directory to pcbcat (i.e., cd pcbcat) and type

bar xvfp /dev/rfd0 PCBCAT

In the preceding command the distinction between upper and lower case characters is important. The
last character of “rfd0” is a zero, not capital “O”. Executing the “bar xvfp /dev/rfd0 PCBCAT”
command will extract all the files and directories for the tools. This should take about one minute.

A.3 Directory Structure for the PCBCAT

Figure A.1 is a graphical representation of the directory structure that results from the installation
procedures described above. The bin directory contains shell scripts and the executables for the
depth-averaged and three dimensional energy equation models. These files are briefly described in
Table A.1. The dbase directory contains the default material and device databases. The tutorial
directory contains files used in exercises in Chapter 2, Tutorial. The example directory contains
additional sample input files that are described in Chapter 6, Examples.

The shell scripts in the bin directory make some important assumptions about the file organi-
zation. The absolute path to the pcbcat directory needs to be defined in an environment variable
(see section A.5, below). The default material and device databases are assumed to be in the dbase
directory. User-defined material and device databases can be used by including the MATERIAL_DBASE
and DEVICE_DBASE commands in the input file to the PCBCAT. Refer to the command definitions
in Chapter 5 for more information.
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pcbcat

bin

3D
DA
prep
runcat
runda
rune

anderson
garimella
heindel
sparrow

example

tutorial

block1
block4
...

dbase

device.data
material.data

Figure A.1: Directory structure after installation of PCBCAT.

file name Description
3D executable for the 3D energy equation model
DA executable for the depth-averaged flow model
prep executable for PCBCAT preprocessor
runcat script to execute prep, DA and 3D in sequence
runda script to execute prep and DA in sequence
rune script to execute prep and 3D in sequence

Table A.1: Contents of the bin directory.
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A.4 Setting the Path

The bin directory contains the executable scripts and programs that constitute the PCBCAT. You
will have to include a path to the bin directory in order for your computer to recognize the scripts as
valid commands. The most convenient way to do this is to edit your .login or .cshrc (whichever
applies in your system configuration) and add the path to the pcbcat/bin directory in your default
path.

Suppose that the PCBCAT were installed in the /usr/local/pcbcat directory of your computer.
If you run the C shell, insert the following line in your .cshrc file to add /usr/local/pcbcat/bin
to the search path the next time you log in.

setenv PATH ${PATH}:/usr/local/pcbcat/bin

A.5 Defining the PCBCATDIR Environment Variable

Including the pcbcat/bin directory in your path allows you to invoke the PCBCAT shell scripts
from any directory. The prep program still needs to know the absolute path to the dbase directory.
This path is constructed from the PCBCATDIR environment variable, which you must define. The
PCBCATDIR variable must be set to the full path of the pcbcat directory. If you are running the C
shell this environment variable is defined by including the following lines in your .cshrc file

setenv PCBCATDIR pcbcat_path

where pcbcat_path is the absolute path to the pcbcat directory. For example, suppose that the
PCBCAT have been successfully installed in the /usr/local/pcbcat directory. Then the PCBCAT
environment variable is set with

setenv PCBCATDIR /usr/local/pcbcat

If you add the setenv ... statement to your .cshrc file you must log in again (or spawn another
shell) before the assignment takes effect. You can verify that the PCBCATDIR variable is set
correctly by typing

ls $PCBCATDIR/dbase

The correct result will be a listing of the contents of the dbase directory, namely

device.data material.data

A.6 Verifying the Installation

You can test the installation by running any of the example problems in the tutorial or example
directories. First, verify the contents of the tutorial directory by typing

ls $PCBCATDIR/tutorial
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Your computer should respond with

block1 block4

Run the block1 tutorial problem by typing

runcat $PCBCATDIR/tutorial/block1

The output should resemble that in Figure 2.4 in Chapter 2

A.7 Running the PCBCAT

The PCBCAT tools are a collection of programs that work together. Although these programs
function as a integrated analysis package it is helpful to know how the data flows between them.
The information flow for a complete analysis is depicted in Figure A.2.

The runcat and rune shell scripts are the commands you invoke to run the preprocessor (prep)
and the analysis codes (DA and 3D). A model of a particular board is completely described by a text
file that we refer to as a “user-input file”. Both runcat and rune invoke the preprocessor, and both
have only one input argument, viz. the user-input file containing preprocessor commands. These
scripts have the following syntax

runcat in_file_path

runda in_file_path

rune in_file_path

where in_file_path is the path to the user input file. Since the input file is specified by its path it
does not have to be in the current working directory. In contrast all output files from the PCBCAT
are created in the current working directory.

For the sake of concreteness suppose that you have created a PCBCAT model contained in the
file named “user.input” in the current working directory1. If the file user.input in in the current
working directory the most straightforward way to run the PCBCAT model is to type

runcat user.input

This command initiates the operations depicted in Figure A.2
The preprocessor parses the PCBCAT commands contained in “user.input” and creates a plain

text file, pcbcat.cntl. If prep terminates normally the runcat script calls the depth-averaged
model, DA.

The DA code reads the pcbcat.cntl file and computes the depth-averaged flow field. The DA
code creates two output files, fname.DAout and fname.dav, where fname is a string constructed
from the string argument of the FILE_NAME command (see section 4.1). The fname.DAout file is

1Remember that the user-input file can have any name so long as it is a plain text file containing valid preprocessor
comments or commands. As a matter of style this name should indicate the contents, as is the case for the files in
the pcbcat/tutorial and pcbcat/example directories.
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user.input

Depth-Averaged Model

3D Energy Equation Model

fname.dav

fname.hdf

pcbcat.cntl

x

y

fname.DAout

fname.3Dout

fname.geom

Preprocessor

AVS

PCBCAT

Figure A.2: Schematic of the flow of data between the programs. Executable programs are depicted
as shaded oval boxes. Data files input to or output from the programs are shown as rectangular
boxes. The box in the lower right corner represents the graphical output from AVS, in this case a
contour plot.
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a text file summarizing the results of the depth-averaged computations. The fname.dav file is a
binary file containing the depth averaged velocity field.

If DA runs without a fatal error then the runcat script calls the three-dimensional energy equation
model, 3D. The 3D code reads the pcbcat.cntl file and the fname.dav file, and performs the thermal
analysis of the board. The 3D code creates the fname.3Dout, fname.HDF, and fname.geom files. Refer
to Chapter 4 for a detailed description of the output files. When the 3D code stops, the PCBCAT is
finished analyzing the given problem, and the runcat script deletes the pcbcat.cntl file. Figure A.2
depicts postprocessing with the commercial system AVS, for which we have developed additional
visualization tools.

Another way to think about the flow of information between the codes is to consider the oper-
ations performed by the runcat script. These steps closely follow the graphical representation in
Figure A.2. Again, assume that user-input file is named user.input. The runcat script performs
the following steps

1. Pass the user.input file to the preprocessor.

2. If there was an error in the preprocessor, delete the pcbcat.cntl file and stop. Otherwise
continue.

3. Run the DA model.

4. If there was an error in the DA model, delete the pcbcat.cntl file and stop. Otherwise
continue.

5. Run the 3D model.

6. Delete the pcbcat.cntl file and stop.

The runda script runs the preprocessor and solves the depth-averaged flow equations only. The
output of the DA code is the same as when it is called by the runcat script. The runda script
performs the following steps

1. Pass the user.input file to the preprocessor.

2. If there was an error in the preprocessor, delete the pcbcat.cntl file and stop. Otherwise
continue.

3. Run the DA model.

4. Delete the pcbcat.cntl file and stop.

The rune script runs the preprocessor and solves the three-dimensional energy equation only.
This script is useful when you wish to compare several board power levels or change the only thermal
boundary conditions for the same flow field. Since the flow field is independent of the temperature
field (constant properties and no buoyancy effects are assumed) the flow field does not need to be
recomputed unless the hydrodynamic boundary conditions change. This analysis assumes that the
depth-averaged velocity field stored in fname.dav is appropriate. Any change to the user.input
file that changes the flow field requires that you recompute the flow field with the runcat script.

The rune script performs the following steps

1. Pass the user.input file to the preprocessor.

2. If there was an error in the preprocessor, delete the pcbcat.cntl file and stop. Otherwise
continue.
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3. Run the 3D model.

4. Delete the pcbcat.cntl file and stop.

A.8 A Technical Note for Script Editors

The prep, DA, and 3D codes return 0 (zero) if execution terminates normally. If an error is encoun-
tered in any of these codes a value of −1 is returned to the shell. The runcat, runda, and rune
scripts simply test for a non-zero return value as an indication of an error condition.


