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Abstract
Novel view synthesis from sparse and unstructured input views faces challenges like the difficulty with dense 3D reconstruction
and large occlusion. This paper addresses these problems by estimating proper appearance flows from the target to input
views to warp and blend the input views. Our method first estimates a sparse set 3D scene points using an off-the-shelf 3D
reconstruction method and calculates sparse flows from the target to input views. Our method then performs appearance flow
completion to estimate the dense flows from the corresponding sparse ones. Specifically, we design a deep fully convolutional
neural network that takes sparse flows and input views as input and outputs the dense flows. Furthermore, we estimate the optical
flows between input views as references to guide the estimation of dense flows between the target view and input views. Besides
the dense flows, our network also estimates the masks to blend multiple warped inputs to render the target view. Experiments on
the KITTI benchmark show that our method can generate high quality novel views from sparse and unstructured input views.

1. Introduction

Novel view synthesis addresses the problem of generating a new
image at a new viewpoint from a set of input views. It has a wide
variety of applications, such as video stabilization, teleconference,
3D video, and VR. It is a classic problem in computer graphics and
vision and many algorithms are available [KLTS06, Sze10, ZC04].

Traditional novel view synthesis algorithms usually require a
dense set of input views to reliably obtain an approximate 3D scene
structure and render novel views [BBM∗01, CDSHD13, LH96,
NLB∗, ZKU∗04]. When only a sparse set of unstructured input
views are provided, many areas in the input views only appear in
one view. 3D reconstruction is difficult to perform in these areas.
In addition, large baselines between input views also result in sig-
nificant occlusions, which make 3D reconstruction and view syn-
thesis challenging. Thus, the traditional methods often have dif-
ficulty in synthesizing novel views with sparse input views. The
recent deep learning methods provide data-driven approaches to
novel view synthesis [KWR16, SHL∗18, ZTS∗16]. Unlike conven-
tional approaches that mostly rely on geometry, they can learn to
handle challenging issues like occlusions and produce high-quality
novel views. However, these methods still face challenges when the
target viewpoint is distant from input ones.

This paper presents a novel view synthesis method that is able
to generate novel views at distant viewpoints with sparse and un-
structured input views. Our method builds upon the success of the
research on sparse 3D reconstruction and the power of deep neural
networks for image synthesis. Specifically, state-of-the-art struc-
ture from motion algorithms can now reliably perform sparse 3D
reconstruction of a scene, often in form of 3D scene points [SF16].
While these 3D scene points alone are not sufficient for distant view

synthesis, they can guide novel view synthesis [LGJA09]. Mean-
while, deep neural networks have been shown successful for im-
age synthesis. This work is inspired by the appearance flow meth-
ods [SHL∗18,ZTS∗16] that estimate dense flows to guide the sam-
pling of input images to generate the novel view. These methods
provide an elegant way to handle occlusion and produce sharp im-
ages. However, they do not explicitly explore 3D geometry and of-
ten have difficulty with distant novel view synthesis from sparse in-
put views. We hypothesize that with the guidance from the sparse
flow that can be directly computed according to the sparse 3D scene
points, distant novel views can be better rendered.

In this paper, we formulate novel view synthesis as an appear-
ance flow completion problem. Specifically, given a sparse set of
3D points, we calculate the sparse flows from the target view to the
input ones based on their camera poses. We then develop a deep
neural network that takes the sparse flows as well as input views
as input and outputs dense appearance flows and the mask maps.
These outputs are used to warp and blend input views to generate
the novel view. To further improve the estimation of the dense ap-
pearance flows, we calculate the sparse scene flow between input
views as well as the dense flow between them, which can be read-
ily calculated using a state-of-the-art optical flow method as the
input views are known. The pair of sparse scene flow and dense
optical flow provides a reference to guide the neural network to
transform the sparse flows between the unknown target view and
the input views to the dense flows. Compared to existing meth-
ods [SHL∗18, ZKSE16], having such a reference makes it easy for
the neural network to learn to correctly warp and blend input views
by explicitly providing dense pixel correspondences between them
and create high-quality views without blurring or ghosting artifacts.
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We train and evaluate our deep neural network on the KITTI
benchmark [GLU12]. Our experiments show that our method can
generate high quality novel views from sparse and unstructured in-
put views. The strength of our method comes from the two contri-
butions of this paper to novel view synthesis. The first is the combi-
nation of the explicit use of sparse geometry and the power of our
deep network for image synthesis, implemented in a deep neural
network that uses a sparse set of 3D scene points to guide dense
appearance flow estimation. The second is our idea of using a pair
of sparse flow and dense flow between known views to help trans-
form the sparse flows between the unknown target view and the
input views to the dense appearance flows.

2. Related Work

Novel view synthesis is a classic problem in computer vision and
graphics. A good survey can be found in [KLTS06, Sze10, ZC04]
on traditional non-deep learning methods for novel view synthe-
sis. These methods often require dense 3D reconstruction of the
scene or its sparse proxy to generate the novel view [BBM∗01,CD-
SHD13, LH96, NLB∗, ZKU∗04]. Many methods are available to
handle the scenario when 3D reconstruction is unreliable. For ex-
ample, Fitzgibbon et al. transformed the problem of reconstructing
the 3D scene geometry to that of reconstructing the color to han-
dle textureless regions and employed an image-based prior on the
reconstruction to generate realistic synthetic views [FWZ05]. Re-
cently, Penner and Zhang used a soft 3D representation to preserve
depth uncertainty in the stages of 3D reconstruction and rendering.
This soft 3D reconstruction enables high-quality, continuous, and
robust novel view rendering [PZ17]. This paper aims to handle the
challenging scenario of very sparse input views and significant oc-
clusions and presents a deep neural network method that estimates
appearance flows to render a novel view instead of relying on dense
3D reconstruction.

Our work is related to the recent methods on deep learning-
based novel view synthesis methods. In their seminal work, Doso-
vitiskiy et al. [DSB15], Kulkarni et al. [KWKT15], Yang et al.
[YRYL15], and Tatarchenko et al. [TDB16] investigated the use
of deep neural networks for novel view synthesis. Their methods
take as input a set of images of objects and render unseen views
of the objects. Recently, Thies et al. developed an image guided
neural object rendering method that decomposes images into view-
dependent effects and diffuse images. Their method is able to gen-
erate novel views with highly realistic view-dependent appearance
and minimizes the boundary and occlusion artifacts [TZT∗18].
Compared to these methods, our work aims to generate novel views
for general scenes instead of objects.

Our work is particularly relevant to the deep learning-based
novel view synthesis methods for general scenes. The DeepStereo
method from Flynn et al. builds a plane-sweep volume for each
input image and then trains a deep neural network to blend them
to generate a novel view [FNPS16]. Liu et al. explored the 3D ge-
ometry to synthesize a novel view by approximating a real-world
scene with a fixed number of planes [LHS18]. Hedman et al. devel-
oped a deep neural network to learn to blend multiple warped input
views [HPP∗18]. Similarly, our method also learns to blend warped
input views; however, our work learns to estimate dense appearance
flows to warp input views instead of relying on multi-view stereo

(a) Input image 1 (b) Input image 2

(c) Depth map 1 (d) Depth map 2

(e) Ground truth (f) Our interpolation result

Figure 1: Novel view synthesis from sparse input views. The large
baseline between two input views makes the overlapping region
small and leads to significant occlusion, which makes it difficult to
obtain high-quality dense depth maps for the whole scene using a
state of the art method, such as COLMAP [SZPF16]. Our method
does not rely on dense 3D reconstruction and is able to generate
high quality novel views.

algorithms. Several recent deep learning methods have been pre-
sented to address the challenges of imperfect 3D reconstructions
in image-based rendering. Thies et al. developed a deferred neural
rendering paradigm that learns a novel neural texture representa-
tion, which is used by their neural rendering pipeline to produce
realistic images given imperfect 3D input, enabling a wide variety
of applications, such as novel view synthesis, scene editing, and
animation synthesis [TZN19]. Sitzmann et al. presented a method
to learn 3D feature embeddings, called DeepVoxels, to encode a
posed view of a scene without explicitly modeling its geometry.
Such 3D feature embeddings allow for consistent novel view syn-
thesis [STH∗19]. Compared to these methods, our work aims to
address the extreme cases where input images are so sparse that
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Figure 2: The architecture of our deep novel view synthesis neural network.

dense 3D estimation is almost impossible in a large portion of a
scene. We, accordingly, propose to leverage an optical-flow-based
approach and combine it with sparse 3D estimation to enable novel
view synthesis for these extreme cases.

Our method is inspired by the work from Zhou et al. that es-
timates appearance flows for view synthesis [ZTS∗16]. Recently,
Sun et al. extended the appearance flow method to handle an ar-
bitrary number of input views [SHL∗18]. Our method also adopts
the formulation of appearance flow for novel view synthesis. Our
method explicitly incorporates sparse geometry into the estimation
of dense appearance flow and can more reliably render a distant
novel view. Moreover, we also explore the pair of sparse flow and
dense flow between known views to guide the estimation of dense
appearance flows from the unknown view to the input views.

Finally, deep neural networks have been shown successful for
some specific novel view synthesis tasks. For instance, deep neural
network algorithms are now able to interpolate high-quality frames,
even at as a high resolution as 4K [BLM∗19, JSJ∗18, LYT∗17,
LLLC19, MDM∗18, NL18]. Kalantari et al. developed a two-stage
deep convolutional neural network that can expand views for light
field imaging [KWR16]. In their recent work, Zhou et al. devel-
oped a stereo magnification method based on a new layered repre-
sentation of multiplane images. They collected a large set of videos
of static scenes to train a deep neural network that is able to ex-
trapolate views from images captured by a narrow-baseline stereo
cameras [ZTF∗18]. Compared to these methods, our work aims to
generate novel views at a more distant viewpoint.

3. Novel View Synthesis by Appearance Flow Completion

This paper considers the problem of novel view synthesis from
sparse and unstructured views. This is a challenging task as given
only a sparse set of unstructured views, the baselines between in-
put views are often large, which makes the overlapping regions be-

tween input views small, leading to a large portion of the scene that
is only covered by one input view and thus difficult to perform 3D
reconstruction. As shown in Figure 1, almost half of each of the
input views is in the monocular region and 3D reconstruction can-
not be performed there. Moreover, the large baseline between input
views leads to potentially a significant amount of occlusion, which
both makes 3D reconstruction and view synthesis difficult.

Instead of relying on the dense 3D reconstruction of the scene,
our method explores its sparse 3D proxy to guide novel view syn-
thesis. The state-of-the-art research on 3D vision can now provide
robust sparse 3D reconstruction from only a few unstructured in-
put views [SF16]. The sparse 3D proxy, in the form of a set of
3D scene points, defines where a sparse set of points in the target
novel view are mapped to the input views. This can be naturally in-
tegrated into the appearance flow approach, which renders a novel
view by estimating dense flows from the target view to the input
views [ZTS∗16]. The seminal appearance flow work by Zhou et al.
can create a sharp novel view and inspires our work; however, it
does not explicitly explore the geometry of the scene and cannot
handle distant novel view synthesis. Our method builds upon it by
directly using the sparse 3D proxy of the scene to guide appearance
flow estimation. Specifically, we calculate sparse appearance flows
according to the set of 3D scene points and accordingly formulate
novel view synthesis as appearance flow completion that aims to
complete the originally sparse appearance flows. Without loss of
generality, we consider the case of two input images. We render
each target view I0 from two input views I1 and I2.

We develop a deep convolutional neural network to estimate
the dense appearance flows from the sparse flow calculated from
the sparse 3D proxy. As shown in Figure 2, given two input
views I1 and I2, we first employ an off-the-shelf 3D reconstruc-
tion method [SZPF16] to estimate the camera parameters and a set
of sparse 3D scene points. We calculate sparse appearance flows
from the target view to each of the input views by projecting the
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Figure 3: The architecture of our multi-scale decoder.

set of 3D scene points onto the target view. We then initialize the
appearance flows for the undefined pixels in the target view by first
estimating the best fitting homography between the target view and
each input view from the sparse correspondences computed from
the 3D scene points and then calculating the flows for undefined
pixels using the estimated homography. Note, the consistency of
initial flow fields from one target image to multiple different in-
put images is respected by using the same set of scene points to
estimate all homographies. In this way, we obtain the initialized
appearance flows Fs

0,1 and Fs
0,2. The rest of this paper refers to the

initialized appearance flows Fs
0,1 and Fs

0,2 as sparse flows to empha-
size that only a sparse set of elements are accurate while most of
them are approximated.

We stack the input views and the sparse appearance flows to-
gether and feed them into an encoder-decoder network with skip
connections. This deep neural network outputs the appearance
flows F0,1 and F0,2 and masks M0,1 and M0,2, which are used
to synthesize the target view Î0 as follows.

Î0 = T (I1,F0,1)�M0,1 +T (I2,F0,2)�M0,2 (1)

where T back warps an image I guided by the appearance flows F .

As discussed in [ZTS∗16], it is easier for a deep neural network
to estimate short-range appearance flows to map an input view and
the target. We share a similar observation. Therefore, our deep neu-
ral network estimates the residual flows Fr

0,1 and Fr
0,2 instead of

the target appearance flows directly. These residual flows are added
to the sparse appearance flows Fs

0,1 and Fs
0,2 to compute the target

appearance flows F0,1 and F0,2, as shown in Figure 2.

3.1. Guided Appearance Flow Completion

We notice that often only a small number of 3D scene points can
be estimated from input views. This makes it difficult for the neural
network to estimate the dense appearance flows between the target
and the input views. To address this problem, we have an observa-
tion that we can estimate both the sparse flows and dense flows be-
tween the two input views. This pair of sparse flows and dense flows
can serve as a reference to guide learning to upgrade the sparse
flows into the dense flows between the target view and the input
views as all the views are imaged from the same scene. We use
PWC-Net [SYLK18], a state-of-the-art optical flow algorithm, to
estimate the dense appearance flows F1,2 between two input views.
We estimate the sparse flows between them in the same way as
we estimate the sparse flows between the target and input views.

Moreover, compared to existing methods [SHL∗18,ZKSE16], such
dense reference flows provide dense pixel correspondences be-
tween input views, making it easy for the neural network to learn
to correctly warp and blend input views.

In theory, we can obtain dense 3D reconstruction from the dense
flows between input views. In practice, we however find that the es-
timated dense flows are more of appearance flows than scene flows,
which make them useful for view synthesis, but not sufficiently re-
liable for dense 3D reconstruction. This is consistent with the re-
cent finding that optical flows need to be optimized for individual
applications [XCW∗19]. We therefore use the pair of sparse flows
and dense flows between input views to guide the estimation of the
target dense flows.

Figure 2 shows the full architecture of our fully convolutional
neural network for novel view synthesis that aims to learn to com-
plete the target appearance flows guided by the pair of sparse flows
and dense flows between input views. In addition to the first en-
coder and the decoder described previously, it has a second encoder
that takes as input the input views I1 and I2, the sparse flows Fs

1,2
and the dense flows F1,2 between them. This encoder learns the cor-
respondences between pixels in the two input views as well as the
transformation from the sparse flows Fs

1,2 to the dense flows F1,2.
We concatenate the output features from the two encoders and use
them as input for the decoder network.

To enable our neural network to estimate long-range flows, we
furthermore adopt a multiple-scale iterative-refinement architec-
ture, as illustrated in Figure 3. Specifically, our network outputs
residual flows and corresponding masks to warp input images to
the target at three different scales 0.25×, 0.5×, and 1.0×. At the
scale 0.25×, our network first outputs the residual flows Fr,0.25

0,1 and

Fr,0.25
0,2 to make correction for the initial sparse flows Fs,0.25

0,1 and

Fs,0.25
0,2 , and outputs predicted flows F0.25

0,1 and F0.25
0,2 at this scale.

The flows at this scale aim to capture high-level structure of the
images. We then use bilinear upsampling to convert these small-
scale flows F0.25

0,1 and F0.25
0,2 to the next larger scales and use them

as the initial flows Fs,0.5
0,1 and Fs,0.5

0,2 for the next refinement step. We
repeat the same step for the last scale. This design is inspired by the
prior work of Zhou et al. [ZTS∗16], in which the authors discuss
that using a multiple-scale architecture encourages the network to
estimate long appearance flows better.
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Table 1: Qualitative comparison between our method and Appear-
ance Flow [ZTS∗16] and Multi-view to Novel. View [SHL∗18].

MAD ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Multi2Novel 0.1476 18.4938 0.6868 0.2154
App. Flow 0.2517 15.0071 0.5963 0.301
Ours 0.1432 19.7985 0.7312 0.194

3.1.1. Loss functions

We consider two different loss functions to train our novel view
synthesis network: the color loss and the feature loss. The color
loss Lc measures the pixel-wise distance between the synthesized
target image Î0 and the ground truth I0 as follows.

Lc =
1
n
‖Î0− I0‖1, (2)

where n is the number of pixels in I0. The feature loss L f fo-
cuses on the perceptual difference between the synthesized and the
ground truth target image. As shown in many other image synthesis
tasks [CK17, DB16, JAF16, LTH∗16, ZKSE16, NML17b], percep-
tual loss helps deep neural networks to generate visually appealing
images. We follow these existing methods and compute the feature
loss using the feature maps from the last three layers of the VGG
network [SZ14] pre-trained on the ImageNet dataset [DDS∗09].

L f =
1
3

3

∑
l=1
‖φl(Î0)−φl(I0)‖1, (3)

where φl(I) is the feature map from the last l layers of the VGG
network. We combine these two losses to train our neural network.

L= Lc +αL f , (4)

where α is a constant with value 0.001.

We finally measure both color and perceptual loss at three differ-
ent scales and combine them into a single loss to train our network.

L= σ1L1.0 +σ2L0.5 +σ3L0.25 (5)

where L1.0, L0.50, L0.25 are the losses measured at three different
scales. Empirically, we set σ1 = 0.25, σ2 = 0.5, and σ3 = 1.

4. Experiments

We experiment with our method on the KITTI dataset [GLU12],
which often serves as a benchmark for real-scene novel view
synthesis. We follow the same procedure as the recent work
[SHL∗18, ZTS∗16] to sample input frames and the corresponding
target frames. Specifically, we use the 11 frame sequences that are
provided with ground truth camera poses. In each sequence, the
source and target frames are randomly sampled so that they are
separated by at most 10 frames. We use the same training and test-
ing split provided by [SHL∗18] to train and evaluate our method.
Please refer to [SHL∗18,ZTS∗16] for more details on how to sam-
ple the training and testing tuples. We implemented our appearance
flow completion network using TensorFlow. We trained our net-
work with using the Adam optimizer [KB14] with an initial learn-
ing rate of 7×10−5. The network was trained for one million iter-
ations for roughly 3 days on an NVIDIA GTX 1080 Ti GPU.

Table 2: Ablation study results.

MAD ↓ PSNR ↑ SSIM ↑ LPIPS ↓
w/o reference flow 0.1523 18.8214 0.7157 0.2001
w/o multi-scale 0.1534 19.0566 0.7184 0.2076
w/o perceptual loss 0.1542 18.6469 0.7128 0.2166
Ours 0.1432 19.7985 0.7312 0.1940

We compare our method with two state-of-the-art deep learning-
based novel view synthesis methods Appearance Flow [ZTS∗16]
and Multi-view to Novel View (Multi2Novel) [SHL∗18] both quan-
titatively and qualitatively. We also perform ablation study to fur-
ther understand our method. Please refer to our supplementary
video demo to further examine the visual quality of our results.

We qualitatively measure the quality of novel view synthe-
sis results using four metrics, including Mean Absolute Differ-
ence (MAD), Peak Signal to Noise (PSNR), Structural Simi-
larity (SSIM) [WBSS04], and LPIPS, which measures the per-
ceptual difference between a synthesized image and the ground
truth [ZIE∗18]. For MAD and LPIPS, a small value indicates a
better quality while for SSIM and PSNR, a large value indicates
a better quality. As reported in Table 1, our method achieves bet-
ter numerical scores than Appearance Flow and Multi2Novel on
the well-known KITTI benchmark [GLU12] according to all the
four metrics. Figure 4 shows some visual comparisons. These ex-
amples show that our method is able to generate novel views with
less ghosting and blurry artifacts (Row 1, 4 and 5), and less distor-
tion (Row 2 and 3).

Because the distance between viewpoints has a strong effect on
the quality of a synthesized novel view, we evaluate the novel view
synthesis methods with different distances between the target and
input viewpoints. We approximate the viewpoint distance as the
time difference between the video frames in the KITTI benchmark
because each of these videos was captured using the same mov-
ing camera [GLU12]. For every tuple of the target and two input
frames, we use the smaller distance between the target and one of
the input frames. Figure 5 shows how each method performs with
different viewpoint distances. For each distance in the horizontal
axis, we compute the average score of all the samples that have their
frame distances smaller than that particular distance. Indeed, the
performance of all methods decreases when the distance between
the target and input views increases. Nevertheless, our method is
more robust than the competing methods.

4.1. Ablation study

To further assess our method, we conduct an ablation study by
training separated models while leaving a major component out.
As reported in Table 2, leaving any component out compromises
the performance of our method. As shown in Figure 6, the per-
ceptual loss helps producing sharper images and reducing visual
distortion and ghosting artifacts. Our multi-scale architecture helps
achieve better blending input images captured at distant viewpoints,
which is consistent with the observation from [ZTS∗16]. Moreover,
Figure 7 shows that the pair of sparse flows and dense flows be-
tween input views can serve as a reference to guide our network

c© 2019 The Author(s)
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Input 1 Input 2 Ground truth OursApp.Flow [ZTS∗16]Multi2Novel [SHL∗18]

Figure 4: Visual comparison between our method and the state-of-the-art methods.
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Figure 5: As the viewpoint distance increases, the performance of each novel view synthesis method decreases. Nevertheless, our method is
robust against the increasing viewpoint distance, compared to the other methods.

to estimate dense appearance flows to synthesize the target view.
Note, existing appearance flow-based synthesis approaches inde-
pendently predict the flows to map pixels from each input view
to the target and then combine the resulting warped images us-
ing predicted masks [ZTS∗16, SHL∗18]. This task is challenging

since the network needs to estimate the dense flows from the target
view to different input views consistently so that the warped im-
ages can be blended without blurring or ghosting artifacts. We ad-
dress this problem by leveraging the power of a state-of-the-art op-
tical flow algorithm to directly estimate the pixel correspondences
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Input 1 Input 2 Ground truth w/o Multi-scale w/o Perceptual loss Ours 
Figure 6: Effects of our multi-scale architecture and perceptual loss function on the visual quality of novel view synthesis results.

(dense flows) between the input images, and use them to guide the
estimation of target dense flows as well as masks. As shown in Fig-
ure 7, our method with the reference flows is able to produce high
quality novel views free from blurring or ghosting artifacts.

4.2. Applications

Below we discuss how our algorithm can be used for two novel
view synthesis applications. All of our results are generated from
only two input images, including the video results. That is, given an
input video of n frames, at each time, we only take two consecutive
frames as input and generate frames between them. Once we finish
processing all the n− 1 frame pairs, we assemble all the frames
together into the final video.

4.2.1. Video frame interpolation

Video frame interpolation can be considered as a special case of
novel view synthesis where one or more intermediate frames are
interpolated between every two consecutive input frames. Great
progress has been made for this problem [NML17a, NML17b,
NL18, LLLC19, BLM∗19]. We compare our method with two re-
cent video frame interpolation methods, namely Cyclic Frame Gen-
eration (CyclicGen) [LLLC19] and Depth-aware Frame Interpola-
tion (DAIN) [BLM∗19]. CyclicGen is purely appearance based and
DAIN explores the understanding of scene depth for video frame
interpolation. In this experiment, we sample input frames from the
KITTI benchmark that are 0.4 seconds away from each other and
then use each algorithm to generate intermediate frames. As shown
in Figure 8, our method can often produce more realistic results
with less visual artifacts, especially for the cases that the input im-
ages were captured at distant viewpoints.

4.2.2. Free viewpoint navigation

Novel view synthesis is a critical technology for free viewpoint
navigation [CDSHD13]. We compare our method with the recent
Multi2Novel method for this task [SHL∗18]. For a fair comparison,
we conduct this experiment on the KITTI dataset since we are us-
ing the trained model of Multi2Novel on the KITTI dataset directly.
In this experiment, we linearly interpolate the camera locations be-
tween any two input views. We use the Slerp algorithm [Sho85]

to interpolate the camera orientations. We then use a novel view
synthesis algorithm to render a view at each new viewpoint.

We evaluate novel view synthesis algorithms in two cases: (i) in-
termediate locations between any two input views (interpolation),
and (ii) locations before and after input views (extrapolation). Fig-
ure 9 shows visual examples of the smooth transiting results gener-
ated by our method in comparison with Multi2Novel. These results
show that our method can successfully interpolate and extrapolate
novel frames from only two input frames. The transition between
consecutive synthesized frames is smooth enough to enable free-
viewpoint navigation, as shown in the supplementary video demo.

4.3. Discussion

Many image-based rendering (IBR) algorithms rely on Multi-View
Stereo (MVS) algorithms to perform dense 3D reconstruction of
a scene. MVS often works well for a sequence of 10 frames or
more, and thus these IBR methods often work well with many in-
put views. However, when the overlap among these frames is small,
MVS methods sometimes cannot work well. For example, in the
KITTI dataset, when we sample multiple frames from a video cap-
tured by a camera on a forward-moving car, MVS cannot generate
satisfactory results as many parts of the scene is only captured in
one or at most two views, which makes dense 3D reconstruction
difficult and leads to unsatisfactory novel view synthesis results. In
contrast, our method addresses such a challenging problem by es-
timating appearance flows from the target view to the input views
and employing a neural network to blend them.

While this paper focuses on novel view synthesis from only two
input views, our method can be extended to handle more input im-
ages. Specifically, given multiple input images, we can apply the
same off-the-shelf method as described in our paper to first esti-
mate robust sparse flows between the target view and each of the
multiple input images. We feed these sparse flows and input images
into our view synthesis network. We then train our network to learn
to transform these sparse flows into dense flows between the target
and the input images. Our method uses these flows to warp input
images to the target and combine multiple warped images using
corresponding mask maps to render the target view.
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Figure 7: Effect of reference flows. By directly estimating dense flows and using them to guide the estimation of the target dense appearance
flows and masks, our results avoid ghosting or blurring artifacts.

We also tested our method on the challenging IBR dataset from
Chaurasia et al. [CDSHD13]. We sampled pairs of frames that are
four frames apart from each other. Given such challenging exam-
ples, our method is able to synthesize realistic views in general,
as shown in Figure 10(d) and (f). We do notice that our results
sometimes contain noticeable ghosting artifacts in the regions with
very strong parallax (Figure 10(e)). Such artifacts can be mostly
attributed to two factors. First, no sparse flows in these regions are
available, such as the tall tree and the bench chair in Figure 10(a)
and (c). Second, the reference flows are misleading, such as those
for the tall tree when we use an off-the-shelf optical flow algo-
rithm to estimate them due to large motion there (as shown in Fig-
ure 10(b)). Note, some state-of-the-art novel view synthesis meth-
ods, such as [PZ17], can better handle this challenging example
than ours, as more input frames are used for 3D reconstruction in
their methods. In contrast, our method only uses two input frames
and thus tries to address a more challenging scenario where only a
very sparse set of input views are available. We conducted such ex-
periments to thoroughly examine the performance of our method.
As shown in this experiment, the performance of our method can be
compromised by the insufficient sparse flows and reference flows.

In our experiments, we pre-process input images to obtain sparse
3d reconstruction and optical flow using off-the-shelf computer vi-
sion algorithms. At the rendering stage, our network takes 0.06,
0.13, 0.21, and 0.64 seconds to generate a novel view of size
512×512, 800×800, 1024×1024, and 1764×1764 respectively on
a workstation with an Intel I7-7700 CPU and an NVIDIA 1080Ti
GPU. We believe that this performance can be further improved
to enable real-time image-based rendering in the future with better
code optimization.

5. Conclusion

This paper presented a method that is able to generate a novel view
from sparse and unstructured input ones. This method considers
novel view synthesis as a dense appearance flow estimation prob-
lem and explores reliable sparse 3D geometry and deep neural net-
work to estimate the dense appearance flow from the target view to
the input views. Specifically, this method calculates the sparse flow
for a sparse set of 3D scene points and trains a deep neural network
to transform the sparse flow to the dense appearance flows. This
method also explores the readily available pair of sparse flows and
the corresponding dense flows between input views to guide the es-
timation of the unknown dense appearance flows. The experiments
show that this paper can generate state-of-the-art novel views at
distant viewpoints.
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