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Abstract
In this paper, we propose a robust image super-resolution algorithm, which aims to maximize the overall visual
quality of super-resolution results. We consider a good super-resolution algorithm to be fidelity preserving, image
detail enhancing and smooth. Accordingly, we define perception-based measures for these visual qualities. Based
on these quality measures, we formulate image super-resolution as an optimization problem aiming to maximize
the overall quality. Since the quality measures are quadratic, the optimization can be solved efficiently. Experi-
ments on a large image set and subjective user study demonstrate the effectiveness of the perception-based quality
measures and the robustness and efficiency of the presented method.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation
Display algorithms; I.4.3 [Image Processing and Computer Vision]: Enhancement Sharpening and deblurring

1. Introduction

In this paper, we consider creating an image of higher res-
olution than the provided input image. In this single image
super-resolution problem, we aim to create the high reso-
lution result such that it has better quality than a straight-
forward upsampling of the source image. For many applica-
tions, such as television and computer graphics, the ultimate
measure of quality is visual. Therefore, in this paper we in-
troduce methods that optimize the visual quality of the high
resolution results.

The challenge of single image super-resolution results
from estimating more pixel values than the given. This re-
quires reconstructing the image such that more samples can
be taken. Sampling theory suggests an “ideal” reconstruc-
tion that avoids adding information beyond the source data.
However, such a reconstruction is ideal only in an informa-
tion theoretic sense: upsampled images lack detail and ap-
pear blurry. For us, an ideal image is one that is perceived
to be high-quality by a viewer, even if the details are not an
accurate reconstruction of the original scene.

The goal of a visually appealing result suggests a different
approach for creating the high resolution result. We define
mathematically the visual quality of the resulting image. A
visually ideal reconstruction is one that optimizes these met-
rics. We show how such an optimization can be posed and

solved efficiently and robustly to provide a practical and ef-
fective method for upsampling images that provides better
visual quality than previous approaches. Because our ulti-
mate goal is the subjective visual quality, we mainly assess
our results empirically, providing a user study that confirms
the effectiveness of our approach.

Our approach, like other single image super-resolution
methods, relies on additional information beyond the pixel
samples of the source image. However, whereas previous ap-
proaches relied on either sets of example images or assump-
tions about the imaging process (§2), our approach adds
information based on a model of what is visually appeal-
ing. This means that our approach is not only more likely
to achieve our stated goal of visual quality, but also is less
prone to artifacts from inappropriate or insufficient example
sets, or from incorrect imaging assumptions.

The central contribution of this paper is a new approach to
single image super-resolution that explicitly considers per-
ceived visual quality. In §3.1-§3.3 we detail three perceptu-
ally inspired metrics for reconstruction quality, and in §3.4
we describe how these metrics can be optimized efficiently
to create super-resolution images. Results of our prototype
implementation are evaluated empirically in §4, where we
also compare our method to many other representative meth-
ods.
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2. Related Work

Image super-resolution (SR) methods create high resolution
results (HR) from lower resolution inputs (LR). Methods
consider two distinct problems: synthesizing the HR from a
single LR source image, or assembling an HR from multiple
LR source images. Our approach addresses the single-image
problem. The multi-image problem, requires very different
methods, see [BS98b, FREM04, PPK03] for surveys.

Single image super-resolution must upsample the pro-
vided image, effectively reconstructing the underlying im-
age and sampling it at a greater frequency. An ideal recon-
struction (in the signal processing sense) avoids aliasing, the
addition of high frequencies that could not be represented in
the LR source. Ideal reconstructions can be approximately
effective using polynomial interpolation or truncated recon-
struction kernels. Upsampling based on such methods (es-
pecially bicubic and Lanczos) is ubiquitous and extensively
studied (c.f. [UAE95]). However, because the approximation
to the ideal reconstruction aims to avoid aliasing, it cannot
create sharp features in the result, and may exhibit ringing
(due to the Gibbs phenomena). Methods to sharpen image
features have been presented. For example, Polesel et al.
presented an adaptive unsharp masking method to enhance
the image contrast [PRM00]. Many super-resolution meth-
ods can produce sharp features, even though such details are
not fully resolved in the source.

To create details in the HR result beyond those resolved
in the input, super-resolution methods rely on additional
information beyond the input. When that additional infor-
mation is inadequate, the methods fail. For example, edge
directed interpolation methods guide interpolation along
edges [AW96, JA95, LO01, DHX∗07], inferring the details
based on heuristics of edge localization and shape. How-
ever, poor edge identification can lead to artifacts. Alterna-
tively, back projection methods, introduced by Irani and Pe-
leg [IP91, IP93], assume the Point Spread Function (PSF) is
known and reverse it by iterative projection. However, poor
approximation to the PSF can lead to serious ringing arti-
facts. In contrast, our approach rarely creates objectionable
artifacts.

Many recent example-based super-resolution techniques
rely on data from other images to inform the addition of
details. Variants have learned the co-occurrence prior be-
tween HR and LR image patches or coefficients [STS03,
JJC04,JS06,CYX04], or image feature statistics [Fat07], and
process the LR input along with an appropriate smoothness
constraint [FPC00] to generate the HR image. Examples of
example-based methods include: Baker et al. [BS98a] de-
velop recognition-based super-resolution algorithm where
the cost function includes the results of a set of recogni-
tion decisions to enforce the condition that the gradient in
the HR image should be equal to the gradient in the best
matching training image. Capel et al. [CZ01] proposed a
super-resolution technique from multiple views using prin-

cipal component analysis to learn image models either to
directly constrain the maximum likelihood (ML) estimate
or as a prior for a maximum a posteriori (MAP) estimate.
Freeman et al. introduced a parametric Markov network to
learn the statistics between the “scene” and the “image” as a
framework for handling low-level vision tasks such as super-
resolution [FPC00]. Wang et al. extended Freeman’s frame-
work to a Conditional Random Field [WTS05]. Learning on
coefficient domain is also reported, such as wavelet coeffi-
cients [JJC04]. Jiji et al. [JS06] introduced an edge-based
super-resolution method to learn the correlation of the im-
age contourlet between HR/LR images and argued that no
global dependencies need to be considered if the contourlet
feature is used.

Example-based super-resolution is limited by the training
set. If the set is too small, examples cannot be found. If the
set is too large, the algorithm may use an inappropriate ex-
ample. For this reason, example-based methods are effective
in constrained domains, such as faces [LSZ01, GBA∗03,
WT04,LLT05,DKA04] and fingerprints [JC04], where a do-
main specific training set can be used. In contrast, our ap-
proach is general and does not rely on a training set.

3. Our approach

Our goal is to create super-resolution results that have good
perceived visual quality. To achieve this, we must quantify
the subjective notion of visual quality as metrics that can be
computed on the images for the specific case of image super-
resolution. We have identified three criteria that correspond
to perceived qualities of super-resolution image results:

• Fidelity preserving. The result should have the same gen-
eral appearance as the input.

• Detail enhancing. The result should have sharp features
where they are expected.

• Smoothness. The result should have continuity where it is
expected, and avoid unnatural high-frequency artifacts.

The first criterion ensures that the result looks like a higher
resolution version of the same image. The latter criteria are
inspired by the observation that people are very sensitive to
high-frequency contrast [Lam91,IKN98,IK01,Not00]. They
expect to see crisp edges, but also expect smoothness be-
tween the discontinuities.

We encode violations against each of the above qual-
ity aspects as a cost, and formulate the super-resolution
as an optimization problem which aims to find a required
high-resolution image minimizing the total cost. The key
to success is to define effective quality measures. Since vi-
sual quality assessment is a subjective task, we propose
perception-based measures as described in the following
subsections.
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(a) input (b) left: (c) and right: (d)

(c) neighborhood: 3× 3 (d) neighborhood: 5× 5

Figure 1: Neighborhood affect. A small neighborhood some-
times can lead to zigzag artifacts (c). Increasing the neigh-
borhood size can relieve this problem (d).

3.1. Fidelity-preserving

The goal of fidelity-preserving is to ensure that the super-
resolution result has a similar general appearance to the in-
put. A straightforward way is to encourage the result to in-
terpolate the input pixel values. Denoting the resulting high-
resolution image as Ih and low-resolution image as Il , we
define the following fidelity measure:

E f d1 = ∑
p(x,y)∈Il

‖Ih(x× scale,y× scale)− Il(x,y)‖2
2 (1)

where p(x,y) is a pixel in the low-resolution input Il , and
scale is the magnification rate.

The above fidelity measure alone is not sufficient to guar-
antee preserved fidelity. According to research from vi-
sual perception and neuro-science, the human visual sys-
tem is more sensitive to local contrast than to pixel val-
ues [Lam91, IKN98, IK01, Not00]. Local contrast in images
can be approximated by their gradient fields. So besides the
measure of Equation 1, we encourage the gradient field of
the high-resolution image to be close to that of the real world
high-resolution image. The challenge is to obtain the gradi-
ent field of the real world high-resolution image. Since bi-
cubic up-sampling result provides a close approximation to
the real world high-resolution image at least perceptually,
we use its gradient field as the reference. The second fidelity
measure we use is defined as follows:

E f d2 = ∑
p∈Ih,θ

‖Gh(p,θ)−Gapp(p,θ)‖2
2 (2)

(a) (b)

(c) Ignore masking effect (d) Consider masking effect

Figure 2: Masking effect. (Please refer to the electronic ver-
sion to appreciate the difference between the left and the
right.)

where Gh(p,θ) is the high-resolution image’s gradient value
at pixel p in direction θ, and Gapp(p,θ) is that of the ap-
proximation of the real world gradient field. In practice, the
orientation is quantized into 8 bins corresponding to each
pixel’s 8-connected neighborhood. Occasionally, this small
neighborhood can lead to zigzag artifacts. Finer quantization
can be used to relieve this problem at the expense of more
computation as illustrated in Figure 1.

This uniform data-independent measure is not effective
however. According to research in perception, change in the
high gradient value direction is less obvious than the same
amount of change in the low gradient value one. This phe-
nomenon is called the “masking effect” [KK95]. For exam-
ple, as illustrated in Figure 2, the amount of change from the
left image to the right in (a) is the same as that in (b) accord-
ing the measure of Equation 2. However, the change in (a) is
more obvious perceptually.

Concerning the contrast masking, a good approximation
of the human visual system response on contrast can be
modeled by a transducer function(c.f. [Wil80]). We adopt
an approximation of the Weber’s law [VV90] to account for
the masking effect by weighting the gradient change in in-
verse proportion to the gradient magnitude as follows. The
advantage of this approximation is that it leads to a simple
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quadratic optimization problem.

E f d2 = ∑
p∈Ih,θ

‖Gh(p,θ)−Gapp(p,θ)‖2
2

‖Gapp(p,θ)‖2
2 + ε

(3)

where ε is a constant for the sake of numerical stability, set
as 1.0 in our work. The effect of considering the masking
effect is illustrated in Figure 2(c) and (d).

3.2. Detail-enhancing

Preserving and/or enhancing image details is one of the ma-
jor focuses of image super-resolution methods. Many ex-
isting methods enhance image details by sharpening im-
age edges [AW96, JA95, LO01, TTT06, DHX∗07, Fat07].
Edge directed methods [AW96,JA95,TTT06] estimate high-
resolution edges from low-resolution input, and use the edge
information to guide super-resolution operations, such as in-
terpolation and image reconstruction. The performance of
these methods are subject to the quality of high-resolution
edge estimation, which is hard. A recent method [Fat07]
learns edge statistics to guide super-resolution. A fundamen-
tal problem with edge guided methods is that edges are not
always enough to represent image details. For example, de-
tails in image regions with rich fine textures are hard for
edges to describe.

From the view of visual perception, details manifest them-
selves to the low-level human visual system by local con-
trast. Hence, we propose preserving/enhancing image details
by enhancing local contrast instead of edges. The texture-
ness criteria defined by Bae et al. [BPD06] can be a good
local contrast measurement. We calculate the local contrast
in each image patch as the sum of difference between ev-
ery two pixels since this popular definition leads a quadratic
term in the following Equation 4, which is easy to optimize.
We define the following measure to enhance the detail:

Edt = − ∑
patchk∈Ih

wk ∑
pi,pj∈patchk

‖Ih(pi)− Ih(p j)‖2
2 (4)

where patchk denotes an image patch in high-resolution im-
age Ih. wk is a weight. As illustrated in the top row of
Figure 3(b) and (c), in our system, each block is of size
(scale + 1) × (scale + 1), with four corners correspond-
ing to the 4 neighboring pixels in the low-resolution in-
put. This neighborhood is chosen to bound the interaction
between pixels locally. In practice, a larger neighborhood
is easier to reduce the fidelity of the super-resolution re-
sult. There are several options to set the weights. For ex-
ample, wk can be a binary variable, set as 1 when there is an
edge passing through the patch. The edge can be estimated
from the bi-cubic up-sampling result using the Canny algo-
rithm [Can86]. To set wk, no accurate information about the
edge location inside the patch is required, which improves
the tolerance of our method against error in edge estimation.
The advantage of this strategy is robustness to noise. When
the input image quality is good, another way is to set wk as

the contrast inside the low resolution counterpart of patchk .

3.3. Smoothness

Smooth results are usually favored by the human visual sys-
tem. A popular way to guarantee smoothness is to encourage
neighboring pixels to have similar values as follows:

Esm = ∑
(xi,yi)∈Ih

∑
(x j ,y j)∈N8(xi,yi)

‖I(xi,yi)− I(x j,y j)‖2
2 (5)

where N8(xi,yi) is the 8-connection neighborhood of pixel
(xi,yi). In the scenario of super-resolution, however, us-
ing the smoothness constraint in Equation 5 is dangerous.
It can blur real image edges and diminish details. We use
a similar approach to the Tikhonov regularization com-
monly used in reconstruction based super-resolution meth-
ods [KS93]. Since bi-cubic up-sampling result already pro-
vides an over-smoothed version of a real world scene, we
encourage the super-resolution result to be close to the bi-
cubic up-sampling one as follows:

Esm = ∑
(x,y)∈Ih

‖Ih(x,y)− Ib(x,y)‖2
2 (6)

where Ib is the bi-cubic up-sampling result. The above
scheme provides necessary smoothness while avoiding dras-
tic over-smoothness. This specific smoothness term contains
one of the fidelity-preserving terms defined in Equation 1,
which encourages the high-resolution image close to the
low-resolution input. These two terms are used for differ-
ent purposes. Equation 1 is used to preserve fidelity, while
Equation 6 is used to achieve smooth results. Practically, al-
though using Equation 6 can also help achieve preserving
fidelity, it affects all the pixels, which is too strong a con-
straint. Equation 1 only constrains on grid points, allowing
pixels inside each grid to vary and achieve enhancing details.
Also, other smoothness terms can be used. For example, as
shown in our user study described in Section 4, although the
majority of users do not like over-smooth results, some do.
To provide more smoothness while keeping the trade-off be-
tween smoothness and sharpness manageable, we propose
another alternative smoothness term, which aims to mini-
mize the Laplacian of the high-resolution image as follows:

Esm = ∑
(x,y)∈Ih

‖∂2Ih

∂x2 +
∂2Ih

∂y2 ‖2
2 (7)

3.4. System solver

Based on the quality measures defined in the above subsec-
tions, we formulate image super-resolution as an optimiza-
tion problem by linearly combining all the measures as fol-
lows:

E = λ f id1E fid1 +λ f id2E fid2 +λdtEdt +λsmEsm (8)
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(a) Bicubic ×3 (b) Bicubic zoom in (c) Ours zoom in (d) Ours×3

Figure 3: Increasing local contrast for detail preserving/enhancing.

where λ? is the weight for each term. Currently we set these
weights empirically, and the default settings are λ f id1 = 1.0,

λ f id2 = 100.0†, λdt = 1.0 and λsm = 1.0. Since the mean-
ing of each weight is intuitive and directly related to a high-
level super-resolution property, users can also personalize
the super-resolution operation by changing the default pa-
rameters. (It should be noted that giving a very large weight
to Edt will induce a non-positive definite matrix from Equa-
tion 8 since Edt is negative when solving the system as de-
scribed in the following paragraph. In practice, we do not
find it a problem during experiments, since a very big weight
to this term leads to unattractive results.)

We calculate image gradients and Laplacian using fi-
nite difference methods. Since all the measures are at most
quadratic, the above problem is a quadratic minimization
problem. We can re-formulate Equation 8 into the following
linear system:

An×nIh
vn = bn (9)

where n is the size of the high-resolution image Ih, Ih
v is

the vector representation of Ih, A is a n× n matrix, and b
is a n dimensional vector. For a 500 × 500 image, A can
be 0.25M by 0.25M, which makes solving the linear sys-
tem potentially expensive. However, in the above measures,
since each pixel only interacts with its local neighborhood,
A is a narrow banded sparse diagonal matrix. Exploiting this
sparsity provides efficient solving.

We solve the system using a sparse implementation of
the pre-conditioned conjugate gradient method [BBC∗94],
where the pre-conditioner is obtained by sparse incomplete
Cholesky factorization [Saa96]. It takes about 4 seconds

† λ f id2 is significantly big because Efid2 has a big denominator.

to create a 500 × 500 image. The solution can be out of
the range of [0, 255]. We find from experiments that sim-
ply clamping the solution will not hurt the result perceptu-
ally. Otherwise, the quadratic system of Equation 8 with the
bound constraint can be efficiently solved using a linear con-
strained least squares solver (LCLS) [LBAD∗06].

4. Evaluation

Evaluating the visual quality of super-resolution results is
difficult. Objective measures, such as the root mean square
error (RMSE) and signal-to-noise ratio (SNR), are popular
in evaluating super-resolution results. However, they have
difficulty measuring visual quality [LO01]. Although there
have been many efforts on image quality assessment, no gold
standard method has been proposed [DVKG∗00, WSB02,
TLZZ04, WBSS04, WS05, WWS∗06]. The eye-ball scheme
is often adopted too to appreciate the super-resolution re-
sults. In this paper, we employ all these methods to eval-
uate our method. Moreover, since image visual quality as-
sessment is a subjective task, we designed a web-based user
study for further evaluation.

4.1. Subjective evaluation

We designed a web-based user study to evaluate the perfor-
mance of our algorithm. The goal of this study was to deter-
mine how our algorithm compares to others in creating high-
quality images. In this study, the results of the presented
algorithm were compared to those of the other algorithms.
To make the user study tractable, the number of total trials
assigned to each participant should be reasonable. This re-
quires us to select a small number of algorithms to compare
with on a small number of images. Meanwhile, to guarantee

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.



Liu et al. / Visual-Quality Optimizing Super Resolution

Which version of the image do you think better? Click on either the left or right one.
Now, you are evaluating Image 22/40

Figure 4: Screen copy of the user study.

the effectiveness of this study, we need to select representa-
tive methods and representative images.

In this study, besides the presented algorithm, we selected
another 4 representative algorithms to compare. They are
nearest neighbor interpolation (NN), bi-cubic interpolation
(Bicubic), back projection (BP) [IP91, IP93] and the soft-
edge algorithm (SEDGE) [DHX∗07]. NN is selected to test
if a super-resolution algorithm performs better than nothing.
The bi-cubic method is selected because it is the most pop-
ular method used in practice. It can create smooth results,
however it often blurs the true image edges. The BP algo-
rithm is selected for its representativeness of methods based
on some assumption of PSF functions. It can create visu-
ally faithful results, however it can introduce ringing arti-
facts. SEDGE is one of the most recently published meth-
ods. It is also a representative of edge directed methods.
SEDGE algorithm can create crisp edges as well as smooth
edge profiles, however it is dependent on the performance
of edge detection and the assumption that edge profiles shall
be smooth. Inaccurate edge detection or invalid assumptions
can lead to such artifacts as overly smooth edge profiles and
flat small image regions.

We experiment with the above 5 algorithms on an image
set that contains 600 images and covers a large variety of im-
age categories, including animals, trees, cars, planes, build-
ings, human faces, etc. In our experiments, we use all the
five algorithms to create for each image in the image set a
3x and 4x high-resolution result. In this way, each algorithm
creates 1200 results. Some of the results are illustrated in
Figures 8, 9 and 11. (Please refer to the electronic version
for better visual quality.)

In this study, the results of the presented algorithm were
compared to those of the other 4 algorithms. For each pair

ours v.s. images mean std. error. p value
NN 10 9.82 0.07 � 1.0e-4

Bicubic 10 7.18 0.39 � 1.0e-4
BP 10 8.84 0.23 � 1.0e-4

SEDGE 10 9.10 0.24 � 1.0e-4

Table 1: User study result.

of comparisons, we randomly selected 10 images from the
image set. So each participant did 40 trials. In each trial,
he/she is shown 2 super-resolution images created by two
different algorithms with the same input. Which algorithm’s
result was shown on the left or right is randomized, as was
the order of trials. Each participant was asked to select "the
image they think has better quality" by simply clicking the
image. A screen copy of the user study website is shown in
Figure 4.

In total, 49 participants participated in the study. These
participants consisted of graduate students in varying ma-
jors, and employees in varying companies.

To assess the presented algorithm, we counted the number
of trials where the super-resolution result from our algorithm
was selected. On average, participants chose our result over
a NN result 9.82 out of 10 times(98.2%), over a bi-cubic
result 7.18 out of 10 times (71.8%), over a BP result over
8.84 out of 10 times (88.4%), and over a SEDGE result over
9.10 out of 10 times (91.0%). These results suggest that our
algorithm is preferred to the other methods. We computed
the significance using a t-test(n = 49), and found all the p-
values to be smaller than 1.0e-4, which shows the preference
of our algorithm over NN, Bicubic, BP, and SEDGE. The
user study result is reported in Table 1.
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We looked into each comparison and found from the com-
parison between bi-cubic and our algorithm that 16.3% of
participants consistently prefer the bi-cubic up-sampling re-
sults. We sent to these participants the questionnaire "why do
you prefer the results on the left to the right" together with
the link which displays the images they selected on the left
and the corresponding unselected one on the right. Most of
the responses we received show that they prefer smooth re-
sults rather than those with sharp edges. This also partially
explains why our algorithm is preferred to SEDGE, which
creates sharper edges than ours.

Overall, this subjective user study suggests that our algo-
rithm creates higher visual-quality super-resolution results
than others. An important finding we obtain from this study
is that users’ preferences vary over individuals. A non-trivial
percent of human participants prefer smooth results rather
than sharp ones. This finding again supports our proposal to
use subjective user study to evaluate super-resolution algo-
rithms.

4.1.1. Robustness test

We manually examined all the results to check the robust-
ness of our algorithm. We consider a result to be a failure if it
has obvious artifacts. The failure rate for our algorithm, BP
and SEDGE are 2.5% and 21.2% and 32.0% respectively.
The typical artifacts of each algorithm are shown in Fig-
ure 11. Although this evaluation is biased, the significantly
smaller failure rate of our algorithm suggests its relative ro-
bustness. This result actually is consistent with the subjective
user study.

4.2. Objective evaluation

It is well recognized that objective metrics such as the root
mean square error (RMSE) and signal-to-noise ratio(SNR)
have difficulty measuring visual quality [LO01]. If we ap-
proximate the visual quality of a super-solution result with
its similarity to an ideal up-sampling result, these objective
metrics can still be used as a rough quality measurement.
This partially justifies why they are still the popular mea-
surements used in practice. In this study, besides the RMSE,
we use the Structural SIMilarity (SSIM) index for image
quality assessment [WBSS04]. The SSIM is based on the
assumption that human visual perception is highly adapted
for extracting structural information from a scene. It mea-
sures the degradation of structural information during trans-
forming one image to another, and is a popular method in
measuring image distortion.

We calculate the RMSE and SSIM values of all the 1200
images created by the 5 super-resolution algorithms studied
in the previous section. The result is reported in Table 2. Ac-
cording to these objective measures, our method performs
better than the NN, BP and SEDGE methods. However, there
is no significant difference between Bicubic and ours. Mean-
while, we notice that NN is significantly better than BP and

NN Bicubic BP SEDGE Ours
RMSE 16.96 14.52 18.96 17.53 14.75
SSIM 0.688 0.734 0.685 0.668 0.736

Table 2: Objective metrics. By RMSE, smaller values indi-
cate better performances; For SSIM, larger values indicates
better performances.

SEDGE, which seems to conflict with our subject impres-
sion that BP and SEDGE perform better than NN in most
cases. Typical examples are shown in Figure 8. This con-
firms that current objective metrics have difficulty measuring
visual quality [LO01].

4.3. More comparison

To further appreciate the performance of the presented
method, we compare it to the Sharp Bicubic method [Ado]
and more recent methods, including new edge-directed inter-
polation (NEDI) [LO01], image hallucination (IH) [STS03],
image upsampling via imposed edge statistics (IES) [Fat07],
nonlinear enhancement algorithm (NLE) [GAA00] and mul-
tiple regressors algorithm (MR) [TRF04]. These compar-
isons are illustrated in Figures 5, 6 and 7.

These examples demonstrate that the presented method
can achieve up-sampling results comparable to all these ad-
vanced methods. Compared to these methods, one particular
advantage of our method is its flexibility for users. As con-
firmed in our user study, users’ preferences vary over indi-
viduals. Because the quality measures in our algorithm di-
rectly correspond to user requirements, our algorithm sup-
ports a convenient user interface for them to personalize
their super-resolution operations. For example, increasing
the weight of the detail enhancing term can lead to sharp
results as illustrated in Figure 10.

5. Conclusion

In this paper, we present a robust perception-based image
super-resolution algorithm. The main contributions are the
visual-quality maximizing framework for super-resolution
and the design of perception-based image visual quality
measures in the scenario of super-resolution. Besides being
effective, these quadratic and local quality measures enable
efficient processing. Our subjective user study confirms that
the presented algorithm can create visually appealing results.
The user study also shows that users’ preference to the super
resolution results is diverse. Since each quality measure is
an intuitive property description of a super resolution result,
this presented algorithm supports users to personalize the
super-resolution operation by changing the default param-
eter setting. Moreover, new measures can be easily added
into the proposed framework.

A major concern of the presented method is its lack of

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.



Liu et al. / Visual-Quality Optimizing Super Resolution

(a) NN ×3 (b) Bicubic ×3 (c) IH ×3 (d) Ours ×3 (e) Ground truth

Figure 5: Super-resolution examples. These examples compare our algorithm to the image hallucination(IH) [STS03].

control on the global edge profile smoothness, since it does
not use a mid-level vision representation, such as edges.
However, as we argued in previous sections, using mid-
level or high-level information automatically obtained from
analysis on low-resolution input is a double-edged sword.
For example, automatic control of the edge smoothness is
difficult. Fine details along edges could be the manifest
of true image characteristics, and they could also be ras-
terization/sampling artifacts. Our experiments confirm that
in practice, although advanced edge smoothing algorithms,
such as [DHX∗07], can create good results, they can also
create objectionable artifacts. Also, current methods for
extracting mid-level vision representation are not reliable
enough. The presented method achieves stable results over a
wide variety of images at the expense of control of the global
edge smoothness. Therefore, we consider the presented algo-
rithm a candidate for general image editing software.

Although we argued that using mid-level/high-level anal-
ysis of the low-resolution input could be risky, providing
such an option for users could still be helpful. So an im-
portant extension to the proposed algorithm is a component

which considers the inter-patch interaction and encourages
smooth edges. A promising way is to extend the covariance
based edge adaptation scheme [LO01] by encouraging high-
resolution covariance to be consistent with its low-resolution
counterpart.
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(a) NN×3 (b) Bicubic×3 (c) BP×3

(d) SEDGE×3 (e) Ours×3 (f) Ground truth

(g) NN×3 (h) Bicubic×3 (i) BP×3

(j) SEDGE×3 (k) Ours×3 (l) Ground truth

Figure 8: Super-resolution results from 5 algorithms. Our algorithm creates reasonably sharp edges as shown in (e) and (k),
and creates high contrasty local structure details as shown in the top of building in (e). BP creates visually faithful results,
especially in the rich texture regions; however it introduces ringing artifacts along strong edges as shown in(c) and (i). SEDGE
creates crisp and smooth edges; however the smooth edge diminishes the structure detail as shown in the top of building in (e).
Also SEDGE creates flat image regions, such as the ground under the chair in (j).
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(a) NN ×4 (b) Ours ×4

Figure 9: More examples. c© 2008 The Author(s)
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(a) λdt = 0.2 (b) λdt = 1 (c) λdt = 2

Figure 10: Super-resolution result with different detail-enhancing weights λdt .

(a) Ours×4 (b) BP×4 (c) SEDGE×4

Figure 11: Typical artifacts of S.R. algorithms. (a) Our method introduces zigzag artifacts along long edges, (b) BP introduces
ringing artifacts, and (c) SEDGE creates over smooth edge profiles and flat small image regions.

man visual sensitivity. IEEE Transactions on Image Pro-
cessing 4, 6 (June 1995), 713–724.

[KS93] KIM S., SU W.-Y.: Recursive high-resolution re-
construction of blurred multiframe images. IEEE Trans-
actions on Image Processing 2 (4 1993), 534 – 539.

[Lam91] LAMMING D.: Contrast sensitivity, chapter
5,. Cronly-Dillon, J., Vision and Visual Dysfunction 5
(1991).

[LBAD∗06] LAWRENCE J., BEN-ARTZI A., DECORO

C., MATUSIK W., PFISTER H., RAMAMOORTHI R.,
RUSINKIEWICZ S.: Inverse shade trees for non-
parametric material representation and editing. ACM
Trans. Graph. 25, 3 (2006), 735–745.

[LLT05] LIU W., LIN D., TANG X.: Hallucinating faces:
Tensorpatch super-resolution and coupled residue com-
pensation. In IEEE CVPR (2005), pp. 478– 484.

[LO01] LI X., ORCHARD M.: New edge-directed inter-
polation. IEEE Transactions on Image Processing 10, 10
(Oct. 2001), 1521–1527.

[LSZ01] LIU C., SHUM H. Y., ZHANG C. S.: Two-step
approach to hallucinating faces: global parametric model
and local nonparametric model. In IEEE CVPR (2001),
pp. 192–198.

[Not00] NOTHDURFT H.: Salience from feature contrast:

additivity across dimensions. Vision Research 40, 11-12
(2000), 1183–1201.

[PPK03] PARK S. C., PARK M. K., KANG M. G.: Super-
resolution image reconstruction: a technical overview.
IEEE Signal Processing Magazine (2003), 21–36.

[PRM00] POLESEL A., RAMPONI G., MATHEWS V.: Im-
age enhancement via adaptive unsharp masking. IEEE
Transactions on Image Processing 9, 3 (Mar. 2000), 505–
510.

[Saa96] SAAD Y.: Iterative Methods for Sparse Linear
Systems. PWS Publishing Company, 1996.

[STS03] SUN J., TAO H., SHUMF H.: Image hallucina-
tion with primal sketch priors. In Proc. IEEE CVPR’03
(2003), pp. 729–736.

[TLZZ04] TONG H., LI M., ZHANG H.-J., ZHANG

C.: No-reference quality assessment for jpeg2000 com-
pressed images. In IEEE ICIP (2004), pp. 24–27.

[TRF04] TAPPEN M., RUSSELL B., FREEMAN W.: Ef-
ficient graphical models for processing images. In IEEE
CVPR (2004), pp. 673–680.

[TTT06] TAI Y.-W., TONG W.-S., TANG C.-K.:
Perceptually-inspired and edge-directed color image
super-resolution. In IEEE CVPR 2006 (2006), pp. 1948–
1955.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.



Liu et al. / Visual-Quality Optimizing Super Resolution

[UAE95] UNSER M., ALDROUBI A., EDEN M.: Enlarge-
ment or reduction of digital with minimum loss of infor-
mation. IEEE Trans. Image Process, 3 (Mar. 1995), 247–
258.

[VV90] VALOIS R. L. D., VALOIS K. K. D.: Spatial Vi-
sion. Oxford University Press, 1990.

[WBSS04] WANG Z., BOVIK A. C., SHEIKH H. R., SI-
MONCELLI E. P.: Image quality assessment: From error
visibility to structural similarity. IEEE Transactions on
Image Processing 13, 4 (Apr. 2004), 600–612.

[Wil80] WILSON H. R.: A transducer function for thresh-
old and suprathreshold human vision. Biological Cyber-
netics 38, 3 (1980), 171–178.

[WS05] WANG Z., SIMONCELLI E. P.: An adaptive linear
system framework for image distortion analysis. In IEEE
ICIP (2005), pp. 1160–1163.

[WSB02] WANG Z., SHEIKH H., BOVIK A.: No-
reference perceptual quality assessment of jpeg com-
pressed images. In IEEE ICIP (2002), pp. Vol I: 477–480.

[WT04] WANG X., TANG X.: Hallucinating face by
eigentransformation with distortion reduction. Proc. of
ICBA’04 (2004), 88–94.

[WTS05] WANG Q., TANG X., SHUM H.: Patch based
blind image super resolution. In Proc. of ICCV’05 (2005),
no. 1, pp. 709–716.

[WWS∗06] WANG Z., WU G., SHEIKH H., SIMONCELLI

E., YANG E.-H., BOVIK A.: Quality-aware images.
IEEE Transactions on Image Processing 15, 6 (2006),
1680 – 1689.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


