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Abstract. This paper presents an approach to shadow removal that
preserves texture consistency between the original shadow and lit area.
Illumination reduction in the shadow area not only darkens that area,
but also changes the texture characteristics there. We achieve texture-
consistent shadow removal by constructing a shadow-free and texture-
consistent gradient field. First, we estimate an illumination change
surface which causes the shadow and remove the gradients it induces. We
approximate the illumination change surface with illumination change
splines across the shadow boundary. We formulate estimating these
splines as an optimization problem which balances the smoothness be-
tween the neighboring splines and their fitness to the image data. Second,
we sample the shadow effect on the texture characteristics in the umbra
and lit area near the shadow boundary, and remove it by transforming
the gradients inside the shadow area to be compatible with the lit area.
Experiments on photos from Flickr demonstrate the effectiveness of our
method.

1 Introduction

Shadow removal is often required in digital photography as well as in many vision
applications. For clarity, we define the problem of shadow removal at the very
beginning. Following previous work [1,2,3], an image I can be represented as the
composition of the reflectance field R and the illumination field L as follows:

I(x, y) = R(x, y) · L(x, y)

A shadow image can be formulated by applying an illumination change surface
C(x, y) to the illumination field as follows:

Ĩ(x, y) = I(x, y) · C(x, y) (1)
Ĩ(x, y) = I(x, y) + C(x, y) (2)

where Equation 2 is Equation 1’ counterpart in the log domain. Ĩ, I and C are
the logarithms of Ĩ, I and C respectively. C is usually assumed to be 1 in the lit
area, a constant c(∈ (0, 1)) in the umbra area, and changing from c to 1 in the
penumbra area. This paper works in the log domain.

The normal goal of the shadow removal is to estimate the illumination change
surface C from Ĩ and recover the shadow free image I or I. It is important to
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(a) original image (b) shadow boundary (c) zoom in (d) our result

Fig. 1. Given a rough shadow boundary ’P’ provided by users (b and c), our algorithm
removes the shadow (d). The red curve inside the brush stroke is the trajectory of the
brush center. Users do not need to provide a precise shadow boundary as shown in
(c) (Notice the eagle’s right wing.). The brush strokes divide the image into 3 areas:
definite umbra areas,’U’, definite lit areas, ’L’, and boundary, ’P’, which contains the
penumbra area as well as parts of the umbra and lit area.

examine how the illumination change surface C affects an image. Since an image
can be reconstructed from its gradient field with proper boundary conditions,
we focus on how C affects the gradient field in the log domain.

1. C will affect the gradients in the penumbra area where it is not uniform.
Ideally, C will not affect the gradients in the umbra and lit area since it is
uniform in these 2 areas, and is canceled off in calculating the gradients.
However, this is not often true in practice as explained in the following.

2. In practice, the imaging process suffers from noise and quantization errors.
Usually the signal to noise/quantization error ratio in the shadow area is
lower than in the lit area. In this way, C makes the effect of noise/quantization
error on the gradients in the shadow area more significant than in the lit area.

3. Normally, the poor lighting in shadow areas can weaken the texture, and
even diminish the details. However, this is not always true for many im-
ages containing highly specular surfaces. If the illumination is strong in the
scene, texture details in the lit area disappear; while in the shadow area, the
reduction of the illumination can keep the textures there.

4. If the surface response curve has a different shape in the shadow and lit area,
scaling up the shadow region to cancel C will change the texture character-
istics.

From the above observations, we can see that applying the illumination change
surface C not only affects the gradients in the penumbra area, it also affects
the characteristics of the gradient fields in the whole shadow area. We call the
former the shadow effect on the penumbra gradients and the latter the shadow
effect on the gradient characteristics in the shadow area.

1.1 Previous Work

This paper focuses on removing shadows from a single image. Many methods
have been presented to address this problem. Shadow removal is usually achieved
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(a) original image (b) multiplying a constant (c) zeroing gradient

(d) texture preserving [3] (e) in-painting [4] (f) our result

Fig. 2. Motivating example. (b): multiplying constant to the image intensities inside
the shadow region. (c): zeroing gradients inside the shadow boundary. (d): texture-
preserving shadow removal [3]. (e): in-painting the shadow boundary region [4].

in two steps: shadow detection and image reconstruction. (Approaches to remov-
ing shadow using information from multiple images have also been presented(c.f.
[2,5]).)

Many methods have been presented to automatically detect shadow regions.
Finlayson et al. estimate an illumination invariant image based on an invariant
color model, and use this invariant image together with the original image to
locate the shadow region [6]. Similarly, Salvador et al. use invariant color features
to segment cast shadows [7]. Levine and Bhattacharyya [8] study properties
of color ratios across boundaries between regions in a segmented image, and
use a support vector machine to identify shadow regions based on these color
ratios. In digital photography, shadow boundaries are often specified through
user interactions [9,10]. Our algorithm relies on users to roughly specify the
shadow boundary, and refines it automatically.

Once shadow areas are located, they can be removed by multiplying a suitable
scalar to the shadow pixels to cancel the effect of the illumination change surface
C. This easy method can create a noticeable over-saturated band in the penumbra
area as illustrated in Fig. 2(b). To solve this problem, Baba et al. adapt the
multiplicative scalars C based on shadow densities [11]. Recently, Arbel and
Hel-Or estimate C by considering the surface geometry, and effectively remove
the shadow while preserving texture in both umbra and penumbra areas [3], as
illustrated in Fig. 2(d).

Alternatively, shadows can be removed by zeroing gradients in the penumbra
area and applying 2D integration to reconstruct the shadow-free image [2,6].
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These methods usually work in the log image domain. As shown in Fig. 2(c),
zeroing gradients in the penumbra area nullifies the texture there, however. To
solve this problem, in-painting techniques are applied to fill in the missing tex-
ture [12,4]. However, in-painting sometimes introduces inconsistent textures as
illustrated in Fig. 2(e). Alternatively, Mohan et al. [10] estimate a soft shadow
model in the penumbra area, and remove shadow effect in the gradient domain
accordingly.

Although previous methods vary in estimating the illumination change sur-
face C, they share common ideas to reconstruct the shadow-free image in the
umbra area: multiplying a constant scalar to cancel the effect of C. Applying 2D
integration in the log domain with proper boundary conditions is equivalent to
multiplying a constant in the image domain. This scheme can effectively match
the overall illumination in the umbra area to that in the lit area. And using
proper scalar constants to the penumbra area can also cancel the shadow effect
on the penumbra area. However, these methods can not remove the shadow ef-
fect on the texture characteristics of the shadow area. Multiplying a constant
can magnify the noise and quantization error in the original shadow region. For
particular images with strong specular surface and strong lighting, the details
in the shadow area, which disappear in the lit area, will be enhanced. All these
lead to inconsistent texture between the shadow area and lit area. For example,
the texture in the shadow area in Fig. 2(c), (d) and (e) is not compatible with
that in the lit area.

1.2 Our Contribution

In this paper, we present a shadow removal method that preserves texture con-
sistency. Since textures manifest themselves by image gradients, our algorithm
works in the gradient domain. Specifically, we construct a new image gradient
field that removes the shadow effects on both the gradients in the penumbra
area and the characteristics on the gradients in the whole shadow area. From
this new image gradient field, we can reconstruct the shadow-free image by solv-
ing a Poisson equation.

Our major contribution is a method for constructing a shadow-free and
texture-consistent gradient field by removing the two-fold shadow effects on
the gradient field as mentioned previously. First, we simultaneously locate the
penumbra area and estimate the illumination change curves across the shadow
boundary by estimating and sampling the illumination change surface using
line segments. With the illumination change curves, we can cancel the effect of
shadow on the gradient field in the penumbra area. Second, we estimate the
shadow effect on the gradient distribution in the shadow area, and transform
the gradient field there to cancel the effect to be consistent with that in the lit
area. In this way, we obtain the texture-consistent gradient field. These two key
algorithms are detailed in § 2. Experiments on photos from Flickr demonstrate
the effectiveness of our algorithm as detailed in § 3.
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2 Texture-Consistent Shadow Removal

In this paper, we provide a brush tool for users to mark the shadow boundary.
As illustrated in Fig. 1(c), users can select a brush with much larger size than
the boundary, and do not need to delineate the boundary precisely. The brush
strokes divide an image into three areas: definite umbra area, definite lit area,
and boundary, which consists of penumbra area as well as parts of the umbra
and lit area. Our algorithm precisely locates the penumbra area from the user
specified boundary, and removes the shadow seamlessly. A working example of
our algorithm is illustrated in Fig. 1.

This paper aims to remove shadow effects such that the resulting shadow-free
image has consistent texture between the shadow and lit area. We first construct
a new image gradient field that removes the gradients induced by the shadow
effect and has consistent gradient characteristics between the shadow and lit
area. Then we can reconstruct the shadow-free image from the new gradient
field through 2D integration by solving a Poisson equation similar to previous
work (c.f. [2,6,13]). The major challenge is to construct the new image gradient
field Gn given only the rough shadow boundary from users. In § 2.1, we de-
scribe a novel algorithm to estimate the illumination change curves across the
shadow boundary and cancel the effect of illumination change on the gradient
field in the penumbra area. In the § 2.2, we describe a method to estimate the
shadow effect on the texture characteristics in the shadow area and transform
the characteristics of gradients there to be compatible with that in the lit area.

2.1 Estimate Illumination Change in Penumbra Area

Properly handling the shadow boundary or the penumbra area is a challenge for
shadow removal. The ambiguity of the shadow boundary often makes automatic
shadow boundary detection methods fail. Relying on users to provide the pre-
cise shadow boundary casts a heavy burden on them. To relieve users’ burden,
Mohan et al. [10] presented a piece-wise model where users only need to specify
connected line segments to delineate the boundary. However, when dealing with
complex shadow boundaries like the eagle’s right wing in Fig. 1(c), their method
will still require users to specify a large number of key points. To further reduce
users’ burden, we only require a rough specification of the shadow boundary
from users using brush tools as illustrated in Fig. 1(c).

Given an inaccurate shadow boundary specification, our method simultane-
ously locates the shadow boundary precisely and estimates the illumination
change C(x, y) in Equation 2 in the penumbra area. The complex shape of
the shadow boundary makes devising a parametric model of C(x, y) difficult.
However, we observe that any line segment crossing the boundary has an easily
parameterizable illumination profile. Therefore, we model C(x, y) by sampling
line segments across the boundary and estimating a parametric model for each as
illustrated in Fig. 3(a). Since the user provided-boundary usually is not accurate
enough, unlike [3], we do not sample C(x, y) using line segments perpendicular
to the boundary. Instead, like [10], we use a vertical/horizontal sampling line per
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Fig. 3. Sampling illumination change surface using line segments. (a): vertical sampling
lines. (b): t0 and r are the brush center and brush radius. [t1, t2] is the penumbra
area. extent is the range in the umbra and lit area, used to estimate the gradient
characteristics.

pixel along the boundary and use the estimated illumination change to cancel
the shadow effect on the gradient in Y/X direction. We estimate horizontal and
vertical illumination change sampling lines independently.

We model the illumination change along each line segment as the following
C1 continuous piece-wise polynomial as illustrated in Fig. 3(b):

Cl(t) =

⎧
⎨

⎩

c, t < t1;
f(t), t1 ≤ t ≤ t2;
0, else.

(3)

This piece-wise polynomial model can be parameterized by 3 parameters, de-
noted as Ml(c, t1, t2). Here t1 and t2 define the penumbra area along the sampling
line. (Without losing generality, we assume t < t1 lies in the umbra area and
t > t2 lies in the lit area.) c(≤ 0) is the reduction of the illumination in the umbra
area. f(t) is a cubic curve determined by the two boundary points, (t1, c) and
(t2, 0), and the derivatives at these two points, f ′(t1) = 0 and f ′(t2) = 0. This
illumination change model is determined by both the location of the penumbra
area and the characteristics how the illumination changes from c in the umbra
area to 0 in the lit area. Due to these combined properties, our method esti-
mates the penumbra area location and the illumination change simultaneously
by estimating the above piece-wise polynomial model.

Because we assume that the illumination change surface is smooth, neighbor-
ing illumination change models along the shadow boundary should be similar
to each other. So we solve for all these models simultaneously instead of fitting
each model separately. We formulate the problem of finding illumination change
models as an optimization problem, aiming to balance the fitness of the models
to the shadow image and the smoothness between neighboring models.

E =
∑

li

Efit(Mli, Ĩ) + λ
∑

li

∑

lj∈N(li)

Esm(Mli, Mlj) (4)
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where Efit(Mli, Ĩ) measures the fitness error of the illumination change model
Mli to the original shadow image Ĩ, Esm(Mli, Mlj) measures the similarity be-
tween Mli and Mlj , and N(li) denotes the neighborhood of sampling line li. λ
is a parameter, with a default value 10.

We measure Efit(Mli, Ĩ), the fitness error of the model Mli to the shadow
image Ĩ, as how well the gradient in the penumbra area fits into its neighborhood
along the sampling line after shadow effect compensation according to Mli.

Efit(Mli, Ĩ) = −Πt∈[ti0−ri,ti0+ri]ϕ(Ĝli(t), T tex
li ) (5)

Ĝli(t) = G̃li(t) − C′
li(t) (6)

where Cli is the illumination change curve of Mli as defined in Equation 3, C′
li

is its first derivative, G̃li is the gradient along li, and Ĝli(t) is the gradient
after canceling the shadow effect. T tex

li is the texture distribution along li. ϕ(, )
measures the fitness of the gradient to the distribution T tex

li . We model the
texture distribution along li as a normal distribution N(μi, σ

2
i ) of the gradients,

which can be estimated explicitly from the umbra and lit extension along li as
illustrated in Fig. 3(b). Accordingly, we define the fitness measure as follows:

ϕ(Gli(t), T tex
li ) =

exp(−(Gli(t) − μi)2/2σ2
i )

√
2πσ2

i

(7)

We define Esm(Mli, Mlj), the smoothness cost between neighboring illumination
change models as follows:

Esm(Mli, Mlj) = γ(ci − cj)2 + (1 − γ)((t1i − t1j)2 + (t2i − t2j)2)

where the first term measures the difference between the illumination steps from
the umbra to lit area, and the second term measures the difference between the
location of the penumbra area along sampling lines. We emphasize the fact that
the illumination change inside the umbra area is mostly uniform by weighting
the first term significantly. The default value for γ is 0.9.

Directly solving the minimization problem in Equation 4 is time-consuming.
We approximate the optimal solution in two steps:

1. For each sampling line li, we find an optimal illumination change model Mo
li

which fits the shadow image most by minimizing the fitness error defined
in Equation 5. Since the extent of the penumbra area is small, we use a
brute-force search method.

2. With the optimal illumination change model Mo
li of each sampling line, we

approximate the fitness error term in Equation 4 using the difference between
the illumination change model Mli and Mo

li as follows:

E =
∑

li

Esm(Mli, M
o
li) + λ

∑

li

∑

lj∈N(li)

Esm(Mli, Mlj)

The above energy minimization is a quadratic minimization problem. We
solve it using a Preconditioned Conjugate Gradient method [14].
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(a) original image (b) after removing shadow (c) after texture transfer
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(d) intensity along row 10 (e) gradient along row 10

Fig. 4. Reconstruct the gradient field for shadow removal. (a) shows the original image
and its gradient field along X direction. For the sake of illustration, we encode the
negative and positive gradient values using the GREEN and RED channels respectively.
From the original gradient field, we can see the shadow effect on the gradient field by
noticing the strong edges along the shadow boundary. By estimating the illumination
change across the penumbra area, the shadow effect on the gradient field is canceled
as illustrated in (b) and (d). However, as we can see in (b) and (e) right, the shadow
area is more contrasty than the lit area, causing inconsistent texture characteristics.
This inconsistency is removed after gradient transformation as shown in (c) and (e).

After obtaining the illumination change model along each sampling line, we
apply it to the gradient field to cancel the shadow effect according to Equation 6.
An example of canceling the shadow effect on the gradients in the penumbra area
is shown in Fig. 4(a) and (b).

2.2 Estimate Shadow Effect on Texture Characteristics

Canceling the shadow effect on the gradients in the penumbra area can effectively
match the illumination in the shadow area (including penumbra and umbra
area) to that in the lit area. However, as illustrated in Fig. 4(b) and (c), it
cannot guarantee the texture consistency between the shadow and lit area since
the shadow can also affect the texture characteristics in the whole shadow area
(§ 1). Our method estimates the shadow effect on the gradient characteristics
and transfers the shadow-effect free gradient characteristics to the shadow area
to make it compatible with the lit area.
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Like transferring color between images [15], where the global color charac-
teristics of an image is parameterized using its sampling mean and deviation,
we model the texture characteristics using the sampling mean and deviation of
the gradient field. So if given the target mean and deviation, we transform the
gradient field in the shadow area as follows:

Gs(x, y) = μ̂t +
(Ĝs(x, y) − μ̂s) ∗ σ̂t

σ̂s
(8)

where Ĝs and Gs are the gradients in the shadow area before and after trans-
formation respectively, and μ̂s and σ̂s are the mean and deviation of Ĝs. μ̂t and
σ̂t are the target mean and deviation.

Like transferring color [15], using the characteristics parameters of the lit area
as the target parameters can achieve consistent texture characteristics between
the shadow and lit area. However, this scheme works well only if the texture
distribution is globally homogeneous in the image. Otherwise it can destroy local
textures in the shadow area. We calculate the target characteristics parameters
by estimating the shadow effect on the gradient distribution and canceling this
effect from the original gradient field. Assuming the gradient distribution around
the shadow boundary is homogenous and the shadow effect is independent of
the shadow-free image, we estimate the shadow effect parameters from gradients
around the boundary as follows:

{
μse = μs

b − μl
b

σ2
se = σs

b
2 − σl

b

2 (9)

where μse and σse are the mean and deviation of the shadow effect on gradients
in the shadow area. μs

b and σs
b are the mean and deviation of the gradients in

the umbra side along the shadow boundary(the extent parts as illustrated in
Fig. 3(b)) , and μl

b and σl
b are those in the lit area side. Accordingly, the target

mean and deviation can be calculated by canceling the shadow effect as follows:
{

μ̂t = μ̂s − μse

σ̂t =
√

σ̂s2 − σ2
se

(10)

Fig. 4(b) and (c) shows that the gradient field transformation leads to consistent
texture characteristics between the shadow and lit area. Please refer to the whole
image in Fig. 6(a) to examine the consistency of the texture.

3 Results

We have experimented with our method on photos with shadows from Flickr.
These photos have different texture characteristics. We report some representa-
tive ones together with the results in Fig. 1, Fig. 2, Fig. 6, Fig. 7 and Fig. 8, as
well as comparison to many representative works [2,6,4,3,10]. (Please refer to
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(a) original (b) zeroing-gradient

(c) result from [10] (d)our result

Fig. 5. Images in (a) and (c) are from [10]. (b) shadow removed by nullifying the
gradients in the boundary [2,6]. (c) shadow removed using the method from [10]. There,
not only the illuminance level in the lit area is changed, but also the shadow area is
not as contrasty as the lit area. Our method creates a texture-consistent result.

the electronic version of this paper to examine the results. Zooming
in on the images will be helpful for the examination.)

For all the experiments, users specify the shadow boundaries with a brush
tool. Users do not need to delineate the boundary precisely as shown in Fig. 1(c)
(notice the eagle’s right wing). They can pick a brush with much larger size than
the real shadow boundary area to cover the boundary as shown in the second
column of Fig. 6. Given the user specified shadow boundary, our system can
automatically perform shadow removal efficiently. The majority of the time is
spent on solving the Poisson equation, whose complexity is dependent on the
number of pixels in the shadow region. It takes about 3 seconds to remove a
shadow region with about 60,000 colored pixels on a 2.2GHz Athlon machine.

Fig. 2 and Fig. 5 compare our method to other representative methods.
Methods [2,6] cancel the shadow effect by zeroing the gradients in the boundary
area. In this way, the textures there are nullified as shown in Fig. 2(c). While
in-painting [4] can partially solve this problem, it sometimes destroys the
continuity of the texture as shown in Fig. 2(e). The recent method from [3] can
effectively remove shadow, however the texture in the original shadow area is
not consistent with that in the lit area as shown in Fig. 2(d). Our method can
not only remove the shadows, but also keep the texture consistency between the
shadow and lit area as shown in Fig. 2(f). Fig. 5 compares our method to the
recent work from [10]. While the illuminance between the lit and the original
shadow area is balanced in the result from [10], the illuminance level in the lit
area is changed. More overall, the lit and the original shadow area have different
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(a) sandy beach

(b) pavement

(c) rock cliff

Fig. 6. Experiments results. Left: original images; Middle: shadow boundaries; Right:
our results.
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(a) tree in hill (b) sandy beach

(c) desert sand dawn break (d) bridge over river

Fig. 7. Experiments results. Left: original images; Right: our results.

contrasty levels as shown in Fig. 5(c). Our method effectively removes the shadow
as well as keeps the consistent texture characteristics across the whole image as
shown in Fig. 5(d) and other examples. For instance, in the Fig. 7(b), the texture
of small shell grains in the shadow area and in the lit area is consistent. For the
desert example in Fig. 7(c), the highlights across the original shadow boundary
are consistent between the shadow and lit area. For the river surface example
in Fig. 7(d), the ripples in the shadow area are consistent with that in the lit
area. Particularly, the wavefront in the middle is continuous across the original
shadow boundaries. For the tree example in Fig. 7(a), the soil inside the shadow
region is consistent with the lit area surrounding it. The hill example in Fig. 8(a)
is similar.

(a) rock cliffs (b) mountain above clouds

(c) volcano above clouds (d) cast shadow of semi-transparent object

Fig. 8. Experiments results. Left: original images; Right: our results.
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From the results in Fig. 6, 7 and 8, we can see that the proposed algorithm
can seamlessly remove shadows in images with various texture characteristics.
For example, the shadows are on the beach (Fig. 6(a)), on the road surfaces
(Fig. 6(b)), on the sands (Fig. 7(b)), on the desert (Fig. 7(c)), on the river
surface (Fig. 7(d)), on the hills (Fig. 7(a) and Fig. 8(a)), etc. Our method works
well on specular surfaces such as Fig. 6(a), as well as Lambertian surfaces, such
as examples in Fig. 7.

Examples in Fig. 8(b) and (c) are very interesting. Noticing the mountains
in these examples, shadow removal reveals the beautiful texture details in the
original dark shadow areas, which are concealed in the original shadow images.
What is particularly interesting is that shadow removal recovers the blue glacier
ice phenomenon1 in the Fig. 8(b) (Notice the blue-cyan area of the snow in the
left bottom.).

We found from the experiments that our method does not work well on some
images. Taking Fig. 8(d) as an example, the shadow area in the original im-
age looks more reddish than its surrounding lit area. This is because when the
lighting is blocked by the semi-transparent red leaf, its red component can still
pass through. For this kind of cast shadow, the general shadow model in Equa-
tion 2 used in previous work (including ours) does not hold. Noticing the original
shadow region in the resulting image, we can still sense the reddish component
there. In future, analyzing the caustics of shadow from its context may help solve
this problem. However, our current method is effective for many images.

4 Conclusion

In this paper, we presented a texture-consistent shadow removal method. Specif-
ically, we construct a shadow-effect free and texture-consistent gradient field
between the shadow and lit area and recover the shadow-free image from it
by solving a Poisson equation. The experiments on shadow images from Flickr
demonstrate the effectiveness of the proposed method.

Currently, our method provides users with a brush tool to specify the shadow
boundary. The brush tool is very popular in digital photography software. As
illustrated in the examples in previous sections, our method does not require
a precise shadow boundary. We envision our method a convenient tool for in-
teractive photo editing. Of course, integrating an automatic shadow detection
algorithm can make our method even easier to use.

We characterize texture characteristics using the sampling mean and devi-
ation of the gradient field. Based on our current experiments on photos from
Flickr, this global model works well. An important reason for its success is that
a global transformation on an image or its various representations usually pre-
serves important properties of the original image. In fact, similar models work
pretty well in other applications like color transfer [15] as well.

1 http://www.northstar.k12.ak.us/schools/joy/denali/OConnor/

colorblue.html

http://www.northstar.k12.ak.us/schools/joy/denali/OConnor/colorblue.html
http://www.northstar.k12.ak.us/schools/joy/denali/OConnor/colorblue.html
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