Computational Photography

Prof. Feng Liu

Spring 2021

http://www.cs.pdx.edu/~fliu/courses/cs510/

04/29/2021

Last Time

- □ Re-lighting
 - HDR

Today

- Panorama
 - Overview
 - Feature detection

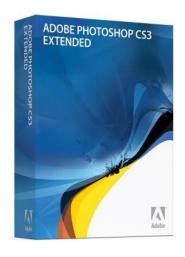
Panorama Building: History

Along the River During Ching Ming Festival by Z.D Zhang (1085-1145)

San Francisco from Rincon Hill, 1851, by Martin Behrmanx

Panorama Building: A Concise History

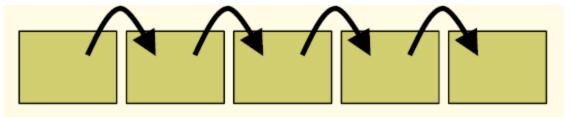
The state of the art and practice is good at assembling images into panoramas



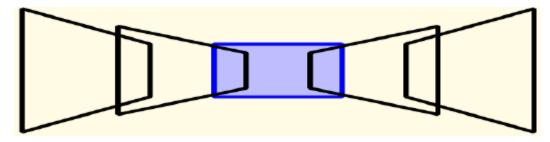
- Mid 90s -Commercial Players (e.g. QuicktimeVR)
- Late 90s -Robust stitchers (in research)
- Early 00s -Consumer stitching common
- Mid 00s -Automation

Stitching Recipe

□ Align pairs of images

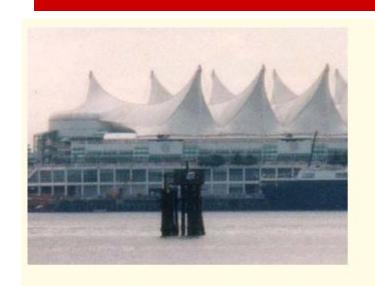


□ Align all to a common frame



□ Adjust (Global) & Blend

Stitching Images Together

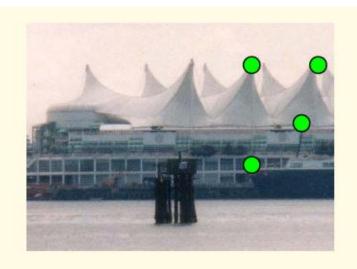


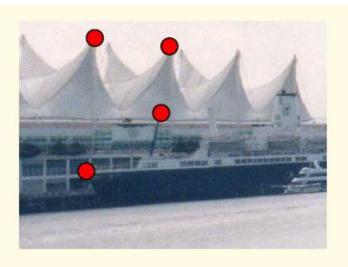
When do two images "stitch"?

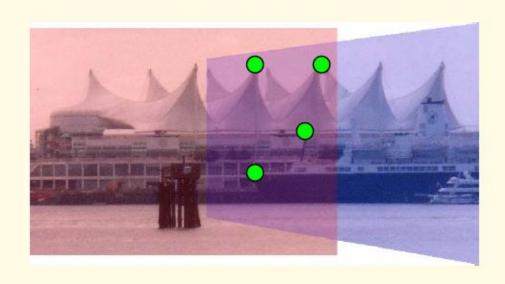
Images taken from the same viewpoint are

related Image 1 **Optical Center** Image 2

Images can be transformed to match





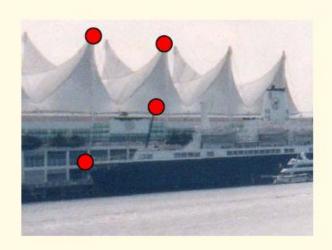


Images are related by *Homographies*

8 parameter, 2D Image Transformation

$$x', y' = \frac{ax + by + c}{gx + hy + 1}, \frac{dx + ey + f}{gx + hy + 1}$$

$$\begin{bmatrix} wx' \\ wy' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$



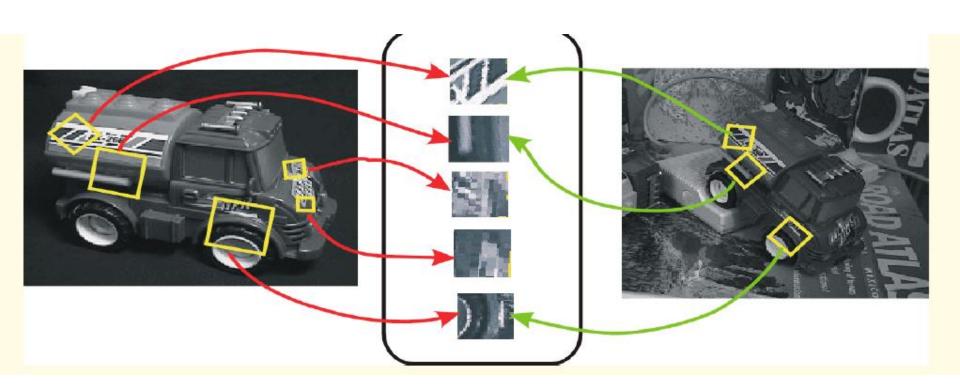
Compute Homographies

- Find Corresponding Features*
- Compute Best-Fit Homography (using robust statistics e.g. RANSAC)

- Two images stitch if and only if the best fit homography is a good fit
- If the best fit homography is a bad fit, the resulting panorama will be bad.

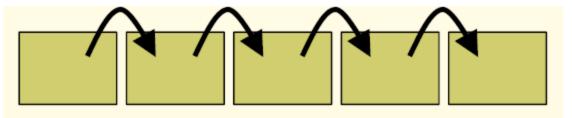
Automatic Feature Points Matching

- Match local neighborhoods around points
- Use descriptors to efficiently compare SIFT
 - [Lowe 04] most common choice

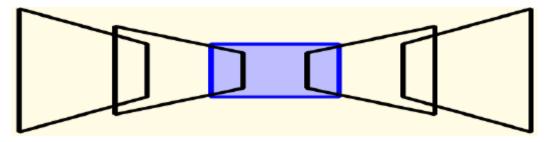


Stitching Recipe

□ Align pairs of images



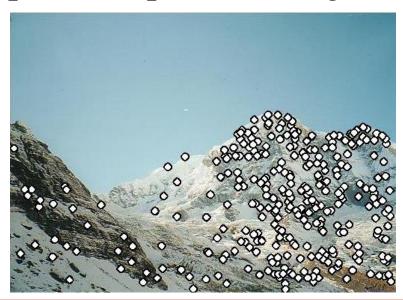
□ Align all to a common frame

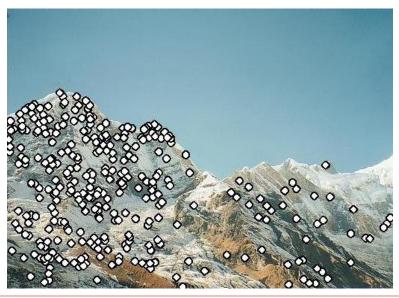


□ Adjust (Global) & Blend

Wide Baseline Matching

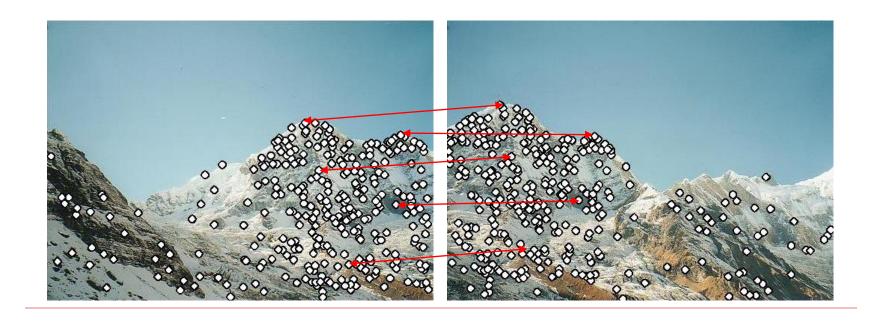
- Images taken by cameras that are far apart make the correspondence problem very difficult
- Feature-based approach: Detect and match feature points in pairs of images





Matching with Features

- Detect feature points
- Find corresponding pairs



Matching with Features

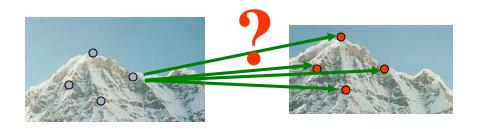
- ☐ Problem 1:
 - Detect the same point independently in both images

no chance to match!

We need a repeatable detector

Matching with Features

- □ Problem 2:
 - For each point correctly recognize the corresponding point



We need a reliable and distinctive **descriptor**

Properties of an Ideal Feature

- □ Local: features are local, so robust to occlusion and clutter (no prior segmentation)
- Invariant (or covariant) to many kinds of geometric and photometric transformations
- □ Robust: noise, blur, discretization, compression, etc. do not have a big impact on the feature
- Distinctive: individual features can be matched to a large database of objects
- Quantity: many features can be generated for even small objects
- ☐ Accurate: precise localization
- ☐ Efficient: close to real-time performance

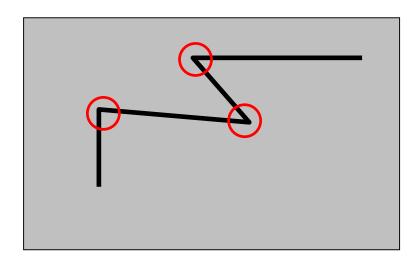
Problem 1: Detecting Good Feature Points

[Image from T. Tuytelaars ECCV 2006 tutorial]

Feature Detectors

- Hessian
- □ Harris
- □ Lowe: SIFT (DoG)
- Mikolajczyk & Schmid: Hessian/Harris-Laplacian/Affine
- Tuytelaars & Van Gool: EBR and IBR
- Matas: MSER
- □ Kadir & Brady: Salient Regions
- Others

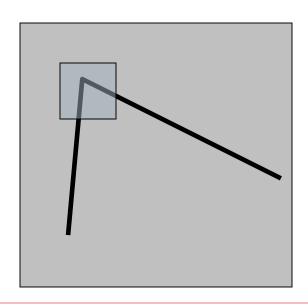
Harris Corner Point Detector



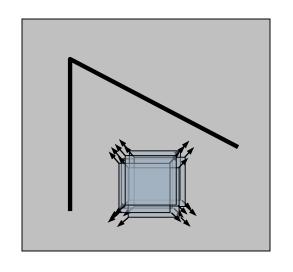
C. Harris, M. Stephens, "A Combined Corner and Edge Detector," 1988

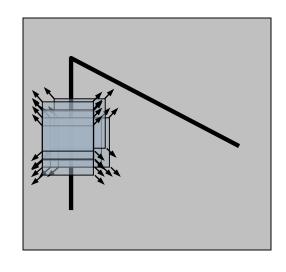
Harris Detector: Basic Idea

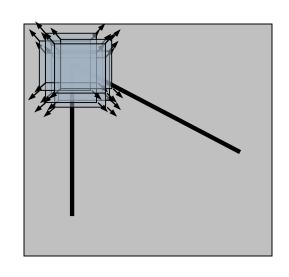
- We should recognize the point by looking through a small window
- Shifting a window in any direction should give a large change in response



Harris Detector: Basic Idea





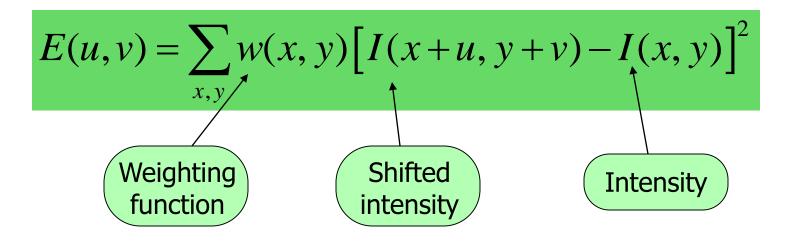


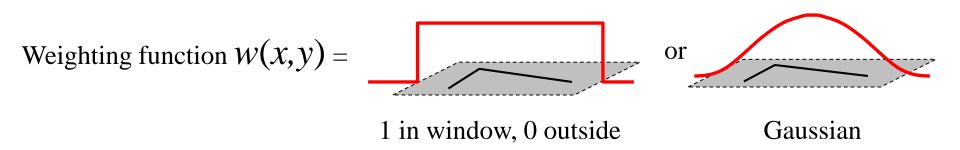
"flat" region: no change in all directions "edge":
no change along
the edge direction

"corner": significant change in *all* directions

Harris Detector: Derivation

Change of intensity for a (small) shift by [u,v] in image I:





Calculus: Taylor Series Expansion

A real function f(x+u) can be approximated as the 2^{nd} order of its Taylor series expansion at a point x.

$$f(x + u) = f(x) + uf'(x) + O(u^2)$$

Derivatives

For 1D function f(x), the derivative is:

$$\frac{\partial f(x)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x+\varepsilon) - f(x)}{\varepsilon}$$

For 2D function f(x,y), the partial derivative is:

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x+\varepsilon,y) - f(x,y)}{\varepsilon}$$

Source: K. Grauman

Derivatives

For discrete data, we can approximate using finite differences:

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f(x+1,y) - f(x,y)}{1}$$

To implement above as convolution, what would be the associated filter?

Partial derivatives of an image

 $\frac{\partial f(x,y)}{\partial x}$

Which shows changes with respect to x?

Finite difference filters

Other approximations of derivative filters exist:

Prewitt:
$$M_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$
; $M_y = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$

Sobel:
$$M_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$
; $M_y = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$

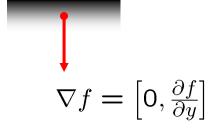
Roberts:
$$M_x = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
 ; $M_y = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

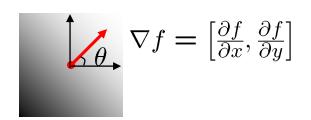
Image gradient

The gradient of an image:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

$$\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$$





The gradient points in the direction of most rapid increase in intensity

How does this direction relate to the direction of the edge?

The gradient direction is given by $\theta = \tan^{-1}\left(\frac{\partial f}{\partial y}/\frac{\partial f}{\partial x}\right)$

The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Source: Steve Seitz

Harris Detector

Apply 2nd order Taylor series expansion:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

$$= \sum_{x,y} w(x,y) [I_{x}u + I_{y}v + O(u^{2},v^{2})]^{2}$$

$$E(u,v) = Au^{2} + 2Cuv + Bv^{2}$$

$$A = \sum_{x,y} w(x,y)I_{x}^{2}(x,y)$$

$$E(u,v) = \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & C \\ C & B \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$B = \sum_{x,y} w(x,y)I_{y}^{2}(x,y)$$

$$I_{x} = \partial I(x,y)/\partial x$$

$$C = \sum_{x,y} w(x,y)I_{x}(x,y)I_{y}(x,y)$$

$$I_{y} = \partial I(x,y)/\partial y$$

Harris Corner Detector

Expanding E(u,v) in a 2nd order Taylor series, we have, for small shifts, [u,v], a *bilinear* approximation:

$$E(u,v) \cong \begin{bmatrix} u,v \end{bmatrix} \quad M \quad \begin{bmatrix} u\\v \end{bmatrix}$$

where M is a 2×2 matrix computed from image derivatives:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \quad I_x = \frac{\partial I(x,y)}{\partial x}$$

$$I_y = \frac{\partial I(x,y)}{\partial y}$$

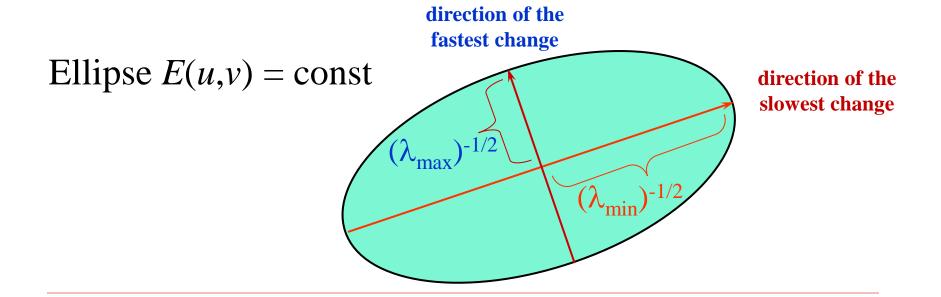
Note: Sum computed over small neighborhood around given pixel

Harris Corner Detector

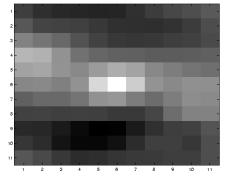
Intensity change in shifting window: eigenvalue analysis

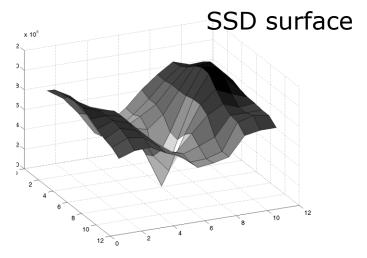
$$E(u,v) \cong \begin{bmatrix} u,v \end{bmatrix} \quad M \quad \begin{bmatrix} u\\v \end{bmatrix}$$

 $\lambda_1, \ \lambda_2$ — eigenvalues of ${f M}$



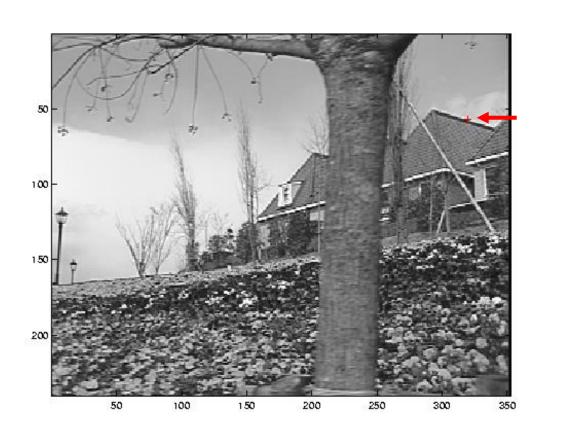
Selecting Good Features

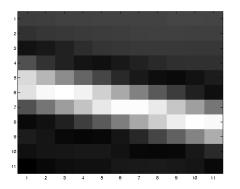


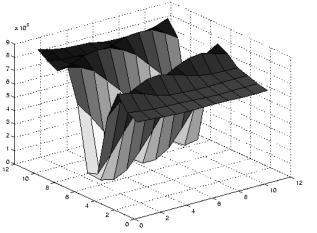


 λ_1 and λ_2 both large

Selecting Good Features

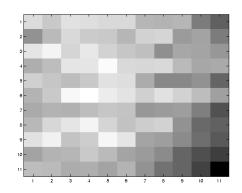


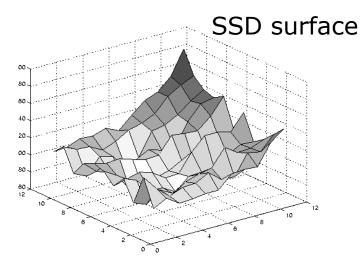




large λ_1 , small λ_2

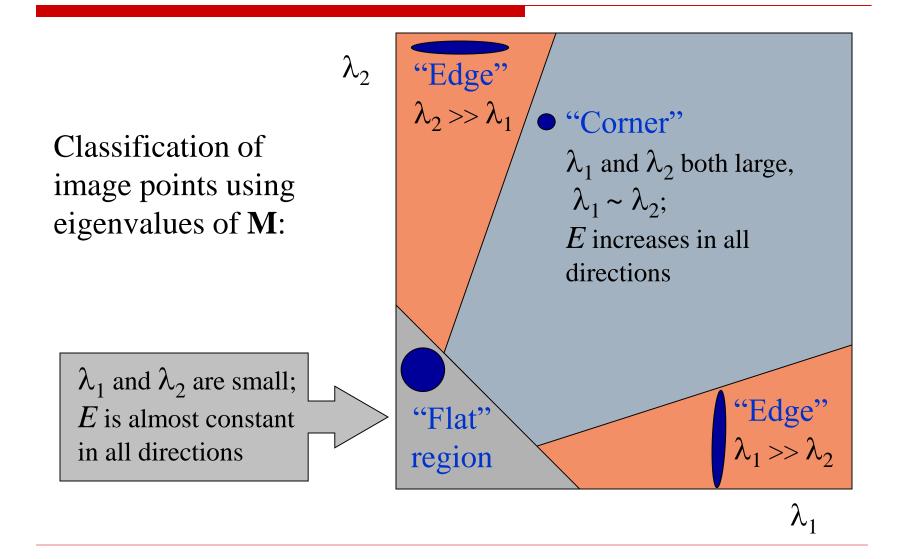
Selecting Good Features





small λ_1 , small λ_2

Harris Corner Detector



Harris Corner Detector

Measure of corner response:

$$R = \det M - k \left(\operatorname{trace} M \right)^2$$

$$\det M = \lambda_1 \lambda_2$$

$$\operatorname{trace} M = \lambda_1 + \lambda_2$$

k is an empirically-determined constant; e.g., k = 0.05

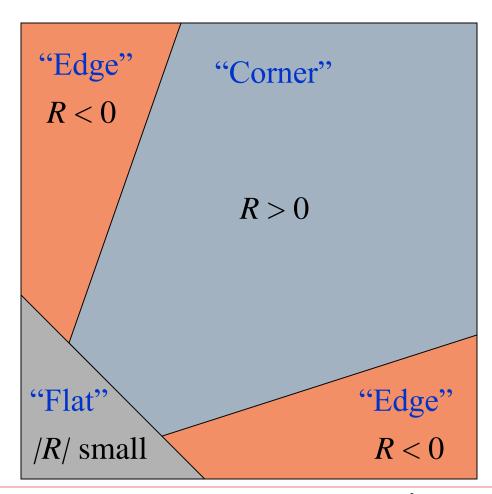
Harris Corner Detector

 λ_2

• *R* depends only on eigenvalues of **M**

• R is large for a corner

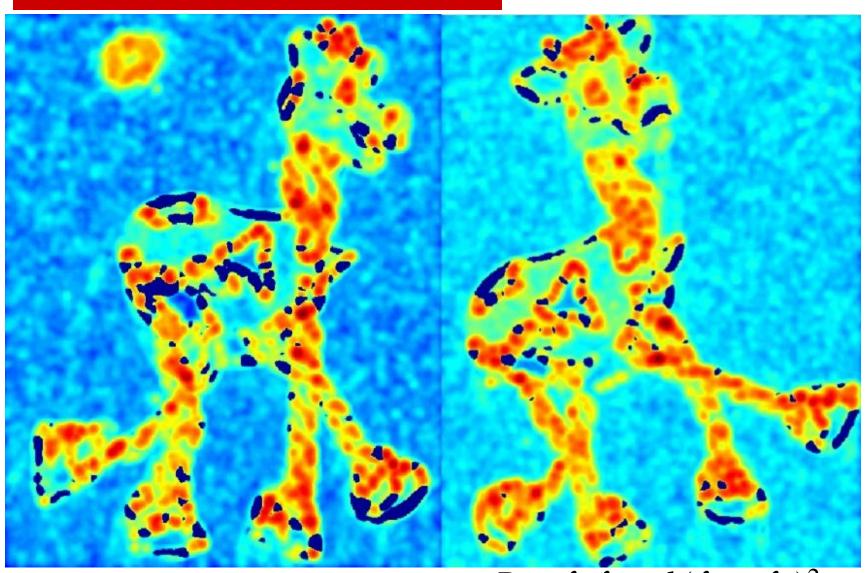
- *R* is negative with large magnitude for an edge
- |R| is small for a flat region



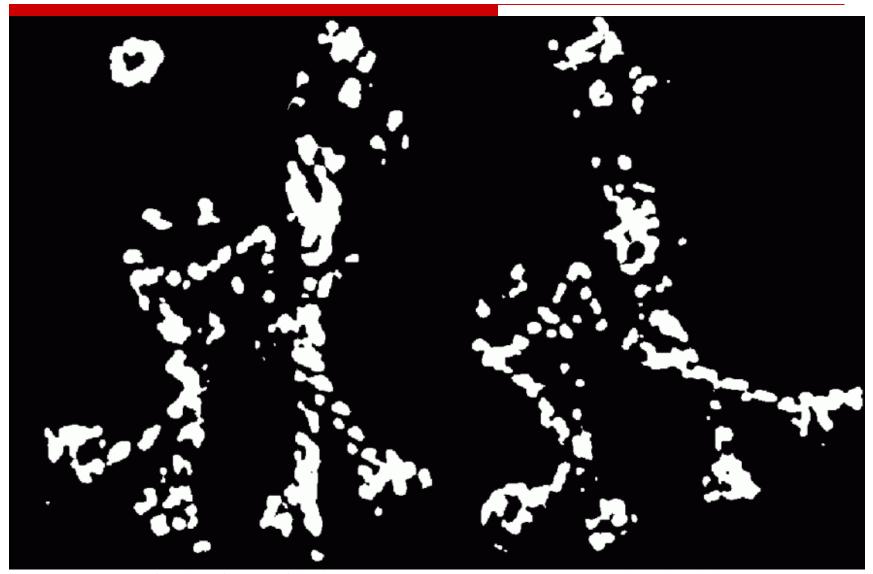
 λ_1

Harris Corner Detector: Algorithm

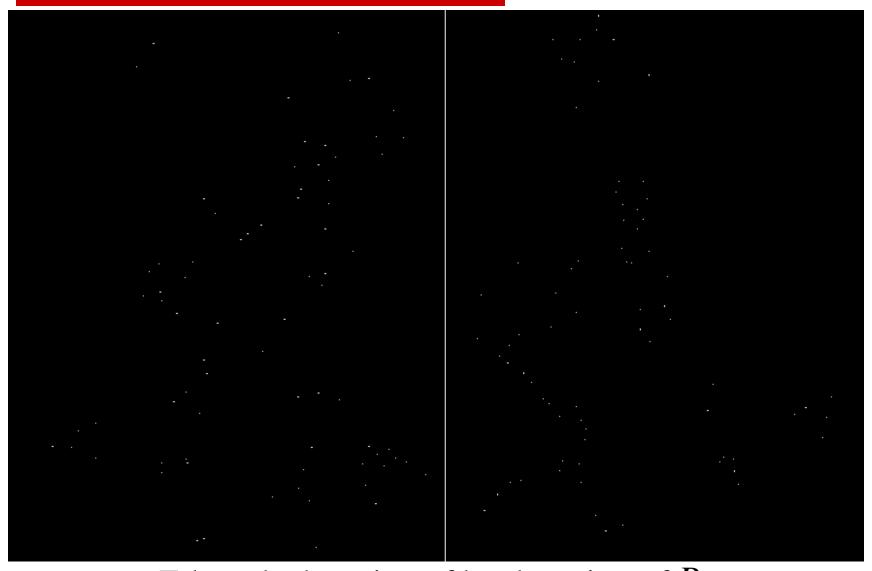
- ☐ Algorithm:
 - Find points with large corner response function R
 (i.e., R > threshold)
 - 2. Take the points of local maxima of *R* (for localization) by non-maximum suppression



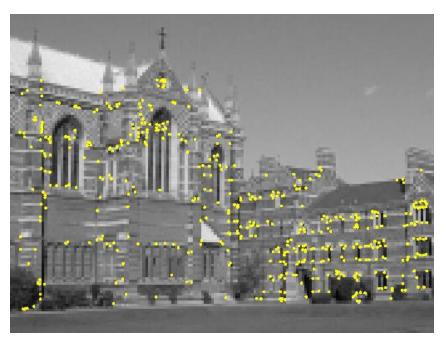
Credit: C. Dyer Compute corner response $R = \lambda_1 \lambda_2 - k(\lambda_1 + \lambda_2)^2$

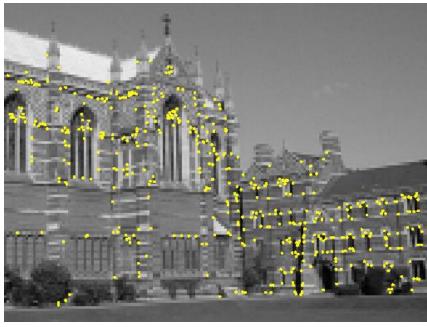


Credit: C. Dyer Find points with large corner response: R > threshold

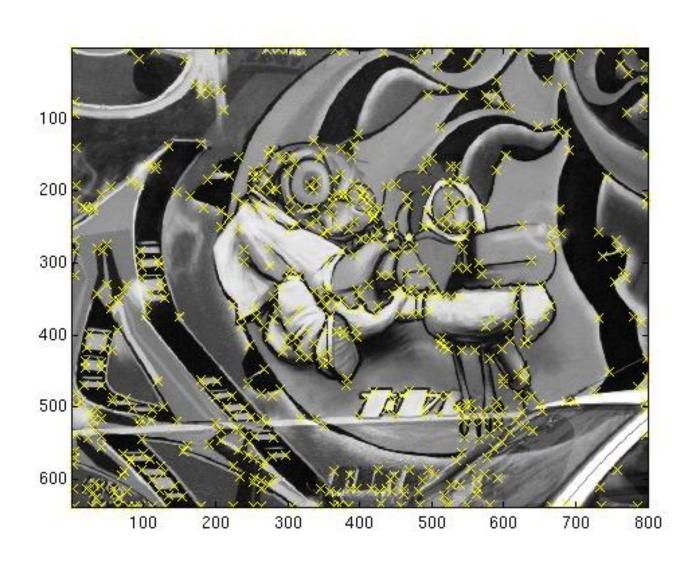


Credit: C. Dyer Take only the points of local maxima of R





Interest points extracted with Harris (~ 500 points)



Harris Detector: Summary

Average intensity change in direction [u, v] can be expressed in bilinear form:

$$E(u,v) \cong \begin{bmatrix} u,v \end{bmatrix} \quad M \quad \begin{bmatrix} u\\v \end{bmatrix}$$

Describe a point in terms of eigenvalues of M: measure of corner response:

$$R = \lambda_1 \lambda_2 - k \left(\lambda_1 + \lambda_2\right)^2$$

□ A good (corner) point should have a *large intensity* change in *all directions*, i.e., R should be a large positive value

Student paper presentation

Color harmonization

D. Cohen-Or, O. Sorkine, R. Gal, T. Leyv, and, Y. Xu ACM SIGGRAPH 2006

Presenter: Hawbaker, David

Next Time

- Panorama
 - Feature and matching
- Student paper presentations
 - 05/04: He, Shengjia
 - ☐ Color Conceptualization. X. Hou and L. Zhang, ACM Multimedia 2007
 - 05/11: Lee, Jennie
 - □ Colorization Using Optimization. A. Levin, D. Lischinski, Y. Weiss, SIGGRAPH 2004