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Last Time

 Re-lighting

◼ HDR
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Today

 Panorama 

◼ Overview

◼ Feature detection

3With slides by Prof. C. Dyer and K. Grauman



Panorama Building: History
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Along the River During Ching Ming Festival

by Z.D Zhang (1085-1145 )

San Francisco from Rincon Hill, 1851, 

by Martin Behrmanx

../IBM_2008/4005px-QingmingshangHetu_Full.jpg


Panorama Building: A Concise History

 The state of the art and practice is good at assembling 

images into panoramas

◼ Mid 90s –Commercial Players (e.g. QuicktimeVR)

◼ Late 90s –Robust stitchers (in research)

◼ Early 00s –Consumer stitching common

◼ Mid 00s –Automation
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Stitching Recipe

 Align pairs of images

 Align all to a common frame

 Adjust (Global) & Blend
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Stitching Images Together
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When do two images “stitch”?
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Images can be transformed to match
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Images are related by Homographies
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Compute Homographies
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Automatic Feature Points Matching

 Match local neighborhoods around points

 Use descriptors to efficiently compare SIFT

◼ [Lowe 04] most common choice
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Stitching Recipe

 Align pairs of images

 Align all to a common frame

 Adjust (Global) & Blend
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Wide Baseline Matching

• Images taken by cameras that are far apart make the 

correspondence problem very difficult

• Feature-based approach:  Detect and match feature 

points in pairs of images

Credit: C. Dyer



• Detect feature points

• Find corresponding pairs

Matching with Features

Credit: C. Dyer



Matching with Features

 Problem 1:

◼ Detect the same point 

independently in both images

no chance to match!

We need a repeatable detector

Credit: C. Dyer



Matching with Features

 Problem 2:

◼ For each point correctly 

recognize the corresponding point

?

We need a reliable and distinctive descriptor

Credit: C. Dyer



 Local: features are local, so robust to occlusion and clutter 
(no prior segmentation)

 Invariant (or covariant) to many kinds of geometric and 
photometric transformations

 Robust: noise, blur, discretization, compression, etc. do 
not have a big impact on the feature

 Distinctive: individual features can be matched to a large 
database of objects

 Quantity: many features can be generated for even small 
objects

 Accurate: precise localization

 Efficient: close to real-time performance

Properties of an Ideal Feature

Credit: C. Dyer



Problem 1:  Detecting Good Feature Points

Credit: C. Dyer

[Image from T. Tuytelaars ECCV 2006 tutorial]



 Hessian

 Harris

 Lowe:  SIFT (DoG)

 Mikolajczyk & Schmid:
Hessian/Harris-Laplacian/Affine

 Tuytelaars & Van Gool: EBR and IBR

 Matas: MSER

 Kadir & Brady: Salient Regions 

 Others

Feature Detectors

Credit: C. Dyer



C. Harris, M. Stephens, “A Combined Corner and Edge Detector,” 1988

Harris Corner Point Detector

Credit: C. Dyer



 We should recognize the point by looking 
through a small window

 Shifting a window in any direction should give 
a large change in response

Harris Detector:  Basic Idea

Credit: C. Dyer



“flat” region:

no change in 

all directions

“edge”:

no change along 

the edge direction

“corner”:

significant change 

in all directions

Harris Detector:  Basic Idea

Credit: C. Dyer
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Change of intensity for a (small) shift by [u,v] in image I:

IntensityShifted 
intensity

Weighting 
function

orWeighting function w(x,y) =

Gaussian1 in window, 0 outside

Harris Detector:  Derivation

Credit: R. Szeliski



Calculus: Taylor Series Expansion
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𝑓 𝑥 + 𝑢 = 𝑓 𝑥 + 𝑢𝑓′ 𝑥 + 𝑂(𝑢2)

A real function f (x+u) can be approximated as the 
2nd order of its Taylor series expansion at a point x.



For 1D function f(x), the derivative is:

For 2D function f(x,y), the partial derivative is:

𝜕𝑓(𝑥, 𝑦)

𝜕𝑥
= lim

𝜀→0

𝑓(𝑥 + 𝜀, 𝑦) − 𝑓(𝑥, 𝑦)

𝜀

Source: K. Grauman

Derivatives

𝜕𝑓(𝑥)

𝜕𝑥
= lim

𝜀→0

𝑓(𝑥 + 𝜀) − 𝑓(𝑥)

𝜀



For discrete data, we can approximate using finite differences:

To implement above as convolution, what would be the 

associated filter?
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Source: K. Grauman

Derivatives



Which shows changes with respect to x?
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Source: S. Lazebnik

Partial derivatives of an image



Finite difference filters

Other approximations of derivative filters exist:

Source: K. Grauman



The gradient points in the direction of most rapid increase in intensity

Image gradient

The gradient of an image: 

The gradient direction is given by

Source: Steve Seitz

The edge strength is given by the gradient magnitude

• How does this direction relate to the direction of the edge?



Apply 2nd order Taylor series expansion:
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Harris Detector

Credit: R. Szeliski
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Expanding E(u,v) in a 2nd order Taylor series, we have, for small 

shifts, [u,v], a bilinear approximation:
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where M is a 2  2 matrix computed from image derivatives:

Note:  Sum computed over small neighborhood around given pixel

xyxII x = /),(

yyxII y = /),(

Harris Corner Detector

Credit: R. Szeliski
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Intensity change in shifting window:  eigenvalue analysis

1,  2  – eigenvalues of M

direction of the 

slowest change

direction of the 

fastest change

(max)
-1/2

(min)
-1/2

Ellipse E(u,v) = const

Harris Corner Detector

Credit: R. Szeliski



1 and  2 both large

Image patch

SSD surface

Selecting Good Features

Credit: C. Dyer



large 1, small 2

SSD surface

Selecting Good Features

Credit: C. Dyer



small 1, small 2

SSD surface

Selecting Good Features

Credit: C. Dyer



1

2

“Corner”

1 and 2 both large,

1 ~ 2;

E increases in all 

directions

1 and 2 are small;

E is almost constant 

in all directions

“Edge” 

1 >> 2

“Edge” 

2 >> 1

“Flat” 

region

Classification of 

image points using 

eigenvalues of M:

Harris Corner Detector

Credit: C. Dyer



Harris Corner Detector

Measure of corner response:

( )
2

det traceR M k M= −

1 2

1 2

det

trace

M

M

 

 

=

= +

k is an empirically-determined constant; e.g., k = 0.05

Credit: C. Dyer



Harris Corner Detector

1

2 “Corner”

“Edge” 

“Edge” 

“Flat”

• R depends only on 

eigenvalues of M

• R is large for a corner

• R is negative with large 

magnitude for an edge

• |R| is small for a flat

region

R > 0

R < 0

R < 0|R| small

Credit: C. Dyer



Harris Corner Detector:  Algorithm

 Algorithm:

1. Find points with large corner 

response function  R

(i.e., R > threshold)

2. Take the points of local maxima 

of R (for localization) by non-

maximum suppression

Credit: C. Dyer



Harris Detector:  Example

Credit: C. Dyer



Compute corner response R = 12 – k(1 + 2)
2

Harris Detector:  Example

Credit: C. Dyer



Harris Detector:  Example

Find points with large corner response:  R > threshold
Credit: C. Dyer



Take only the points of local maxima of R

Harris Detector:  Example

Credit: C. Dyer



Harris Detector:  Example

Credit: C. Dyer



Interest points extracted with Harris (~ 500 points)

Harris Detector:  Example

Credit: C. Dyer



Harris Detector:  Example

Credit: C. Dyer



Harris Detector:  Summary

 Average intensity change in direction [u,v] can be 

expressed in bilinear form: 

 Describe a point in terms of eigenvalues of M:

measure of corner response:

 A good (corner) point should have a large intensity 
change in all directions, i.e., R should be a large 

positive value
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Credit: C. Dyer



Student paper presentation
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Color harmonization 

D. Cohen-Or, O. Sorkine, R. Gal, T. Leyv, and, Y. Xu 

ACM SIGGRAPH 2006

Presenter: Hawbaker, David



Next Time

 Panorama

◼ Feature and matching

 Student paper presentations

◼ 05/04: He, Shengjia

 Color Conceptualization. X. Hou and L. Zhang, ACM 

Multimedia 2007

◼ 05/11: Lee, Jennie

 Colorization Using Optimization. A. Levin, D. Lischinski, Y. 

Weiss, SIGGRAPH 2004
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