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Last Time

Compositing and Matting




Today

Video Stabilization
B Video stabilization pipeline




Orson Welles, Touch of Evil, 1958



Images courtesy Peter Sand and Flickr user Charles W. Brown



Input Amateur Video




Traditional 2D Video Stabilization Result




3D Video Stabilization Result rtiu et al. 09]
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Stabilization: An Old Problem

= iMovie from Apple

= De-shaker, a free tool

= Most modern camcorders






Video Stabilization Pipeline

Feature trajectories




Video Stabilization Pipeline

V

Feature trajectories




Trajectory Estimation

= Kanade-Lucas-Tomasi feature tracker (KLT)

= B. Lucas and T. Kanade. An Iterative Image Registration
Technique with an Application to Stereo Vision. lJCAI, pp.
674-679, 1981.

= C. Tomasi and T. Kanade. Detection and Tracking of Point
Features. CMU-CS-91-132, 1991.

= J. Shiand C. Tomasi. Good Features to Track. CVPR, pp. 593-
600, 1994.

= Implementations
= OpenCV


http://www.ces.clemson.edu/~stb/klt/

Feature Tracking

(z,y)
O\dlsplacement = (u,v)

o
(@ +u,y+v)

I(x,y,t=1) 1(X,y,1)

Brightness Constancy Equation:

(X, y,t=1) = (X+U(x,y),Y+V(X y)t)
Linearizing the right side using Taylor expansion:
1(X, Y, t=D) = 1(X, y,0) + 1 -u(x, y)+1,-v(X,y)
Hence, | -u+1, -v+I =0

B. Lucas and T. Kanade. An iterative image registration technigue with an application to stereo vision.

In Proceedings of the International Joint Conference on Artificial Intelligence, pp. 674-679, 1981.



Spatial Coherence Constraint

l,-u+l, -v+1, =0
How many equations and unknowns per pixel?
B One equation, two unknowns
How to get more equations for a pixel?

B Spatial coherence constraint: pretend the pixel’s
neighbors have the same (u,v)

0 = Ii(py) + VI(p;) - [u v]

- Ix(p1)  Iy(p1) | - Ii(p1) |
Le(p2)  Iy(p2) [ u ] — _ | 1i(p2)
i Ix(I;25) fy(I.)25) | i It(1;25) |
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Solving the Tracking Problem

 Least squares problem:

" L(p1) Iy(p1) ] - Li(p1) |

Iz(p2) Iy(p2) _ I+(p2) A d=b
. . : 25x2 2x1 25x1

_ Iw(1;)25) Iy(I.)25) | i It(I;25) _

e When is this system solvable?
e What if the window contains just a single straight

edge?

B. Lucas and T. Kanade. An iterative image registration technigue with an application to stereo vision.

In Proceedings of the International Joint Conference on Artificial Intelligence, pp. 674-679, 1981.



Conditions for Solvability

« “Bad” case: single straight edge




Lucas-Kanade Flow

 Least squares problem:

[ I:(p1)  Iy(p1) | - I (p1)
I:(p2) Iy(p2) [ u ] _ | I(p2) A d=1b
5 : v : 25x2 2x1 25x1
| Ix(p25) Iy(p2s) | Ii(p2s) |

Solution given by (ATA) d= Alp

> 1xly ZIny u > Ixly
SIely STy || o] = 7 | Sy

AT A Al'p
The summations are over all pixels in the window

B. Lucas and T. Kanade. An iterative image registration technigue with an application to stereo vision.

In Proceedings of the International Joint Conference on Artificial Intelligence, pp. 674-679, 1981.



Lucas-Kanade Flow

> dedly 0 Iply (N N R DY Y F
> Lxly > Iyly v | > Iyly

AT A Alp
e Recall the Harris corner detector: M = A’A is
the second moment matrix

e We can figure out whether the system is
solvable by looking at the eigenvalues of the
second moment matrix

e The eigenvectors and eigenvalues of M relate to
edge direction and magnitude

e The eigenvector associated with the larger
eigenvalue points in the direction of fastest intensity
change, and the other eigenvector is orthogonal to it




Interpreting the eigenvalues

|
Classification of image points using eigenvalues of
the second moment matrix:

A




Uniform Region

— gradients have small magnitude
- small &, small A,
— system is ill-conditioned




Edge

— gradients have one dominant direction
- large A, small A,
- system is ill-conditioned




High-texture or Corner Region

50 100 150 200

- gradients have different directions, large magnitudes
- large A, large A,
- system is well-conditioned

300 350




Feature tracking

So far, we have only considered feature
tracking in a pair of images

If we have more than two images, we can
track feature from each frame to the next

Given a point in the first image, we can in
principle reconstruct its path by simply
“following the arrows”




Tracking over Many Frames

 Select features in first frame

 For each frame:

B Update positions of tracked features

[1 Discrete search or Lucas-Kanade (or a combination of the
two)

B Terminate inconsistent tracks

[0 Compute similarity with corresponding feature in the
previous frame or in the first frame where it’s visible

B Find more features to track




Shi-Tomasi Feature Tracker

* Find good features using eigenvalues of second-
moment matrix

B Key idea: “good” features to track are the ones whose
motion can be estimated reliably

* From frame to frame, track with Lucas-Kanade

B This amounts to assuming a translation model for
frame-to-frame feature movement

« Check consistency of tracks by affine registration
to the first observed instance of the feature

B Affine model is more accurate for larger displacements
B Comparing to the first frame helps to minimize drift

J. Shi and C. Tomasi. Good Features to Track. CVPR 1994.



http://www.ces.clemson.edu/~stb/klt/shi-tomasi-good-features-cvpr1994.pdf

Traditional 2D Video Stabilization

2D motion model (homography)




Homography
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Fitting a homography

- Equation for homography:
Xi Ve N Mg | X A X; =T X.
A yi, =Ny Ny Nog |1Y
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-+ L'k M 33 | + |
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Direct linear transform

0T x; —YiXg
x; 00 —x/x| |[h))
N, =0 Ah
0" Xy VX, (N3
X, 0" —x\x;

n

0

 H has 8 degrees of freedom (9 parameters, but
scale is arbitrary)

« One match gives us two linearly independent
equations

* Four matches needed for a minimal solution (null
space of 8x9 matrix)

« More than four: homogeneous least squares




Traditional 2D Video Stabilization
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Motion Plan

.= Y T, *G,where T, = HT

leN;

Image courtesy: Matsushita et al. 06
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Traditional 2D Video Stabilization Result




Limitations

= No knowledge of actual 3D camera path,
so cannot control desired motion directly

 Homography cannot model 3D camera motion
and scene structure



3D Video Stabilization

= Non-metric image-based rendering for video
stabilization [Buehler et al. 01]

= Image-based rendering using image-based
priors [Fitzgibbon et al. 05]

= Using photographs to enhance videos of
a static scene [Bhat et al. 07]



3D Video Stabilization

3D reconstruction via
structure from motion

Voodoo Camera Tracker (http://www.digilab.uni-hannover.de)



Structure from Motion

Voodoo Camera Tracker (http://www.digilab.uni-hannover.de)



3D Video Stabilization
V

=

V Paraboy

Low-passfilter




3D Video Stabilization
V

Novel view synthesis via
image based rendering




Novel View Synthesis by Image based Rendering

Unstructured lumigraph rendering [Buehler et al. 01]



Content-preserving warps based
3D video stabilization

F Liu, M Gleicher, H Jin, A Agarwala. Content-preserving warps for
3D video stabilization, SIGGRAPH 2009



3D Video Stabilization
V

Novel view synthesis




Temporal Constraint

V
L

Our method for novel view synthesis

o

One input frame




Novel View from One Frame

= A Series of Vision Challenges!
- Segment out layers
- Determine depth

- Shift and re-composite layers

- Fill holes

= Cannot achieve accurate dis-occlusions,
non-Lambertian reflection, etc.



Human Perception

= Viewpoint shifts will be small

= Aim for perceptual plausibility rather than
accurate novel view synthesis

- Move salient content along stabilized paths

- No noticeable artifacts



Problem Setup

input frame and points



Problem Setup

input frame and points
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Problem Setup

input frame and points output frame



Option 1: Scattered Data Interpolation




Full-frame Warping with Homography

Option 2




A Less Successful Result




Our Approach: Content-preserving Warping

Warp each input frame to create the output frame by
least-squares minimization

v' Data term: Soft, sparse displacement constraint

v~ Smoothness term: Local similarity transformation constraint



Smoothness Term: Minimize Visual Distortion

Local similarity transformation constraint

"~ ¢




Smoothness Term: Minimize Visual Distortion

Local similarity transformation constraint

[Igarashi et al. 05]



Saliency Weight

Concentrate distortion to non-salient regions
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Visual saliency map
[Itti et al. 99]
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Visual saliency: “the distinct subjective perceptual quality which
makes some items in the world stand out from their neighbors and

immediately grab our attention” from [Itti 07]




Content-Preserving Warping
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Content-Preserving Warping

¢ 1 4
CEREESaN

Input Output
texture mapping [Shirley et al. 2005]



Content-Preserving Warping

Grid mesh : i
& points i
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Student paper presentation

Poisson Image Editing

P. Perez, M. Gangnet, and A. Blake
SIGGRAPH 2003

Presenter: Rojas, Casey
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Student paper presentation

Intelligent Scissors for Image
Composition

E. Mortensen and W. Barrett
SIGGRAPH 1995

Presenter: Smith, Cassaundra
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Next Time

Video stabilization |

[1 Student paper presentation

m 05/17: Wiemholt, Cody

[l Video SnapCut: Robust Video Object Cutout Using
Localized Classifiers
X. Bal, J. Wang, D. Simons, G. Sapiro
SIGGRAPH 2009

B 05/17: Zwovic, Kitt

[1 A global sampling method for alpha matting
K. He, C. Rhemann, C. Rother, X. Tang, and J. Sun
CVPR 2011
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