Introduction to Visual Computing

Prof. Feng Liu

Winter 2020

http://www.cs.pdx.edu/~fliu/courses/cs410/

02/18/2020

Last Time

- Camera
- Calibration

Today

■ Two view geometry

The slides for this topic are used from Prof. S. Lazebnik.

Two-view geometry

Epipolar geometry

- Baseline line connecting the two camera centers
- **Epipolar Plane** plane containing baseline (1D family)
- Epipoles
- = intersections of baseline with image planes
- = projections of the other camera center

Epipolar geometry

- Baseline line connecting the two camera centers
- Epipolar Plane plane containing baseline (1D family)
- Epipoles
- = intersections of baseline with image planes
- = projections of the other camera center
- **Epipolar Lines** intersections of epipolar plane with image planes (always come in corresponding pairs)

Example: Converging cameras

Example: Motion parallel to image plane

Example: Motion perpendicular to image plane

Example: Motion perpendicular to image plane

Example: Motion perpendicular to image plane

Epipole has same coordinates in both images. Points move along lines radiating from e: "Focus of expansion"

Epipolar constraint

 If we observe a point x in one image, where can the corresponding point x' be in the other image?

Epipolar constraint

- Potential matches for x have to lie on the corresponding epipolar line I'.
- Potential matches for x' have to lie on the corresponding epipolar line l.

Epipolar constraint example

- Assume that the intrinsic and extrinsic parameters of the cameras are known
- We can multiply the projection matrix of each camera (and the image points) by the inverse of the calibration matrix to get *normalized* image coordinates
- We can also set the global coordinate system to the coordinate system of the first camera. Then the projection matrix of the first camera is $[I \mid 0]$.

Camera rotation and translation

$$X_{cam} = \begin{bmatrix} R & -R\tilde{C} \\ 0 & 1 \end{bmatrix} \begin{pmatrix} \tilde{X} \\ 1 \end{pmatrix} = \begin{bmatrix} R & -R\tilde{C} \\ 0 & 1 \end{bmatrix} X$$

$$x = K[I|0]X_{cam}$$

The vectors x, t, and Rx, are coplanar

$$x \cdot [t \times (Rx')] = 0$$

$$x^T E x' = 0$$
 with $E = [t_{\times}]R$

$$\Rightarrow x \cdot [t_x] R x' = 0$$

$$\Rightarrow x^T[t_x]Rx' = 0$$

Essential Matrix

(Longuet-Higgins, 1981)

The vectors x, t, and Rx are coplanar

- Ex' is the epipolar line associated with x'(I = Ex')
- $E^T x$ is the epipolar line associated with $x(I' = E^T x)$

$$Ex' = [a, b, c]^T, x^T Ex' = 0 \longrightarrow au + bv + c = 0$$

- Ex' is the epipolar line associated with x'(/=Ex')
- $E^T x$ is the epipolar line associated with $x(I' = E^T x)$
- Ee'=0 and $E^Te=0$
- E is singular (rank two)
- E has five degrees of freedom

- The calibration matrices K and K' of the two cameras are unknown
- We can write the epipolar constraint in terms of unknown normalized coordinates:

$$\hat{x}^T E \hat{x}' = 0$$
 $x = K \hat{x}, \quad x' = K' \hat{x}'$

$$\hat{x} = K^{-1}x$$

$$\hat{x}' = K'^{-1}x'$$

Fundamental Matrix

(Faugeras and Luong, 1992)

- Fx' is the epipolar line associated with x'(I = Fx')
- F^Tx is the epipolar line associated with $x(I' = F^Tx)$
- Fe' = 0 and $F^{T}e = 0$
- F is singular (rank two)
- F has seven degrees of freedom

The eight-point algorithm

$$x = (u, v, 1)^T, x' = (u', v', 1)^T$$

$$u_1'$$
 v_1' (

$$\begin{pmatrix} u_1u'_1 & u_1v'_1 & u_1 & v_1u'_1 & v_1v'_1 & v_1 & u'_1 & v'_1 \\ u_2u'_2 & u_2v'_2 & u_2 & v_2u'_2 & v_2v'_2 & v_2 & u'_2 & v'_2 \\ u_3u'_3 & u_3v'_3 & u_3 & v_3u'_3 & v_3v'_3 & v_3 & u'_3 & v'_3 \\ u_4u'_4 & u_4v'_4 & u_4 & v_4u'_4 & v_4v'_4 & v_4 & u'_4 & v'_4 \\ u_5u'_5 & u_5v'_5 & u_5 & v_5u'_5 & v_5v'_5 & v_5 & u'_5 & v'_5 \\ u_6u'_6 & u_6v'_6 & u_6 & v_6u'_6 & v_6v'_6 & v_6 & u'_6 & v'_6 \\ u_7u'_7 & u_7v'_7 & u_7 & v_7u'_7 & v_7v'_7 & v_7 & u'_7 & v'_7 \\ u_8u'_8 & u_8v'_8 & u_8 & v_8u'_8 & v_8v'_8 & v_8 & u'_8 & v'_8 \end{pmatrix} \begin{pmatrix} F_{11} \\ F_{12} \\ F_{13} \\ F_{21} \\ F_{22} \\ F_{23} \\ F_{31} \\ F_{32} \end{pmatrix} = - \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

$$=-\begin{bmatrix}1\\1\\1\end{bmatrix}$$

Minimize:

$$\sum_{i=1}^{N} (x_i^T F x_i')^2$$

 F_{11}

$$F_{33} = 1$$

The eight-point algorithm

• Meaning of error $\sum_{i=1}^{N} (x_i^T F x'_i)^2$

sum of Euclidean distances between points x_i and epipolar lines Fx_i' (or points x_i' and epipolar lines F^Tx_i) multiplied by a scale factor

line:
$$x^T F x' = 0$$

 $x^T = [u, v, 1]$ $d(x, F x') = \frac{|au + bv + c|}{\sqrt{a^2 + b^2}} = \frac{|x^T F x'|}{\sqrt{a^2 + b^2}}$
 $F x' = [a, b, c]$

The eight-point algorithm

- Meaning of error $\sum_{i=1}^{N} (x_i^T F x'_i)^2$
 - sum of Euclidean distances between points x_i and epipolar lines Fx_i' (or points x_i' and epipolar lines F^Tx_i) multiplied by a scale factor
- Nonlinear approach: minimize

$$\sum_{i=1}^{N} \left[d^{2}(x_{i}, F x_{i}') + d^{2}(x_{i}', F^{T} x_{i}) \right]$$

Problem with eight-point algorithm

$$\begin{pmatrix} u_1u'_1 & u_1v'_1 & u_1 & v_1u'_1 & v_1v'_1 & v_1 & u'_1 & v'_1 \\ u_2u'_2 & u_2v'_2 & u_2 & v_2u'_2 & v_2v'_2 & v_2 & u'_2 & v'_2 \\ u_3u'_3 & u_3v'_3 & u_3 & v_3u'_3 & v_3v'_3 & v_3 & u'_3 & v'_3 \\ u_4u'_4 & u_4v'_4 & u_4 & v_4u'_4 & v_4v'_4 & v_4 & u'_4 & v'_4 \\ u_5u'_5 & u_5v'_5 & u_5 & v_5u'_5 & v_5v'_5 & v_5 & u'_5 & v'_5 \\ u_6u'_6 & u_6v'_6 & u_6 & v_6u'_6 & v_6v'_6 & v_6 & u'_6 & v'_6 \\ u_7u'_7 & u_7v'_7 & u_7 & v_7u'_7 & v_7v'_7 & v_7 & u'_7 & v'_7 \\ u_8u'_8 & u_8v'_8 & u_8 & v_8u'_8 & v_8v'_8 & v_8 & u'_8 & v'_8 \end{pmatrix} \begin{pmatrix} F_{11} \\ F_{12} \\ F_{13} \\ F_{21} \\ F_{22} \\ F_{23} \\ F_{31} \\ F_{32} \end{pmatrix} = - \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

Problem with eight-point algorithm

								I_{11}	\ /	/ ₁ /	
250906.36	183269.57	921.81	200931.10	146766.13	738.21	272.19	198.81	F_{12}		1	
2692.28	131633.03	176.27	6196.73	302975.59	405.71	15.27	746.79	F_{13}		1	
416374.23	871684.30	935.47	408110.89	854384.92	916.90	445.10	931.81	1		1	
191183.60	171759.40	410.27	416435.62	374125.90	893.65	465.99	418.65	F_{21}		1	
48988.86	30401.76	57.89	298604.57	185309.58	352.87	846.22	525.15	F_{22}		1	
164786.04	546559.67	813.17	1998.37	6628.15	9.86	202.65	672.14	F_{23}		1	
116407.01	2727.75	138.89	169941.27	3982.21	202.77	838.12	19.64	I		1	
135384.58	75411.13	198.72	411350.03	229127.78	603.79	681.28	379.48	F_{31}		1	
								$\setminus F_{22}$	/	(1 <i>J</i>	

/ E \

/1\

- Poor numerical conditioning
- Can be fixed by rescaling the data

Normalized eight-point algorithm (Hartley, 1995)

- Center the image data at the origin, and scale it so the mean squared distance between the origin and the data points is 2 pixels
- Use the eight-point algorithm to compute *F* from the normalized points
- Enforce the rank-2 constraint (for example, take SVD of *F* and throw out the smallest singular value)
- Transform fundamental matrix back to original units: if T and T' are the normalizing transformations in the two images, than the fundamental matrix in original coordinates is $T^T F T'$

Comparison of estimation algorithms

	8-point	Normalized 8-point	Nonlinear least squares
Av. Dist. 1	2.33 pixels	0.92 pixel	0.86 pixel
Av. Dist. 2	2.18 pixels	0.85 pixel	0.80 pixel

From epipolar geometry to camera calibration

- Estimating the fundamental matrix is known as "weak calibration"
- If we know the calibration matrices of the two cameras, we can estimate the essential matrix: E = K^TFK'
- The essential matrix gives us the relative rotation and translation between the cameras, or their extrinsic parameters

Next Time

□ Structure from motion