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Experimental trajectories of two drops in planar extensional flow
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In this paper we map the experimental trajectories of two deformable drops in planar extensional
flow and compare the experimental results with theoretical calculations for spherical drops. We
examine the effects that deformation, initial position, and viscosity ratio have on the interaction of
two drops and the necessity of incorporating deformation into trajectory calculations, which can be
used to estimate the collision rates, the collision efficiencies, and the collision interaction times. For
drops which do not come into close contact, the existing theoretical calculations for spherical drops
accurately predict the symmetric trajectories and capture the increased hydrodynamic interaction for
higher viscosity ratios. For drops which come into close contact, the spherical drop theory
accurately predicts the approach and exit trajectories and with a slight empirical modification
adequately predicts the interaction times for deformable drops with a Taylor deformation parameter
up to 0.22. The experimental results show that for drops with close contact, the collision trajectories
are asymmetric and irreversible with a minimum separation between the centers of mass that is less
than the minimum separation of two spheres. This minimum separation corresponds to the minor
axis of the deformed drop and is not captured by the spherical theory. However, overall, the
modified trajectory theory based upon the hydrodynamic mobility for spherical drops does provide
a reasonable estimate for the trajectories and the interaction times for two deformable drops in

MAY 1999

planar extensional flow. © 1999 American Institute of Physics. [S1070-6631(99)02905-0]

I. INTRODUCTION

The coalescence and breakup of drops immersed in an
immiscible suspending fluid plays an integral role in many
industrial, biological, and natural processes such as liquid—
liquid extraction and polymer blending. In the limit of dilute
systems, breakup involves only a single drop in a suspending
fluid, but coalescence requires two drops to collide and re-
main together for a sufficient amount of time for film drain-
age to occur. Thus, the coalescence probability, which incor-
porates the collision rate and the interaction time, depends
directly on the hydrodynamic interaction between two drops.
As a result, coalescence studies are more difficult from both
an experimental and theoretical perspective, and relatively
less has been done than for the case of drop breakup. It is
traditional in studies of coalescence to assume that the prob-
lem can be split into two parts; the collision process and a
film drainage process. A great deal of work has been done on
the film drainage problem. In reality, however, many of the
details of film drainage depend upon the initial shape of the
film, and on the forces which are acting on the two drops
while they are in close proximity to one another. Thus, at
least from a quantitative point of view, it is impossible to
avoid considering the complete drop collision and interaction
process, and it is this overall process which has not yet re-
ceived extensive investigation. Indeed, a complete theoreti-
cal framework is only available for two spherical drops.
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The creeping flow problem of two spherical particles
interacting in a linear flow field was, in fact, first solved by
Batchelor and Green,! who examined the hydrodynamic in-
teractions between two rigid spheres with the objective of
determining the particle contribution to the mean stress in a
nondilute suspension of spherical particles. Much more re-
cently, Wang, Zinchenko, and Davis® extended Batchelor
and Green’s’ analysis to investigate the hydrodynamic inter-
action between two spherical drops immersed in a linear flow
field. By calculating the trajectories, the effects of hydrody-
namic interactions on the collision efficiencies and thus coa-
lescence probability were examined for two spherical drops.
While these theoretical results for spheres provide insight
into the collision process, drops in actual systems are never
precisely spherical. As a result, more recent theoretical and
computational work has concentrated on using the boundary
integral technique to study numerically the interaction of de-
formable drops in the creeping flow limit. Lowenberg and
Hinch? studied the collision of two deformable drops in a
shear flow. Zinchenko, Rother, and Davis* studied the
buoyancy-driven interaction of two deformable drops.
Manga and Stone’ examined the buoyancy-driven interaction
of two, three, and four deformable drops. While theoretical
work continues to advance, experimental studies with which
to confirm the theoretical calculations are quite limited.
Zhang, Davis, and Ruth® have examined experimentally the
buoyancy-driven interaction between two nearly spherical
drops, with results that agree with theoretical calculations for
spheres, while Manga and Stone®’ have examined the
buoyancy-driven interaction between two highly deformable
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FIG. 1. Schematic of the four roll mill {top view) with the experimental flow
field in the drop trajectory coordinate system (see Fig. 2).

drops. Guido and Simeone® studied the binary collision of
two drops in shear flow. Their results showed good agree-
ment with the numerical simulations of Lowenberg and
Hinch,” but a direct comparison with the trajectory predic-
tions for spherical drops was not included.

Since it is cumbersome, at best, to combine boundary
integral calculations with trajectory calculations for simula-
tions of large-scale systems with many drops, a key issue in
developing a theoretical basis for design in mixing and dis-
persion applications is to determine conditions where the
theoretical calculations for spherical drops can provide a suf-
ficiently accurate representation of the collision process.
Since the collision and interaction process depends strongly
on the undisturbed flow, the full range of flow types needs to
be examined to test fully the theory for spherical drops. In
this work, we complement previous works on shear flow and
the buoyancy-driven motion of drops by examining two
drops in a qualitatively different flow, two-dimensional
(2-D) extensional flow. We map the experimental trajectories
of two deformable drops in 2-D extensional flow and com-
pare the experimental results with theoretical calculations for
spherical drops. We examine the effect deformation has on
the interaction of two drops and the necessity of incorporat-
ing deformation into the theoretical calculations that are used
to estimate the collision rates, the collision efficiency, and
the interaction times of two drops.

Il. EXPERIMENTAL SYSTEM
A. Experimental apparatus

The trajectories of two drops are mapped in the four roll
mill, an experimental apparatus which has been used exten-
sively in the study of drop deformation and breakup. Figure
1 provides a schematic of the four roll mill. It consists of
four vertical cylinders immersed in a fluid bath. The rollers
are rotated to produce a flow field in which the velocity
gradient is approximately independent of position at the cen-
ter of the device. By varying the individual roller rotation
rates, flows with an arbitrary ratio of strain rate to vorticity
can be generated. In Cartesian coordinates the velocity gra-
dient tensor near the center of the four roll mill is given by
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TABLE L. Physical properties of experimental fluids.

Density Viscosity Interfacial tension

Fluid (g/em®)  (poise) (dyne/cm)
Suspending fluid
Pale 170/Pale 1000 blend 1.0 160.7
Drop fluids
Dow Coming 200, 60,000 cS fluid 0.97 594.4 543
Dow Corning 510, 500 ¢S fluid 0.97 4.82 5.09
1+a 1-a 0
vu:% —-l1+a —1-a O ; (1)
0 0 0

where a is the flow type parameter and 7 is the ‘‘shear’’ rate.
The parameter a provides a measure of the relative magni-
tude of the strain rate to vorticity,
magnitude of strain rate 1+a
magnitude of vorticity 1—a’

Thus, =1 for pure extensional flow, = —1 for pure rota-
tional flow, and &« =0 for shear flow.

Details of the four roll mill and its corresponding control
algorithm are given in Bentley and Leal® with additional
modifications outlined in Milliken and Leal.'” The four roll
mill consists of a 49.5 cm square by 17.5 cm deep box filled
with the suspending fluid. Four rollers, 15.5 cm long with a
radius of 5.0 cm, are centered at the corners of a 12.54 cm by
12.54 cm square. This provides a roller gap width of 2.54 cm
and a ratio of roller spacing to roller radius of 1.25. The four
rollers are driven by four independent dc stepping motors
which are geared down by planetary and worm gears to pro-
duce a shear rate between 0.005 and 0.5 s~ 1. The rollers are
immersed in the suspending fluid, a highly viscous Newton-
ian oil, which is floated on a thin layer of mercury at the
bottomn of the apparatus. The mercury provides an approxi-
mate stress free surface (slip surface) which reduces edge
effects from the bottom of the apparatus and limits secondary
flows. A small Plexiglas™ window extends through the mer-
cury layer, which enables the drop to be visualized from the
bottom. The drops are illuminated from above by a colli-
mated beam of light.

B. Experimental fluids

Table I provides the relevant physical properties of the
suspending and drop fluids. The four roll mill is filled with a
modified castor oil (a blend of CasChem Pale 1000 and Pale
170 oils). On a Rheometrics model DSR rheometer, this
blend displays a shear viscosity that is independent of shear
rate and does not exhibit significant normal stresses up to a
shear rate of 10 s™*. For the current experimental studies, the
shear rate never exceeds 0.05 s~ . Thus at the shear rates of
interest, the suspending fluid behaves as a viscous Newton-
ian fluid. We suspend in the modified castor oil, silicon-
based neutrally buoyant, immiscible, Newtonian drops (Dow
Comning 200 and 510 fluids) which have radii of approxi-
mately 1.0-1.5 mm. The selection of these fluids allows us
to examine viscosity ratios that vary between 0.03 and 3.70
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with interfacial tensions of approximately 5.0 dyn/cm. The
interfacial tensions are determined by comparing the drop
deformation in a weak extensional flow (a=1) to small de-
formation theory. As shown in previous drop deformation
experiments (Bentley and Leal,? Milliken and Leal'®), small
deformation theory provides an accurate measure of the in-
terfacial tension.

C. Experimental procedure

By following the procedure outlined below, we are able
to produce and examine the interaction of two equal size
drops in the plane of flow. First, a single drop is injected into
the four roll mill and subjected to an extensional flow while
the four roll mill control scheme maintains the drop at the
center of the device. The shear rate is raised above the criti-
cal shear rate and held until the drop extends past its critical
deformation for breakup. The flow is then stopped and the
drop breaks by the capillary pinching mechanism described
in previous experimental studies (Bentley and Leal,” Stone
and Leal'!). While it is ideal for the initial drop to break into
only two drops, if the drop is extended too far, it will break
into more than two drops when the flow is stopped. If this
occurs, the most common outcome was three drops in this
work (two equal size drops and one small satellite drop), the
satellite drop was removed without disturbing the primary
drops (shifting the drops out of plane). This is accomplished
by centering the satellite drop at the stagnation point of the
four roll mill, and applying an extensional flow with the
active control scheme until the primary drops move suffi-
ciently outside the central region of the four-roll mill. The
isolated satellite drop (or drops) is then removed with a small
syringe, and the primary drops are brought back into the
central region by reversing the flow. The above procedure
thus yields two equal size drops in the same horizontal plane.
The two drops are then adjusted to the desired initial relative
position (with independent computer control of the four roll-
ers, we can basically pick any desired initial position), and
the motors are then engaged without the control scheme to
produce the desired flow field. The trajectories are mapped
by taking photos with a 35 mm camera at known times. The
negatives are then analyzed to obtain the positions of the

drops.

ll. THEORETICAL TRAJECTORIES

For two spherical Newtonian drops suspended in a sec-
ond immiscible Newtonian fluid and subjected to an ambient
linear flow field under creeping flow conditions, the relative
velocity of the two drops can be expressed as (neglecting
nonhydrodynamic interdroplet forces)

T T
A(s) ;;+B(s)(l— ;9_—) } ‘E-r, (2

Vi,=Q-r+E-r—

where r is the vector from the center of drop 1 to the center
of drop 2, s=2r/(a;+a,) is the dimensionless center to
center distance (a; and a, are the radii of the two drops,
respectively), € is the vorticity tensor, E is the rate of strain
tensor, A(s) is the relative mobility function along the drops’
line of center, and B(s) is the relative mobility function per-
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FIG. 2. Coordinate system for trajectory calculations.

pendicular to the drops’ line of center. A(s) and B(s) de-
pend on the dimensionless separation (s), the viscosity ratio
(= Karop/ Hsusp)» and the size ratio of the two drops. Details
and derivations of A(s) and B(s), based on a bispherical
coordinate system, are provided in Wang, Zinchenko, and
Davis.? Values of A(s) and B(s) calculated with the Wang
et al.? formulas are accurate for dimensionless gaps (s-2)
greater than 107°. Below this dimensionless gap, A(s) and
B(s) cannot be calculated accurately due to the singularity in
the coordinate expressions for A(s) and B(s).

The relative velocity of the two drops can be decom-
posed into motions along and normal to their line of centers
to provide the trajectory equations for the two drops. The
trajectories are described in a coordinate system, shown in
Fig. 2, which is consistent with previous theoretical work.
Here, # is the out-of-plane orientation angle, ¢ is the in-
plane orientation angle, and r was defined previously. In ad-
dition to providing a top view of the four-roll mill, Fig. 1
shows the experimental flow field in the defined coordinate
system. When ¢=135° the line of centers of the two drops
is aligned parallel to the inflow axis of the undisturbed flow,
when ¢=45° the drops are aligned parallel to the outflow
axis, and when ¢=90° the pair of drops is just rotating from
the compressional (inflow) quadrant to the extensional {out-
flow) quadrant of the flow.

Substituting the vorticity and rate of strain tensors for a
general two-dimensional linear flow, Eq. (1), into the relative
velocity equation, Eq. (2), yields the dimensionless trajectory
equations

ds

E=’}’S(l““ﬂf)(l—A(S))sinZGsinq:cos @, (3)
do

Et‘:?(l"'a)(l—B(s))sinqocoscpcos #sin 0, 4)

d B
d—q:=y{coszqo(a— %)-(1+a))

— sin? ¢(1—£(2S—)(1+a)

} : ®)

For the experimental conditions of pure extensional flow
(a=1) and in-plane interaction of the two drops (#
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=17/2), Eqgs. (3)—(5) reduce to two equations, an equation for
the dimensionless separation, s, and an equation for the in-
plane orientation angle, ¢,

%:25(1—A(s))singucos @, (6)
do "
d?:(l—B(s))[Z cos® p—1], (7N

where time t* is nondimensionalized with the shear rate.
Equations (6) and (7) are solved with a Runga—Kutta—
Vemner fifth-order and sixth-order method, with the initial
drop positions chosen to match those of the experimental
study. As expected, solutions of Egs. (6) and (7) indicate that
purely spherical drops collide (coalescence) if the drops are
sufficiently aligned relative to the inflow axis. In the experi-
mental study, however, it is found that the thin film drainage
time exceeds the interaction time and coalescence is not ob-
served for the range of capillary numbers and drop sizes
studied due to the additional interfacial deformation that de-
velops between two drops in close contact. We will discuss
this further in a later section. To estimate both the approach
and exit trajectories, as well as the ‘‘interaction time’’ when
the drops are in a close contact configuration, without actu-
ally incorporating deformation, we resort to an ad hoc pro-
cedure which forces the spherical drops to remain separated,
yet allows the drops to rotate with the rotation rate predicted
from Eq. (7) with s=2. This modification is applied to the
solutions of Eq. (6) just before the spherical drops collide
and is equivalent to introducing a nonhydrodynamic repul-
sive force that keeps the spherical drops from coalescing.
This modification is implemented numerically when the
drops are in the compressional quadrant of the flow (¢
>90°) and the computed dimensionless gap (s-2) is less
than 10™°. The modification sets the equation for the dimen-
sionless separation [Eq. (6)] to zero and fixes s=2.000 001
in Eq. (7). Thus, the in-plane orientation angle (¢) continues
to evolve with a constant B(s) [B(s) approaches a constant
value for gaps less than 10 *]. The continued evolution of ¢
preserves the rotation rate and allows for an estimation of the
interaction time. When the pair of drops rotates from the
compressional quadrant (¢>90°) to the extensional quad-
rant (¢<90°), the ad hoc modification is relaxed and the
complete spherical theory, Eqgs. (6) and Eq. (7), resumes. The
above ad hoc modification has been previously implemented
by Lowenberg and Hinch® to stabilize spherical drops against
coalescence in their numerical study on the collision of two
deformable drops in shear flow.

IV. RESULTS
A. Rigid solid spheres

The trajectories of two solid rigid spheres are mapped in
the experimental apparatus and compared to theoretical pre-
dictions for spherical drops with an infinite viscosity ratio to
verify the experimental methods. Values of the mobility
functions, A(s) and B(s), approach the rigid, solid limit at a
viscosity ratio of 100. Above this viscosity ratio, the values
of A(s) and B(s) are essentially constant for increasing vis-
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FIG. 3. Relative trajectories, § vs ¢, for rigid spheres (a) without close
contact, {(b) with close contact,

cosity ratios. A viscosity ratio of 10° was chosen for the
theoretical calculations. Figure 3 shows the shape of the rela-
tive trajectories (s vs ¢), whereas Figs. 4 and 5 show the time
dependence of s and ¢, respectively, for two rigid spheres. It
should be noted that the bold line in these figures (and in all
that follow) represents the trajectories that would be fol-
lowed if the contours of the drops followed streamlines of
the base flow [Eq. (1)], whereas the lighter line is the trajec-
tory calculated for spherical drops using the theory described
in the preceding section. We show both a case where the
spheres remain sufficiently separated for all time (ie., s
>2), and a case where the spheres nearly touch. Excellent
agreement between the theoretical predictions and the ex-
perimental results is obtained. When compared to hypotheti-
cal spheres that move affinely along the streamlines of the
undisturbed flow, the effect of the hydrodynamic interaction
between the two spheres is to shift the minimum separation
to larger values and retard both the approach rate and rota-
tion speed of the two spheres. Of course, the relative trajec-
tory curves for smooth spheres should be symmetric whether
hydrodynamic interactions are present or not. On the other
hand, if the surface roughness of the spheres were compa-
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_Separation vs Time
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FIG. 4. Time dependence of S for rigid spheres (a) without close contact, (b)
with close contact.

rable to the dimensionless gap, an asymmetry in the relative
trajectory curves should develop for spheres in close contact.
Since, within error, no asymmetry is observed experimen-
tally, the surface roughness must be smaller than the dimen-
sionless gaps observed and insignificant to the interaction.
We can confirm this by comparing the measured minimum
gap to the surface roughness of the spheres. From the mea-
sured minimum separation of the sphere centers, the mini-
mum gap separating the two surfaces is 13 wm. This distance
is slightly larger than the surface roughness (no larger than 5
um) estimated from scanning electron microscopy imaging
of the particle surfaces and agrees with our observations of a
symmetric trajectory curve.

B. Noncolliding drops

The capillary number (Ca=auy/o, where a is the un-
deformed drop radius, u is the viscosity ratio of the suspend-
ing fluid, v is the shear rate, and o is the interfacial tension)
provides a measure of the ratio of viscous forces to interfa-
cial forces acting on a drop. As the capillary number in-
creases, the viscous forces increase relative to the interfacial
forces and the drop deforms. A measure of the deformation
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Angle vs Time
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FIG. 5. Time dependence of ¢ for rigid spheres (a) without close contact,
(b) with close contact.

for small deformations is the Taylor deformation parameter,
Dy=(L—B)/(L+B), where L is the length of the drop and
B is the breadth of the drop.

First, we examine the effects of the viscosity ratio and
the initial orientation angle, ¢, on the trajectories of two
drops, whose initial position is such that they remain sepa-
rated by a distance comparable to their radius. As the viscos-
ity ratio increases, the hydrodynamic interaction between the
two drops should increase according to (6) and (7). Thus,
relative to lower viscosity ratio drops, higher viscosity ratio
drops should deviate from undisturbed streamlines at larger
separations and for initial orientations that are less aligned
with the inflow axis. Figure 6 shows the ‘‘shapes’ of the
relative trajectories, whereas Figs. 7 and 8 provide the time
dependence of s and ¢ for two viscosity ratios, 0.03 (Ca
=0.01, D;=0.034) and 3.70 (Ca=0.015, D;=0.043), with
initial orientations that are not aligned with the inflow axis.
For a viscosity ratio of 0.03, the initial orientation is suffi-
ciently offset from the inflow axis that the drop interaction is
insignificant and the trajectories are identical to the trajecto-
ries of material points following the undisturbed streamlines.
The theoretical calculation for spherical drops also predicts
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viscosity ratio = 0.03

10.0 offset initial position

HamlE— !

8.0 E . sreamline

70 b4 !
w 60 \ /

sof—\ /
N /

4.0 E
3.0 5
E
20 P R ek Ao PR
140 120 100 80 60 40
Lo
(a)
Angle vs Separation
viscosity ratio = 3.70
55 offset initial position
: " g, .
6.0 - ‘ streamline

5.0 °\ /
3:0 ‘\

20 L o § R
140 120

FIG. 6. Relative trajectories, S vs ¢, for drops offset from the inflow axis (a)
A=0.03, (b} A=3.70.

this. As the viscosity ratio is increased to 3.70, however, the
hydrodynamic interaction increases. The increased interac-
tion then shifts the minimum separation to a larger distance
than is predicted for two hypothetical drops that follow the
undisturbed streamlines. Even though the experimental drops
are slightly deformed due to the undisturbed velocity gradi-
ent (Taylor deformation, D;=0.043), the theoretical calcu-
lations for spherical drops capture the increased interaction
and accurately maps the ‘‘shape’” of the relative trajectory
and the time dependence of ¢ and s. It is important to note
for drops without close contact (s>>2) that the relative tra-
jectories are symmetric about ¢p=90°. It will be shown in
Sec. IV C that when drops come into close contact (s=2 or
less) this symmetry is broken due to the additional interfacial
deformation that occurs as a consequence of the ““collision’’
process.

C. Colliding drops

In this section, we probe the effects of close contact and
flow-induced deformation on the trajectories of two drops.
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FIG. 7. Time dependence of § for drops offset from the inflow axis (a) A
=0.03, (b) A=3.70.

We define close contact or “‘collision’” when the separation
between the drops is no longer visible. The capillary number
varies between 0.0064 and 0.0968, which produces flow-
induced deformations of the drops, prior to any significant
interaction, between Dy=0.02 and 0.22. Guido and
Simeone® observed a significant variation in the deformation
parameter during the collision of two drops in shear flow. In
this work, the deformation remained constant throughout the
interaction.

Figures 9 and 10 show the ‘‘shapes’ of the relative tra-
jectories (s vs ¢) for drops with a viscosity ratio of 0.03 at
four capillary numbers. The initial orientations of the drops
are aligned with the inflow axis and close-contact occurs.
From Figs. 9 and 10 we observe that the minimum distance
between drop centers (nondimensionalized with the unde-
formed drop radius) is less than two and decreases with in-
creasing capillary number. This is a result of the flow-
induced deformation. Within error, the measured separation
distance corresponds to the minor axis of the deformed
drops. Since no coalescence is observed, there presumably
remains a thin film between the drops in all cases. The insert
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FIG. 8. Time dependence of ¢ for drops offset from the inflow axis (a) A
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in Fig. 10 for a capillary number of 0.0579 shows a case
where s is less than two and a visible separation between the
drops exists. From Figs. 9 and 10 we observe that the experi-
mental trajectory curves are asymmetric, with the minimum
separation occurring at an orientation angle (¢) which is
greater than 90°. The asymmetry of these trajectories arises
from the additional interfacial deformation that develops
when the drops are in close contact. As the drops are pushed
together, the interfaces of the drops flatten, which increases
the interfacial area between the two drops, reduces the rate of
film drainage, and forces the drops to remain separated.
Clearly, the increased time for film drainage is sufficiently
longer than the “‘collision’” time at close contact that coales-
cence is not observed. In addition to inhibiting coalescence,
the interfacial deformation produces an irreversible interac-
tion between the two drops. If, after close contact, the flow is
reversed, the trajectories are shifted to larger minimum sepa-
rations. This is evident from Figs. 9 and 10 where the ob-
served exiting trajectories are significantly shifted from the
streamline corresponding to the initial position of the drops
(i.e., at equivalent angles, such as 130° and 50°, the separa-
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FIG. 9. Relative trajectories, S vs ¢, for different capillary numbers with
A=0.03. (a) Ca=0.0064, D;=0.02; (b) Ca=0.0115, D;=0.036.

tion along the exit trajectory is larger than the separation
along the approach trajectory). This shift is such that the
minimum separation would be increased if the flow were
reversed. This irreversible interaction is only observed ex-
perimentally for trajectories with close contact. For trajecto-
ries without close contact, such as in Fig. 6, any asymmetry
of the trajectories is too small to be measured within the
accuracy of the present experiments. This is due to the fact
that the interaction process produces only infinitesimal defor-
mation beyond the constant degree of deformation that is
caused by the undisturbed velocity gradient.

The calculated trajectories in Figs. 9 and 10 indicate that
the low viscosity ratio spherical drops essentially approach
following streamlines and collide (when s=2) after only a
slight rotation. At this point, the ad hoc modification dis-
cussed previously is implemented and the drops rotate with
s=2 until ¢$<90°. When ¢=90° the complete spherical
theory is resumed and the exiting trajectory for spheres is
predicted. Overall, the spherical theory, including this ad hoc
modification, predicts the shape of the relative trajectories
quite well. For Ca=0.0064 where the deformation of the
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FIG. 10. Relative trajectories, S vs ¢, for different capillary numbers with
A=0.03. (a) Ca=0.0579, D;=0.136; (b) Ca=0.0968, D,=0.22.

drops is minimal (D= 0.02) and the drops are nearly spheri-
cal, the experimental results and the spherical theory are in
excellent agreement. At higher capillary numbers similar
agreement between the experimental results and the spherical
theory is observed even though the flow-induced deforma-
tion has increased. The theoretical calculations do deviate
from the experimental results near the minimum separation,
because when the ad hoc modification to the calculated tra-
jectories is implemented, the ‘‘calculated’’ separation re-
mains at two while the experimental separations drop below
two due to flow-induced deformation. However, in spite of
the difference in s at $=90° (i.e., s=2 in the theory, but
5<2 experimentally), the shape of the exiting trajectories {s
vs ¢ for ¢<<90°) shows excellent agreement with the ex-
periments. This is quite interesting. It indicates that the exit-
ing trajectories for two drops in planar extensional flow are
defined by the theoretical trajectory for spherical drops with
initial values, s=2 and ¢=90°, regardless of the drop de-
formation induced by the undisturbed velocity gradient. For
the relative trajectories shown in Figs. 9 and 10, the modified
spherical theory reproduces the approaching and exiting tra-
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FIG. 11. Time dependence of ¢ for different capillary numbers with A
=0.03. (a) Ca=0.0064, D,=0.02, (b) Ca=0.0115, D,=0.036.

jectories of deformed drops with deformations up to 0.22 and
capillary numbers up to 0.0968.

Of course, the results and theoretical comparisons shown
so far in Figs. 9 and 10 relate only to the shapes of the
relative trajectories. A more critical and potentially useful
test is the time dependence of ¢ and s for the experimental
results shown in Figs. 9 and 10. Results for ¢ and 5 vs time
are shown in Figs. 11-14. For the viscosity ratio of 0.03
considered in Figs. 11-14, the relative mobility function per-
pendicular to the line of center, B(s), remains small and the
drops rotate as if there is little or no interaction as shown by
the overlap of the calculated and streamline curves. The cal-
culated time dependence of ¢ agrees with the experimentally
observed dependence, which indicates that the deformation
does not affect the rotation rates of the drops. As the viscos-
ity ratio increases, the value of B(s) increases to non-
negligible values, and the hydrodynamic interaction retards
the rotation rate of the two drops. Figure 15 shows the time
dependence of ¢ and s for a viscosity ratio of 3.70. The
calculated and observed dependence is in good agreement.
Both show that two hydrodynamically interacting drops ro-
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FIG. 12. Time dependence of ¢ for different capillary numbers with A
=0.03. (2) Ca=0.0579, D;=0.136; (b) Ca=0.0968, D,=0.22.

tate slower than two hypothetical drops that affinely follow
streamlines of the undisturbed flow. While B(s) remains
small during the interaction of 0.03 viscosity ratio drops, the
relative mobility function along the drops’ line of center,
A(s), increases as the separation is reduced. In addition, the
ad hoc modification to the calculated solution forces s=2
until sufficient time has elapsed for the drops to rotate to an
angle which is less than 90°. Therefore, we expect the cal-
culated and the observed time dependence of s to deviate
from the time dependence of two hypothetical drops that
affinely follow streamlines of the undisturbed flow for all
values of X, and this is observed in Figs. 13—15. Even though
the calculated and observed separations differ during close
contact for the reasons explained previously, the “ad hoc’’
modification to the theory for spherical drops accurately cap-
tures the time dependence of the approaching and exiting
drop trajectories and accurately predicts the total period that
the drops are in close contact. This predicted interaction time
can be incorporated into studies which estimate coalescence

probabilities.
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FIG. 13. Time dependence of § for different capillary numbers with A
=0.03. (a) Ca=0.0064, D;=0.02; (b} Ca=0.0115, D,=0.036.

V. DISCUSSION
A. Asymmetry of the trajectory curves

As stated earlier, when the two drops are in close con-
tact, the asymmetry in the experimental trajectories arises
from the additional interfacial deformation that develops be-
tween the two drops. We now give a brief explanation for
this. When the drops are in the compressional quadrant of the
flow, the external flow field pushes the drops together and
the additional interfacial deformation develops from the
pressure that is required to force the fluid from the gap be-
tween the two drops. As the drops rotate into the extensional
quadrant, the flow field no longer pushes the drops together,
but acts to separate the drops. While the effects of the exter-
nal flow field have reversed, the additional interfacial defor-
mation that developed in the compressional quadrant still
exists. With this additional deformation the drop shape is
unsteady and the interfacial tension drives the drop back to
its steady-flow induced shape. This motion acts to push the
drops away from each other. Thus, in the compressional
quadrant the development of the additional interfacial defor-
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mation retards the approach of the two drops, while in the
extensional gquadrant, the additional interfacial deformation
accelerates the separation of the two drops. This results in
the asymmetry in the separation as a function of time and
angle.

B. The ad hoc modification

Experimentally, we show that the modified theory for
spherical drops accurately predicts the relative trajectories
and the time dependence of s and ¢ for planar extensional
flow. This is consistent with the numerical work of Lowen-
berg and Hinch,? who showed for shear flow that the modi-
fied theory for spherical drops is accurate for small capillary
numbers and modest deformations. Without the ad hoc
modification, we would be unable to calculate the complete
time dependence of s and ¢ with the theory for spherical
drops. It is intriguing that the ad hoc modification provides a
reasonable estimate of the interaction time and accurately
maps the rotation of the two drops in the flow field. The fact
that ¢ is mapped accurately in time with the ad hoc modifi-
cation implies that the rotation of two touching deformed
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FIG. 15. Time dependence of § and ¢ for A=3.70 drops in close contact.

drops is equivalent to the rotation of two touching spherical
drops. It is not obvious that this should be true. A possible
explanation may be that the deformed drops have a smaller
center to center separation and a narrower profile than two
spherical drops and that the smaller separation and narrower
profile compensate for each other equally.

C. Coalescence

As stated previously, coalescence was not observed for
the range of capillary numbers and viscosity ratios examined
in this study. The absence of coalescence, however, does not
imply that we are in a capillary regime where coalescence
does ot occur. As the drops are pushed together, the drop
interfaces deform and a thin film develops between the
drops. This thin film must drain to 2 critical thickness for the
film to collapse. This critical thickness is the length scale of
attractive nonhydrodynamic interdroplet forces and is inde-
pendent of the drop radius. Thus, for coalescence to occur
the interaction time must exceed the time for film drainage
down to the critical thickness.

For a given initial position and flow type, the purely
hydrodynamic interaction and collision process is identical
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for drops of any size provided the capillary number and vis-
cosity ratio are fixed. Thus, for a given viscosity ratio and
capillary number the drops’ shape, the interaction time, the
geometry of the thin film between the two drops, and the
minimum film thickness are identical on a dimensionless ba-
sis. Since the critical film thickness is independent of the
drop radii, the question is, for what size drops (if any) does
the dimensionless minimum film thickness correspond to a
physical length scale that is less than the critical value for
coalescence? For the capillary numbers and relatively large
drop sizes examined in this work (radii of approximately 1
mm), the dimensionless minimum film thickness corresponds
to a dimensional distance that is larger than the critical film
thickness. A substantially smaller drop at similar capillary
numbers with an identical nondimensional minimum gap as
in these experiments can have an actual dimensional film
thickness on the same order as the critical film thickness and
thus coalesce. With this in mind, there should be a size de-
pendence on the critical capillary number for coalescence
with the critical capillary number decreasing with increasing
drop size.!? Preliminary studies of micron size drops in pla-
nar extensional flow at similar (or larger) capillary numbers
as in this work have shown coalescence and indicate that the
size dependence on the critical capillary number for coales-
cence does exists. '

VI. CONCLUSIONS

This paper presents the results of an experimental study,
which examines the trajectories of two purely hydrodynami-
cally interacting drops or rigid spheres subjected to a planar
extensional flow. By comparing the experimental results
with the theory for spherical drops modified as described
above, a number of conclusions can be drawn. First, the
spherical theory accurately predicts the approach and exit
trajectories of two drops even for drops with a substantial
degree of flow-induced deformation. As a result, the spheri-
cal theory should provide an adequate estimate of the colli-
sion efficiencies for both spherical and moderately deformed
drops. Second, for drops which do not come into close con-
tact (the drops interact but remain sufficiently separated that
no thin film forms), the spherical theory accurately predicts
the symmetric trajectories and captures the increased hydro-
dynamic interactions for higher viscosity ratios, regardless of
the flow-induced deformation. Third, for spherical or de-
formed drops, the spherical theory with the ad hoc modifi-

Tretheway, Muraoka, and Leal 981

cation provides a reasonable estimate of the maximum inter-
action time of two drops in close contact (i.e., the regime in
which there is a thin film present). Fourth, for drops in close
contact, the trajectory curves are asymmetric and irreversible
with a minimum separation which corresponds approxi-
mately to the minor axis of the deformed drops and is less
than the minimum separation of two spheres (s=2).

Thus, the existing trajectory theory for spherical drops
provides a reasonable estimate of the trajectories and inter-
action time of two deformable drops with or without close
contact, provided we include the “‘ad hoc’® extension to this
theory-that is described herein.
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