Chapter 5

Uncertainty Analysis

5.1 INTRODUCTION

Whenever we plan a test or later report a test result, we need to know something about the quality of
the results. Uncertainty analysis provides a methodical approach to estimating the quality of the
results from an anticipated test or from a completed test. This chapter focuses on how to estimate the
“+ what?”” in a planned test or in a stated test result.

Suppose the competent dart thrower of Chapter 1 tossed several practice rounds of darts at a bull’s-
eye. This would give us a good idea of the thrower’s tendencies. Then, let the thrower toss another
round. Without looking, can you guess where the darts will hit? Test measurements that include
systematic and random error components are much like this. We can calibrate a measurement system
to get a good idea of its behavior and accuracy. However, from the calibration we can only estimate
how well any measured value might estimate the actual “true” value in a subsequent measurement.

Errors are a property of the measurement. Measurement is the process of assigning a value to
a physical variable based on a sampling from the population of that variable. Error causes a difference
between the value assigned by measurement and the true value of the population of the variable.
Measurement errors are introduced from various elements, for example, the individual instrument
calibrations, the data set finite statistics, and the approach used. But because we do not know the true
value and we only know the measured values, we do not know the exact values of errors. Instead, we
draw from what we do know about the measurement to estimate a range of probable error. This
estimate is an assigned value called the uncerfainty. The uncertainty describes an interval about the
measured value within which we suspect that the true value must fall with a stated probability.
Uncertainty analysis is the process of identifying, quantifying, and combining the errors.

Uncertainty is a property of the result. The outcome of a measurement is a result, and the
uncertainty quantifies the quality of that result. Uncertainty analysis provides a powerful design tool
for evaluating different measurement systems and methods, designing a test plan, and reporting
uncertainty. This chapter presents a systematic approach for identifying, quantifying, and combin-
ing the estimates of the errors in a measurement. While the chapter stresses the methodology of
analyses, we emphasize the concomitant need for an equal application of critical thinking and
professional judgment in applying the analyses. The quality of an uncertainty analysis depends on
the engineer’s knowledge of the test, the measured variables, the equipment, and the measurement
procedures (1).

Errors are effects, and uncertainties are numbers. While errors are the effects that cause a
measured value to differ from the true value, the uncertainty is an assigned numerical value that
quantifies the probable range of these errors.
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162 Chapter 5 Uncertainty Analysis

This chapter approaches uncertainty analysis as an evolution of information from test design
through final data analysis. While the structure of the analysis remains the same at each step, the number
of errors identified and their uncertainty values may change as more information becomes available. In
fact, the uncertainty in the result may increase. There is no exact answer to an analysis, just the result
it from a reasonable approach using honest numbers. This is the nature of an uncertainty analysis.

There are two accepted professional documents on uncertainty analysis. The American
e National Standards Institute/American Society of Mechanical Engineers (ANSI/ASME) Power

i il Test Codes (PTC) 19.1 Test Uncertainty (2) is the United States engineering test standard, and our
approach favors that method. The International Organization on Standardization’s “Guide to the
i i Expression of Uncertainty in Measurement” (ISO GUM) (1) is an international metrology standard.
i The two differ in some terminology and how errors are cataloged. For example, PTC 19.1 refers to
random and systematic errors, terms that classify errors by how they manifest themselves in the
measurement. ISO GUM refers to type A and type B errors, terms that classify errors by how their
uncertainties are estimated. These differences are real but they are not significant to the outcome.
Once past the classifications, the two methods are quite similar. The important point is that the end
outcome of an uncertainty analysis by either method will yield a similar result!

Upon completion of this chapter, the reader will be able to

* explain the relation between an error and an uncertainty,

* execute an appropriate uncertainty analysis regardless of the level and quantity of information

available,

explain the differences between systematic and random errors and treat their assigned

uncertainties,

* analyze a test system and test approach from test design through data presentation to assign
and propagate uncertainties, and

* propagate uncertainties to understand their impact on the final statement of a result.

5.2 MEASUREMENT ERRORS

In the discussion that follows, errors are grouped into two categories: systematic error and random
error. We do not consider measurement blunders that result in obviously fallacious data—such data
should be discarded.

Consider the repeated measurement of a variable under conditions that are expected to produce
the same value of the measured variable. The relationship between the true value of the population
and the measured data set, containing both systematic and random errors, can be illustrated as in
Figure 5.1. The total error in a set of measurements obtained under seemingly fixed conditions can
be described by the systematic errors and the random errors in those measurements. The systematic
I errors shift the sample mean away from the true mean by a fixed amount, and within a sample of
??.;“!4; many measurements, the random errors bring about a distribution of measured values about the
it sample mean, Even a so-called accurate measurement contains small amounts of systematic and

il random errors.

Measurement errors enter during all aspects of a test and obscure our ability to ascertain the

information that we desire: the true value of the variable measured. If the result depends on more
i than one measured variable, these errors further propagate to the result. In Chapter 4, we stated that
i the best estimate of the true value sought in a measurement is provided by its sample mean value and
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But we considered only the random uncertainty due to the statistics of a measured data set. In this
chapter, we extend this to uncertainty analysis so that the u, term contains the uncertainties assigned
to all known errors. Certain assumptions are implicit in an uncertainty analysis:

1. The test objectives are known and the measurement itself is a clearly defined process.

2. Any known corrections for systematic error have been applied to the data set, in which case
the systematic uncertainty assigned is the uncertainty of the correction.

3. Except where stated otherwise, we assume a normal distribution of errors and reporting of
uncertainties.

4. Unless stated otherwise, the errors are assumed to be independent (uncorrelated) of each
other. But some errors are correlated, and we discuss how to handle these in Section 5.9.

5. The engineer has some “experience’ with the system components.

Inregards to item 5, by “experience’ we mean that the engineer either has prior knowledge of what
to expect from a system or can rely on the manufacturer’s performance specifications or on
information from the technical literature.

We might begin the design of an engineering test with an idea and some catalogs, and
end the project after data have been obtained and analyzed. As with any part of the design process,
the uncertainty analysis evolves as the design of the measurement system and process matures.
We discuss uncertainty analysis for the following measurement situations: (1) design stage,
where tests are planned but information is limited; (2) advanced stage or single measurement,
where additional information about process control can be used to improve a design-stage un-
certainty estimate; and (3) multiple measurements, where all available test information is combined
to assess the uncertainty in a test result. The methods for situation 3 follow current engineering
standards.
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164 Chapter 5 Uncertainty Analysis

5.3 DESIGN-STAGE UNCERTAINTY ANALYSIS

Design-stage uncertainty analysis refers to an analysis performed in the formulation stage prior to a
test. It provides only an estimate of the minimum uncertainty based on the instruments and method
chosen. If this uncertainty value is too large, then alternate approaches will need to be found. So, it is
useful for selecting instruments and selecting measurement techniques. At the test design stage, the
measurement system and associated procedures may be but a concept. Often little may be known
about the instruments, which in many cases might still be just pictures in a catalog. Major facilities
may need to be built and equipment ordered with a considerable lead time. Uncertainty analysis at
this time is used to assist in selecting equipment and test procedures based on their relative
performance. In the design stage, distinguishing between systematic and random errors might be too
difficult to be of concern. So for this initial discussion, consider only sources of error and their
assigned uncertainty in general. A measurement system usually consists of sensors and instruments,
each with their respective contributions to system uncertainty. We first discuss individual contribu-
tions to uncertainty.

Even when all errors are otherwise zero, a measured value must be affected by our ability to
resolve the information provided by the instrument. This zero-order uncertainty of the instrument,
up, assumes that the variation expected in the measured values will be only that amount due to
instrument resolution and that all other aspects of the measurement are perfectly controlled.
Essentially, g is an estimate of the expected random uncertainty caused by the data scatter due to
instrument resolution.

In lieu of any other information, assign a numerical value to # of one-half of the analog
instrument resolution’ or to equal to its digital least count. This value will reasonably represent the
uncertainty interval on either side of the reading with a probability of 95%. Then,

1
Uy = Eresolution =1LSD (5.1)

where LSD refers to the least significant digit of the readout.
Note that because we assume that the error has a normal distribution with its uncertainty applied
equally to either side of the reading, we could write this as

Uy = :I:% resolution (95%)
But unless specifically stated otherwise, the % sign for the uncertainty will be assumed for any
computed uncertainty value and applied only when writing the final uncertainty interval of a result.

The second piece of information that is usually available is the manufacturer’s statement
concerning instrument error. We can assign this stated value as the instrument uncertainty, u,.
Essentially, u. is an estimate of the expected systematic uncertainty due to the instrument. If no
probability level is provided with such information, a 95% level can be assumed.

Sometimes the instrument errors are delineated into parts, each part due to some contributing
factor (Table 1.1). A probable estimate in u, can be made by combining the uncertainties of known
errors in some reasonable manner. An accepted approach of combining uncertainties is termed the
root-sum-squares (RSS) method.

't is possible to assign a value for uy that differs from one-half the scale resolution. Discretion should be used. Instrument
resolution is likely described by either a normal or a rectangular distribution, depending on the instrument.
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Combining Elemental Errors: RSS Method

Each individual measurement error interacts with other errors to affect the uncertainty of a
measurement. This is called uncertainty propagation. Each individual error is called an “‘elemental
error.”’ For example, the sensitivity error and linearity error of a transducer are two elemental errors,
and the numbers associated with these are their uncertainties. Consider a measurement of x that is
subject to some K elements of error, each of uncertainty ug, where k =1, 2,...,K. A realistic
estimate of the uncertainty in the measured variable, u,, due to these elemental errors can be
computed using the RSS method to propagate the elemental uncertainties:

=/l +1+ o+
(5.2)

The RSS method of combining uncertainties is based on the assumption that the square of an
uncertainty is a measure of the variance (ie., 5) assigned to an error, and the propagation of these
variances yields a probable estimate of the total uncertainty. Note that it is imperative to maintain
consistency in the units of each uncertainty in Equation 5.2 and that each uncertainty term be
assigned at the same probability level.

In test engineering, it is common to report final uncertainties at a 95% probability level
(P% = 95%), and this is equivalent to assuming the probability covered by two standard deviations.
When a probability level equivalent to a spread of one standard deviation is used, this uncertainty is
called the “standard” uncertainty (1, 2). For a normal distribution, a standard uncertainty is a 68%
probability level. Whatever level is used, consistency is important.

Design-Stage Uncertainty

The design-stage uncertainty, u,, for an instrament or measurement method is an interval found by
combining the instrument uncertainty with the zero-order uncertainty,

ug = \Jub+u (P%) (5.3)

This procedure for estimating the design-stage uncertainty is outlined in Figure 5.2. The design-
stage uncertainty for a test system is arrived at by combining each of the design-stage uncertainties
for each component in the system using the RSS method while maintaining consistency of units and
confidence levels.

Due to the limited information used, a design-stage uncertainty estimate is intended only as a
guide for selecting equipment and procedures before a test, and is never used for reporting results. f
additional information about other measurement errors is known at the design stage, then their

Design-stage uncertainty

ug=~ ul+ul

/N

zero-order uncertainty| |Instrument uncertainty|  Figure 5.2 Design-stage uncertainty procedure in combin-
kg U

ing uncertainties.
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Table 5.3 Data-Reduction Error Source Group

Element Error Source”

‘ 1 Curve fit error
2 Truncation error
! : 3 Modeling error
etc.

“Systematic error or random error in each element.

5.5 SYSTEMATIC AND RANDOM ERRORS

Systematic Error

A systematic error” remains constant in repeated measurements under fixed operating conditions. A
i systematic error may cause either a high or a low offset in the estimate of the true value of the
f measured variable. Because its effect is constant, it can be difficult to estimate the value of a
systematic error or in many cases even recognize its presence. Accordingly, an estimate of the range
of systematic error is represented by an interval, defined as +-p. The value b is the estimate of the
systematic standard uncertainty. Its interval has a confidence level of one standard deviation,
equivalent to a probability level of 68% for a normal distribution. The systematic uncertainty at any
confidence level is given by £, pb, or simply #b. The interval defined by the systematic uncertainty at
the 95% probability level is written as

+B=42b (95%) (5.4)

which assigns a value of t=2. This ¢ value assumes large degrees of freedom in an assigned
systematic uncertainty for which #=1.96, which is rounded to 2 for convenience (2).

The reader has probably experienced systematic errors in measurements. Improperly using the
floating tang at the end of a metal tape measure will offset the measurement, a systematic error. A
more obvious example is reporting the barefoot height of a person based on a measurement taken
while the person was wearing high-heeled shoes. In this case this systematic error, a data- acqulsltlon
error, is the height of the heels. But these errors are obvious!

Consider a home bathroom scale; does it have a systematic error? How might we assign an
uncertainty to its indicated weight? Perhaps we can calibrate the scale using calibrated standard
masses, account for local gravitational acceleration, and correct the output, thereby estimating the
systematic error of the measurement (i.e., direct calibration against a local standard). Or perhaps we
can compare it to a measurement taken in a physician’s office or at the gym and compare each
reading (i.e., a sort of interlaboratory comparison). Or perhaps we can carefully measure the
person’s volume displacement in water and compare the results to estimate differences (i.e.,
concomitant methodology). Or, we can use the specification provided by the manufacturer (i.e.,
experience). Without any of the above, what value would we assign? Would we even suspect a
systematic error?

2 This error was called a “bias™ error in engineering documents prior to the 1990s.
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But let us think about this. The insidious aspect of systematic error has been revealed. Why
doubt a measurement indication and suspect a systematic error? The mean value of the data set may
be offset from some true value that we do not know. Figuratively speaking, there will be no shoe
heels staring at us. Experience teaches us to think through each measurement carefully because
systematic error is always present at some magnitude. We see that it is difficult to estimate
systematic error without comparison, so a good design should include some means to estimate it.
Various methodologies can be utilized: (1) calibration, (2) concomitant methodology, (3) inter-
laboratory comparisons, or (4) judgment/experience. When available, calibration using a suitable
standard and method can reduce instrument systematic error to predictable intervals and estimate
its associated uncertainty. A quality instrument may come with a certified calibration certificate.
Concomitant methodology, which is using different methods of estimating the same thing, allows
for comparing the results. Concomitant methods that depend on different physical measurement
principles are preferable, as are methods that rely on calibrations that are independent of each other.
In this regard, analytical methods could be used for comparison® or at least to estimate the range of
systematic error due to influential sources such as environmental conditions, instrument response
errors, and loading errors. Lastly, an elaborate but good approach is through interlaboratory
comparisons of similar measurements, an excellent replication method. This approach introduces
different instruments, facilities, and personnel into an otherwise similar measurement procedure.
The variations in the results between facilities provide a statistical estimate of the systematic
uncertainty (2).

In lieu of the above, a judgment value based on past experience may have to be assigned; these
values are usually understood to be made at the 95% confidence level. For example, the value that
first came to mind to you in the bathroom scale example above likely covered a 95% interval.

Note that calibration cannot eliminate systematic error, but it may reduce uncertainty. Consider
the calibration of a temperature transducer against a National Institute of Standards and Technology
(NIST) standard certified to be correct to within 0.01°C. If the calibration data show that the
transducer output has a systematic offset of (.2°C relative to the standard, then we would just correct
all the data obtained with this transducer by 0.2°C. Simple enough, we correct it! But the standard
itself still has an intrinsic systematic uncertainty of 0.01°C, and this uncertainty remains in the
calibrated transducer. We would include any uncertainty in the correction value applied.

Random Error

When repeated measurements are made under fixed operating conditions, random errors manifest
themselves as scatter of the measured data. Random error” is introduced through the repeatability
and resolution of the measurement system components, calibration, and measurement procedure
and technique; by the measured variable’s own temporal and spatial variations; and by the variations
in the process operating and environmental conditions from which measurements are taken.

The estimate of the probable range of a random error is given by its random uncertainty. The
random standard uncertainty,sz, is defined by the interval given by +s5, where

sz = 5x/VN {5.5)

3 Smith and Wenhofer (3) provide examples for determining jet engine thrust, and several complementary measurements are
used with an energy balance to estimate the uncertainty assigned to the systematic error.
#This error was called a ““precision” error in engineering documents prior to the 1990s.
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il with degrees of freedom v = N — 1 and assuming the errors are normally distributed.® The interval
il has a confidence level of one standard deviation, equivalent to a probability of 68% for a population
of x having a normal distribution. The random uncertainty at a desired confidence level is defined by

the interval £, psxz, where ¢ is found from Table 4.4.

5.6 UNCERTAINTY ANALYSIS: ERROR PROPAGATION

Suppose we want to determine how long it would take to fill a swimming pool from a garden hose.
One way is to measure the time required to fill a bucket of known volume to estimate the flow rate
from the garden hose. Armed with a measurement of the volume of the pool, we can calculate the
time to fill the pool. Clearly, small errors in estimating the flow rate from the garden hose would
translate into large differences in the time required to fill the pool! Here we are using measured
values, the flow rate and volume, to estimate a result, the time required to fill the pool.
Bl Very often in engineering, results are determined through a functional relationship with measured
i values. For example, we just calculated a flow rate above by measuring time, ¢, and bucket volume, V,
e since O = f(¢, V) = /1. Buthow do uncertainties in either measured quantity contribute to uncertainty
Wi in flow rate? Is the uncertainty in Q more sensitive to uncertainty in volume or in time? More generally,
how are uncertainties in variables propagated to a calculated result? We now explore these questions.

Propagation of Error

A general relationship between some dependent variable y and a measured variable x, that is,
¥ = f(x), is illustrated in Figure 5.3. Now suppose we measure x a number of times at some
operating condition so as to establish its sample mean value and the uncertainty due to random error
in this mean value, #, psz, which for convenience we write simply as tsz. This implies that,
neglecting other random and systematic errors, the true value for x lies somewhere within the
interval X & ts5. It is reasonable to assume that the true value of y, which is determined from the
measured values of x, falls within the interval defined by

y £ 8y = f(x £ ts3) (5.6)
Expanding this as a Taylor series yields
_ - dy 1/d% 2
yEdy=f(x)+ [(d_x)xgxm? +5(@)x;(zsf) + } (5.7)

X

By inspection, the mean value for y must be f(X) so that the term in brackets estimates +5y. A linear
approximation for 8y can be made, which is valid when #s5 is small and neglects the higher order

terms in Equation 5.7, as
dy
Sy = | — 5 2
Y (dx) x=zts (5.8)

The derivative term, (dy/dx),_s, defines the slope of a line that passes through the point specified
by X. For small deviations from the value of X, this slope predicts an acceptable, approximate

| 3 The estimate of standard uncertainty when estimated from a rectangular distribution (11) is (b — a)/ v/12, where b and a
were defined in Table 4.2. The probability is about 58%.
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Figure 5.3 Relationship between a measured variable and a resultant calculated using the value of
that variable.

relationship between ts5 and 8y. The derivative term is a measure of the sensitivity of y to changes in
x. Since the slope of the curve can be different for different values of x, it is important to evaluate the
slope using a representative value of x. The width of the interval defined by +isz corresponds to
+3y, within which we should expect the true value of y to lie. Figure 5.3 illustrates the concept that
errors in a measured variable are propagated through to a resultant variable in a predictable way. In
general, we apply this analysis to the errors that contribute to the uncertainty in x, written as w,. The
uncertainty in x is related to the uncertainty in the resultant y by

dy
Uy = (ﬂ) __”x (5.9)

Compare the similarities between Equations 5.8 and 5.9 and in Figure 5.3.
This idea can be extended to multivariable relationships. Consider a result R, which is determined
through some functional relationship between independent variables xi, Xa, ..., X defined by

R=f{x1,%2,..., %} (5.10)

where L is the number of independent variables involved. Each variable contains some measure of
uncertainty that affects the result. The best estimate of the true mean value R’ would be stated as

R=R+tu (P%) (5.11)
where the sample mean of R is found from

R =f1{Z1, %2, -, ¥} (5.12)
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it '. and the uncertainty in R is found from
up = f1{v, Uz 2 Uz, } (5.13)

In Equation 5.13, each ug, i =1, 2,...,L represents the uncertainty associated with the best
estimate of x; and so forth through x;. The value of ug reflects the contributions of the individual
uncertainties as they are propagated through to the result.

A general sensitivity index, 8;, results from the Taylor series expansion, Equation 5.9, and the
functional relation of Equation 5.10 and is given by

__ OR
ox ]

0; i=1,2,...,L (5.14)

The sensitivity index relates how changes in each x; affect R. Equation 5.14 can also be estimated
numerically using finite differencing methods (5), which can be easily done within a spreadsheet or
symbolic software package. The index is evaluated using either the mean values or, lacking these
estimates, the expected nominal values of the variables.

The contribution of the uncertainty in x to the result R is estimated by the term 6;uz,. The most
probable estimate of ug is generally accepted as that value given by the second power relation (4),
which is the square root of the sum of the squares (RSS). The propagation of uncertainty in the
variables to the result is by

L 12
Uug = {Z(eiugf)z] (5.15)

i=1

Sequential Perturbation

A numerical approach can also be used to estimate the propagation of uncertainty through to aresult
that circumvents the direct differentiation of the functional relations (6). The approach is handy to

reduce data already stored in discrete form.
The method uses a finite difference method to approximate the derivatives:

1. Based on measurements for the independent variables under some fixed operating condition,
calculate a result R, where R, = f(x1, X2,..-, x.). This value fixes the operating point for
the numerical approximation (e.g., see Fig. 5.3).

2. Increase the independent variables by their respective uncertainties and recalculate the result
based on each of these new values. Call these values Rf. That is,

RT = (JC1 4 Ux1, X2, ,XL),
RY =f(x1, %2+t -, XL); - -- (5.16)
R}i— :f(xl,xz, gL uxL),

3. In a similar manner, decrease the independent variables by their respective uncertainties and
recalculate the result based on each of these new values. Call these values R; .

4. Calculate the differences 8R;” and 8R; for i=1,2,...,L

8R! =RY — R,

5K — R — R, (5.17)
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5. Evaluate the approximation of the uncertainty contribution from each variable,
BRj =Tk ~ Biuf (518)

Then, the uncertainty in the result is

L 1/2
up = {Z {SRi)ZJ (5.19)

Equations 5.15 and 5.19 provide two methods for estimating the propagation of uncertainty to a
result. In most cases, each equation yields nearly the identical result and the choice of method is left
to the user. The method can also be used to estimate just the sensitivity index of Equation 5.14 (2). In
this case, steps 2 and 3 would apply a small deviation value, typically 1% of the nominal value of the
variable, used in place of the actual uncertainty to estimate the derivative (5).

We point out that sometimes either method may calculate unreasonable estimates of ug. When
this happens the cause can be traced to a sensitivity index that changes rapidly with small changes in
the independent variable x; coupled with a large value of the uncertainty Uy, This occurs when the
operating point is close to an minima or maxima inflection in the functional relationship. In these
situations, the engineer should examine the cause and extent of the variation in sensitivity and use a
more accurate approximation for the sensitivity, including using the higher order terms in the Taylor
series of Equation 5.7.

In subsequent sections, we develop methods to estimate the uncertainty values from available

information.

Example 5.3

For a displacement transducer having the calibration curve, y = KE, estimate the uncertainty in
displacement y for E = 5.00 V, if K = 10.10 mm/V with ug = +0.10 mm/V and uz = +0.01 V at
95% confidence.

KNOWN y=KE
E=500V up =001V
K=1010mm/V wux = 0.10 mm/V

FIND u,
SOLUTION Based on Equations 5.12 and 5.13, respectively,
y=f(E,K) and u, =f(ug,ug)
From Equation 5.15, the uncertainty in the displacement at y = KE is
iy = I:(GETA!E)Z + (SKMK)Z] v
where the sensitivity indices are evaluated from Equation 5.14 as

ay dy
:——:K = —_——=
0 B and O 3K E




