Determine the velocity component in the x direction so that the vol-
umetric dilatation rate is zero.

6.9 (% An incompressible viscous fluid is placed between two
large parallel plates as shown in Fig. P6.9. The bottom plate is fixed
and the upper plate moves with a constant velocity, U. For these
conditions the velocity distribution between the plates is linear and
can be expressed as

B
':U‘-
LY

Determine: (a) the volumetric dilatation rate, (b) the rotation vec-
tor, (¢) the vorticity, and (d) the rate of angular deformation.

U
—l i

T 7 Moving

plate
U
i
|

I j Fixed

plate

% Figure P6.9

6.10 €3 = A viscous fluid is contained in the space between

concentric cylinders. The inner wall is fixed, and the outer wall ro-
tates with an angular velocity w. (See Fig. P6.10a and Video V6.3.)
Assume that the velocity distribution in the gap is linear as illus-
trated in Fig. P6.10b. For the small rectangular element shown in
Fig. P6.10b, determine the rate of change of the right angle y due to
the fluid motion. Express your answer in terms of 7., 7, and w.

-
7
E .
3 r,@
M

(a) (b)
B Figure P6.10

Section 6.2 Conservation of Mass

6.11 For incompressible fluids the volumetric dilatation rate must
be zero; that is, V - V = 0. For what combination of constants, a,
b, ¢, and e can the velocity components

u=ax + by
v=cx + ey

be used to describe an incompressible flow field?

6.12 f@s For a certain incompressible flow field it is suggested
that the velocity components are given by the equations

u=2xy v=—-xy w=0
Is this a physically possible flow field? Explain.

6:13 {%¥e The velocity components of an incompressible, two-
dimensional velocity field are given by the equations

u=y —x(1+x)
v =y(2x + 1)

Show that the flow is irrotational and satisfies conservation of mass.
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6.14 fws» For each of the following stream functions, with units
of m%s, determine the magnitude and the angle the velocity vector
makes with the x axis at x = 1 m, y = 2 m. Locate any stagnation
points in the flow field.

(@) i = xy
M y=-2+y

6.15 (W The stream function for an incompressible, two-
dimensional flow field is

b= ay - by
where a and b are constants. Is this an irrotational flow? Explain.

6.16 The stream function for an incompressible, two-dimensional
flow field is

= ay* — bx
where a and b are constants. Is this an irrotational flow? Explain.

6.17 The velocity components in an incompressible, two-
dimensional flow field are given by the equations

u= s
—2xy +x

Determine, if possible, the corresponding stream function.

U=

6.18 The velocity components of an incompressible, two-
dimensional velocity field are given by the equations

u = 2xy
=2 -y

Show that the flow is irrotational and satisfies conservation of mass.
6.19 Wi For a certain two-dimensional flow field

u=0
v=V

(a) What are the corresponding radial and tangential velocity compo-
nents? (b) Determine the corresponding stream function expressed in
Cartesian coordinates and in cylindrical polar coordinates.

6.20 Some velocity measurements in a three-dimensional incom-
pressible flow field indicate that # = 6xy* and v = — 4y*z. There is
some conflicting data for the velocity component in the z direction.
One set of data indicates that w = 4yz* and the other set indicates
that w = 4yz” — 6y*z. Which set do you think is correct? Explain.

6.21 (@ A two-dimensional, incompressible flow is given by u
= —yand v = x. Show that the streamline passing through the
pointx = 10 and y = 0 is a circle centered at the origin.

6.22 In a certain steady, two-dimensional flow field the fluid den-
sity varies linearly with respect to the coordinate x: that is, p = Ax
where A is a constant. If the x component of velocity « is given by
the equation u = y, determine an expression for v.

6.23 (@ In a two-dimensional, incompressible flow field, the x
component of velocity is given by the equation # = 2x. (a) Deter-
mine the corresponding equation for the y component of velocity if
v = 0 along the x axis. (b) For this flow field, what is the magnitude

v ft
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0 1.0 x ft | Figure P6.23



6.90 A fluid of density p flows steadily downward between the
two vertical, infinite, parallel plates shown in the figure for Prob-
lem 6.89. The flow is fully developed and laminar. Make use of
the Navier-Stokes equation to determine the relationship between
the discharge and the other parameters involved, for the case in
which the change in pressure along the channel is zero.

6.91 & (See Fluids in the News article titled “10 Tons on 8 psi,”
Section 6.9.1.) A massive, precisely machined, 6-fi-diameter gran-
ite sphere rests on a 4-ft-diameter cylindrical pedestal as shown in
Fig. P6.91. When the pump is turned on and the water pressure
within the pedestal reaches 8 psi, the sphere rises off the pedestal,
creating a 0.005-in. gap through which the water flows. The sphere
can then be rotated about any axis with minimal friction. (a) Esti-
mate the pump flowrate, O, required to accomplish this. Assume
the flow in the gap between the sphere and the pedestal is essen-
tially viscous flow between fixed, parallel plates. (b) Describe what
would happen if the pump flowrate were increased to 20Q,.

0.005 in.

% Figure P6.91

Section 6.9.2 Couette Flow

6.92 3 (@i Two horizontal, infinite, parallel plates are spaced
adistance b apart. A viscous liquid is contained between the plates.
The bottom plate is fixed, and the upper plate moves parallel to
the bottom plate with a velocity {/. Because of the no-slip bound-
ary condition (see Video V6.12), the liquid motion is caused by
the liquid being dragged along by the moving boundary. There is
no pressure gradient in the direction of flow. Note that this is a so-
called simple Couerte flow discussed in Section 6.9.2. (a) Start with
the Navier-Stokes equations and determine the velocity distribu-
tion between the plates. (b) Determine an expression for the
flowrate passing between the plates (for a unit width). Express your
answer in terms of b and U.

6.93 A layer of viscous liquid of constant thickness (no velocity
perpendicular to plate) flows steadily down an infinite, inclined
plane. Determine, by means of the Navier—Stokes equations, the
relationship between the thickness of the layer and the discharge
per unit width. The flow is laminar, and assume air resistance is
negligible so that the shearing stress at the free surface is zero.

6.94 e An incompressible, viscous fluid is placed between hor-
izontal, infinite, parallel plates as is shown in Fig. P6.94. The two
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plates move in opposite directions with constant velocities, U/; and
U,, as shown. The pressure gradient in the x direction is zero, and
the only body force is due to the fluid weight. Use the
Navier—Stokes equations to derive an expression for the velocity
distribution between the plates. Assume laminar flow.

Uy
——pe
] ] 1
hivy
el
L {
~frn
UZ
I Figure P6.94

6.95 /s Two immiscible, incompressible, viscous fluids having
the same densities but different viscosities are contained between
two infinite, horizontal, parallel plates (Fig. P6.95). The bottom
plate is fixed, and the upper plate moves with a constant velocity
U. Determine the velocity at the interface. Express your answer in
terms of U, w,, and u,. The motion of the fluid is caused entirely
by the movement of the upper plate; that is, there is no pressure
gradient in the x direction. The fluid velocity and shearing stress
are continuous across the interface between the two fluids. Assume
laminar flow.

|
h
& : Fixed

L

1 Figure P6.95

6.96 f#m=e The viscous, incompressible flow between the parallel
plates shown in Fig. P6.96 is caused by both the motion of the bot-
tom plate and a pressure gradient, dp/dx. As noted in Section 6.9.2,
an important dimensionless parameter for this type of problem is
P = —(b2 wU) (9p/dx) where w is the fluid viscosity. Make a
plot of the dimensionless velocity distribution (similar to that
shown in Fig. 6.325) for P = 3. For this case where does the max-
imum velocity occur?

Fixed
plate

—~

4 Figure P6.96

6.97 faxre A viscous fluid (specific weight = 80 1b/fe3; viscosity
= 0.03 Ib - s/ft?) is contained between two infinite, horizontal par-
allel plates as shown in Fig. P6.97. The fluid moves between the
plates under the action of a pressure gradient, and the upper plate
moves with a velocity U while the bottom plate is fixed. A U-tube
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manometer connected between two points along the bottom indi-
cates a differential reading of 0.1 in. If the upper plate moves with
a velocity of 0.02 ft/s, at what distance from the bottom plate does
the maximum velocity in the gap between the two plates occur?
Assume laminar flow.

U=0.02ft/s
s o
] T 7
1-0‘ e l——f}- 6 in. -l -‘"
t = Fixed

f ( plate

0.1lin. Il

g

™~y = 100 At

s
I Figure P6.97

6.98 An infinitely long, solid, vertical cylinder of radius R is lo-
cated in an infinite mass of an incompressible fluid. Start with the
Navier-Stokes equation in the ¢ direction and derive an expression
for the velocity distribution for the steady flow case in which the
cylinder is rotating about a fixed axis with a constant angular ve-
locity . You need not consider body forces. Assume that the flow
is axisymmetric and the fluid is at rest at infinity.

6.99 (Wi A vertical shaft passes through a bearing and is lubri-
cated with an oil having a viscosity of 0.2 N - s/m? as shown in
Fig. P6.99. Assume that the flow characteristics in the gap between
the shaft and bearing are the same as those for laminar flow be-
tween infinite parallel plates with zero pressure gradient in the di-
rection of flow. Estimate the torque required to overcome viscous
resistance when the shaft is turning at 80 rev/min.

Shaft
3

— *— 75 mm

Bearing

160 mm

Oir/ ——}-—0.25 mm

o i Figure P6.99

6.100 @3 (%o A viscous fluid is contained between two long
concentric cylinders. The geometry of the system is such that the
flow between the cylinders is approximately the same as the lami-
nar flow between two infinite parallel plates. (a) Determine an ex-
pression for the torque required to rotate the outer cylinder with an
angular velocity w. The inner cylinder is fixed. Express your an-
swer in terms of the geometry of the system, the viscosity of the
fluid, and the angular velocity. (b) For a small, rectangular element
located at the fixed wall, determine an expression for the rate of an-
gular deformation of this element. (See Video V6.3 and Fig. P6.10.)

*6.101 Oil (SAE 30) flows between parallel plates spaced 5 mm
apart. The bottom plate is fixed, but the upper plate moves with a
velocity of 0.2 m/s in the positive x direction. The pressure gradient
is 60 kPa/m, and it is negative. Compute the velocity at various
points across the channel and show the results on a plot. Assume
laminar flow.

Section 6.9.3 Steady, Laminar Flow in Circular Tubes

6.102 Ethyl alcohol flows through a horizontal tube having a di-
ameter of 10 mm. If the mean velocity is 0.15 m/s, what is the
pressure drop per unit length along the tube? What is the velocity
at a distance of 2 mm from the tube axis?

6.103 fWiEve A simple flow system to be used for steady-flow tests
consists of a constant head tank connected to a length of 4-mm-
diameter tubing as shown in Fig. P6.103. The liquid has a viscos-
ity of 0.015 N - s/m? a density of 1200 kg/m®, and discharges into
the atmosphere with a mean velocity of 2 m/s. (a) Verify that the
flow will be laminar. (b) The flow is fully developed in the last
3 m of the tube. What is the pressure at the pressure gage?(¢) What
is the magnitude of the wall shearing stress, 7,,, in the fully
developed region? '

Pressure
gage

Diameter = 4 mm ' 2 !

B Figure P6.103 |

6.104 (W (a) Show that for Poiseuille flow in a tube of radius
R the magnitude of the wall shearing stress, 7,,, can be obtained
from the relationship

|(Trz)wall| = ’?TR3
for a Newtonian fluid of viscosity w. The volume rate of flow is
Q. (b) Determine the magnitude of the wall shearing stress for a
fluid having a viscosity of 0.004 N - s/m” flowing with an average
velocity of 130 mm/s in a 2-mm-diameter tube.

6.105 An infinitely Jong, solid, vertical cylinder of radius R is lo-
cated in an infinite mass of an incompressible fluid. Start with the
Navier—Stokes equation in the 8 direction and derive an expression
for the velocity distribution for the steady-flow case in which the
cylinder is rotating about a fixed axis with a constant angular ve-
locity @. You need not consider body forces. Assume that the flow
is axisymmetric and the fluid is at rest at infinity.

*6.106 As is shown by Eq. 6.150, the pressure gradient for laminar
flow through a tube of constant radius is given by the expression

B B0

iz 7R}
For a tube whose radius is changing very gradually, such as the
one illustrated in Fig. P6.106, it is expected that this equation can
be used to approximate the pressure change along the tube if the
actual radius, R(z), is used at each cross section. The following
measurements were obtained along a particular tube.

b724 |D 10.1 |0.2 |0.3 iO.4 ID.S |0.6 |0.7 |0.8 10.9 II.U

R(z)/R, | 1.00 | 0.73 '0.57 l 0.65 | 0.67 l 0.80 |0.su lo71 | 0.73 | 0.77 | 1.00

Compare the pressure drop over the length € for this nonuniform
tube with one having the constant radius R,. Hint: To solve this
problem you will need to numerically integrate the equation for
the pressure gradient given previously.

N

& Figure P6.106




6.107 (%" A liquid (viscosity = 0.002 N - s/m?; density = 1000
kg/m’) is forced through the circular tube shown in Fig. P6.107. A
differential manometer is connected to the tube as shown to mea-
sure the pressure drop along the tube. When the differential read-
ing, Ak, is 9 mm, what is the mean velocity in the tube?

i
=) 54

4 mm

S
f

~&—

Density of
gage fluid = 2000 kg/m®

W Figure P6.107

Section 6.9.4 Steady, Axial, Laminar Flow in an Annulus

6.108 (Wi An incompressible Newtonian fluid flows steadily be-
tween two infinitely long, concentric cylinders as shown in Fig.
P6.108. The outer cylinder is fixed, but the inner cylinder moves
with a longitudinal velocity V; as shown. The pressure gradient in
the axial direction is —Ap/£. For what value of V, will the drag
on the inner cylinder be zero? Assume that the flow is laminar, ax-
isymmetric, and fully developed.

Fixed wall M
N 2
— i
rD
‘ —_—
b= N,

H Figure P6.108

6.109 (@sve A viscous fluid is contained between two infinitely
long, vertical, concentric cylinders. The outer cylinder has a radius
7, and rotates with an angular velocity @. The inner cylinder is
fixed and has a radius ;. Make use of the Navier—Stokes equations
to obtain an exact solution for the velocity distribution in the gap.
Assume that the flow in the gap is axisymmetric (neither velocity
nor pressure are functions of angular position @ within the gap) and

345

Problems

that there are no velocity components other than the tangential com-
ponent. The only body force is the weight.

6.110 For flow between concentric cylinders, with the outer cylin-
der rotating at an angular velocity o and the inner cylinder fixed,
it is commonly assumed that the tangential velocity (vg) distribu-
tion in the gap between the cylinders is linear. Based on the exact
solution to this problem (see Problem 6.109) the velocity distrib-
ution in the gap is not linear. For an outer cylinder with radius
r, = 2.00 in. and an inner cylinder with radius », = 1.80 in., show,
with the aid of a plot, how the dimensionless velocity distribution,
Vy/r,w, varies with the dimensionless radial position, r/r,, for the
exact and approximate solutions.

6.111 (s A viscous liquid (1 = 0.0121b - s/f, p = 1.79 slugs/ft>)
flows through the annular space between two horizontal, fixed, con-
centric cylinders. If the radius of the inner cylinder is 1.5 in. and
the radius of the outer cylinder is 2.5 in., what is the pressure drop
along the axis of the annulus per foot when the volume flowrate
is 0.14 ft¥/s?

6.112 fwie Show how Eq. 6.155 is obtained.

6.113 Wi A wire of diameter d is stretched along the centerline
of a pipe of diameter D. For a given pressure drop per unit length
of pipe, by how much does the presence of the wire reduce the
flowrate if (a) d/D = 0.1; (b) d/D = 0.01?

Section 6.10 Other Aspects of Differential Analysis

6.114 Obtain a photograph/image of a situation in which CFD has
been used to solve a fluid flow problem. Print this photo and write
a brief paragraph that describes the situation involved.

M Lifelong Learning Problems

6.1LL What sometimes appear at first glance to be simple fluid
flows can contain subtle, complex fluid mechanics. One such ex-
ample is the stirring of tea leaves in a teacup. Obtain information
about “Einstein’s tea leaves” and investigate some of the complex
fluid motions interacting with the leaves. Summarize your findings
in a brief report.

6.2LIL Computational fluid dynamics (CFD) has moved from a
research tool to a design tool for engineering. Initially, much of
the work in CFD was focused in the aerospace industry, but now
has expanded into other areas. Obtain information on what other
industries (e.g., automotive) make use of CFD in their engineering
design. Summarize your findings in a brief report.

® FE Exam Problems

Sample FE (Fundamentals of Engineering) exam questions for fluid
mechanics are provided in WileyPLUS or on the book’s web site,
www.wiley.com/college/munson.



