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Abstract—Post-silicon validation is a crucial stage in the
system development cycle. To accelerate post-silicon validation,
high-quality tests should be ready before the first silicon pro-
totype becomes available. In this paper, we present a concolic
testing approach to generation of post-silicon tests with virtual
prototypes. We identify device states under test from concrete
executions of a virtual prototype based on the concept of device
transaction, symbolically execute the virtual prototype from these
device states to generate tests, and issue the generated tests
concretely to the silicon device. We have applied this approach
to virtual prototypes of three network adapters to generate their
tests. The generated test cases have been issued to both virtual
prototypes and silicon devices. We observed significant coverage
improvement with generated test cases. Furthermore, we detected
20 inconsistencies between virtual prototypes and silicon devices,
each of which reveals a virtual prototype or silicon device defect.

I. INTRODUCTION

Post-silicon validation is a crucial stage in the system
development cycle. According to recent industry reports [1],
validation accounts for nearly 60% of overall development
cost; post-silicon validation is a significant, fastest-growing
component of the validation cost. This demands innovative
approaches to speed-up post-silicon validation and reduce cost.

To accelerate post-silicon validation, tests should be ready
before a silicon device is available [2]. The time-to-market
after the device is first available can be as short as several
weeks. Therefore, it is highly desired to avoid spending this
precious time on preparing, debugging, and fixing tests. There
should be high-quality tests available before the first silicon
prototype is ready.

Currently, tests for post-silicon validation mainly include
random tests, manually written tests, and end-user applica-
tions [3] [4]. Random testing can quickly generate many
tests and is easy to use while facing major challenges in
achieving high coverage of device functionalities and avoiding
high redundancy in tests. Manually written tests are efficient
in testing specific device functionalities. However, developing
manual tests is labor-intensive and time-consuming. Further-
more, humans make mistakes when they write tests manually
and it is difficult to check correctness of these tests until
they are applied to a silicon device. End-user applications
are convenient and easy to deploy; however, it is often
difficult to quantify what device functionalities are covered.
In addition, end-user applications are generally not device-

specific, therefore often leading to insufficient coverage of
device functionalities.

Recently virtual prototypes are increasingly used in hard-
ware/software co-development to enable early driver develop-
ment and validation before hardware devices become avail-
able [5], [6]. Virtual prototypes also have major potential to
play a crucial role in test generation for post-silicon validation.

This paper presents a concolic testing approach to auto-
matic post-silicon test generation with virtual prototypes. This
work is inspired by recent advances in concolic testing [7], [8].
Concolic (a portmanteau of concrete and symbolic) testing is
a hybrid testing technique that integrates concrete execution
with symbolic execution [9]. In our approach, we first identify
device states under test from concrete executions of a virtual
prototype using a transaction-based selection strategy, and
then symbolically execute the virtual prototype from these
states. Concrete tests are generated based on the symbolic
path constraints obtained. We apply the generated test cases
to both the silicon device and the virtual prototype, and check
for inconsistencies between the real and virtual device states.
Once an inconsistency is detected, we can replay the test case
on the virtual prototype through symbolic execution to see
whether it is a silicon device bug or a virtual prototype defect.
The combination of virtual and silicon device execution brings
three major benefits: (1) helping developers more easily and
better understand a silicon device using its virtual prototype,
(2) checking for defects in the silicon device, and (3) detecting
bugs in the virtual prototype.

We have implemented our approach in a prototype post-
silicon test generation tool, namely, ACTG (Automatic Con-
colic Test Generation). We have applied ACTG to virtual
prototypes for three widely-used network adapters. ACTG
generates hundreds of unique tests for each device. These tests
lead to significant improvement in coverage. When applying
the generated test cases to the silicon devices, ACTG detects
20 inconsistencies between the virtual and silicon devices.

Our research makes the following key contributions:

• Concolic testing for post-silicon validation. Our ap-
proach to post-silicon device test generation not only
integrates concrete and symbolic execution, but also
combines virtual and silicon device executions. The
observability and controllability of virtual prototypes
are fully leveraged while generated tests are compat-
ible with silicon devices.



• Transaction-based test selection. A transaction-based
test selection strategy is developed to select device
states under test and eliminate redundancy in gener-
ated tests. This strategy not only generates test cases
with high functionality coverage in modest time, but
also produces efficient test cases with low redundancy.

The remainder of this paper is structured as follows.
Section 2 provides the background. Section 3 presents our
approach to post-silicon test generation. Section 4 discusses
implementation details. Section 5 elaborates on the case studies
we have conducted and discusses the results. Section 6 reviews
related work. Section 7 concludes and discusses future work.

II. BACKGROUND

A. Virtual Prototypes and QEMU Virtual Devices

Virtual prototypes are fast, fully functional software models
of hardware systems, which enable unmodified execution of
software code. QEMU is a generic, open source machine
emulator and virtualizer [10], [11]. We adopt QEMU virtual
devices as the virtual prototypes for our study due to the open-
source nature of QEMU and its wide varieties of virtual de-
vices. Technology developed on QEMU virtual devices can be
readily generalized to other open-source or commercial virtual
prototyping environments due to the similarity in virtualization
concepts, despite their different levels of modeling details.

To better understand the concept of virtual prototype, we
illustrate it with a QEMU virtual device for the Intel E1000 Gi-
gabit network adapter. The E1000 adapter is a PCI (Peripheral
Component Interconnect) device which communicates with its
control software through interface registers and interrupts. The
E1000 virtual device has corresponding functions to support
such communication, for instance, interface register functions
and interrupt functions. In order to realize the functionalities of
silicon devices, the E1000 virtual device also needs to maintain
the device state and implement functions that virtualize device
transactions and environment inputs. As shown in Figure 1,
the E1000 virtual device has the following components:

1) The device state, E1000State, which keeps track
of the state of the E1000 device and the device
configuration;

2) The interface register functions such as write_reg
which are invoked by QEMU to access interface
registers and trigger transaction functions;

3) The device transaction functions such as start_xmit
which are invoked by the interface register functions
to realize the functionality and may fire interrupts by
calling interrupt function set_irq;

4) The environment functions such as receive which are
invoked by QEMU to pass environment inputs such
as a packet received to the virtual device and may also
fire interrupts by calling interrupt function set_irq.

B. Symbolic Execution and KLEE Engine

Symbolic execution executes a program with symbolic val-
ues as inputs instead of concrete ones and represents the values
of program variables as symbolic expressions. Consequently,
the outputs computed by the program are expressed as a
function of input symbolic values. The symbolic state of a

// 1. Device state
typedef struct E1000State_st {

PCIDevice dev; //PCI configuration
uint32_t mac_reg[0x8000]; //Interface registers
......
uint32_t rxbuf_size; //Internal variables
......

} E1000State;

// 2. Interface register function: write register
static void write_reg(void *opaque, uint64_t index,

uint32_t value) {
E1000State *s = (E1000State *)opaque;
......
if(index == TRANSMIT) {

s->mac_reg[index] = value;
start_xmit(s); //Invoking transaction function

}
......

}

// 3. Device transaction function: transmit packets
static void start_xmit(E1000State *s) {

......
set_irq(s->dev.irq[0],1);//Invoking interrupt function

}

// 4. Environment function: receive packets
static ssize_t receive(NetClientState *nc, const uint8_t

*buf, size_t size) {
......
set_irq(s->dev.irq[0],1);//Invoking interrupt function

}

Fig. 1: Excerpt of QEMU E1000 virtual device

program includes the symbolic values of program variables, a
path condition, and a program counter. The path condition is
a boolean formula over the symbolic inputs; it accumulates
constraints which the inputs must satisfy for the symbolic
execution to follow the particular path. The program counter
points to the next statement to execute. A symbolic execution
tree captures the paths explored by the symbolic execution of
a program: the nodes represent the symbolic program states
and the arcs represent the state transitions.

KLEE [12] is a symbolic execution engine built on the
LLVM [13] compiler infrastructure. Given a C program, KLEE
executes the program symbolically and generates constraints
that exactly describe the set of values possible on a path.

C. Preliminary Definitions

In order to help better understand our approach, we first
introduce several definitions.

Definition 1: A device state is denoted as s = 〈sI , sN 〉
where sI is the interface state including all interface registers
and sN is the internal state including all internal variables. The
interface state sI can be accessed by both a high-level software
(e.g., driver) and the device while sN is only accessed by the
device itself.

As shown in Figure 1, the structure E1000State repre-
sents the E1000 device state and includes interface registers
mac_reg and an internal variable rxbuf_size.



Definition 2: A device request is denoted as r which is
issued by high-level software to control and operate the device.

As shown in Figure 1, the parameters address and value
of interface register function write_reg can be treated as a
request r, which is issued by the driver to modify the interface
register and trigger the transaction function.

Definition 3: A sequence of device requests is denoted as
seq = r1, r2, ..., rn. A subsequence seqk of seq contains the
first k requests of seq where seqk = r1, r2, ..., rk.

Definition 4: A test case is denoted as tc = 〈seq, r〉, where
seq is a request sequence and r is a device request.

Definition 5: A state under test is denoted as sut where
sut is the device state on which test cases are generated.

Devices are transactional in nature: device requests are
processed by device transactions. For a virtual device (which
is a program), given a state s and a device request r, a
program path of the virtual device is executed and the device
is transitioned into a new state. Each distinct program path of
the virtual device represents a distinct device transaction.

Definition 6: A device transaction, denoted as t, is a
program path of a virtual device.

III. CONCOLIC TEST GENERATION WITH VIRTUAL

PROTOTYPES

A. Motivation

Virtual devices are software components. Compared to
their hardware counterparts, it is easier to achieve observability
and traceability on virtual devices. This makes virtual devices
amenable to post-silicon test generation.

A naive approach to test generation with a virtual device
is to apply symbolic execution directly to it. A virtual device
can be treated as a request-driven program. The virtual device
processes a possibly unbounded sequence of requests. To
execute a virtual device symbolically, we first set the device
reset state as the initial state s0 of the virtual device, which
is a concrete state. Then we symbolically execute the virtual
device from s0 with a sequence of symbolic device requests.
Such execution can easily lead to a path explosion [14]. Indeed
as we tried this approach, it caused a path explosion only
after processing a few symbolic device requests. However,
most functionalities of the virtual device are only triggered by
long, well-formed sequences of requests from the reset state.
Therefore, the above naive approach cannot generate deep test
sequences that sufficiently cover device functionalities.

B. Concolic Test Generation Algorithm

In order to address the challenge in section III-A, we
develop a concolic testing scheme that integrates both concrete
and symbolic execution. Concrete execution is first carried
out on the virtual device and a sequence seq of concrete
requests issued to the device by the driver is captured. With
seq, a set of device states can be computed on the virtual
device, as shown in Figure 2. The virtual device starts from
the initial state s0 which is the state after resetting the device.
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Fig. 2: Concolic test generation using virtual devices. Solid
arrows denote a concrete device execution while dashed arrows
denote generated test cases

With different subsequences of seq, the device is triggered to
different states, for example, with the request sequence seqk =
r1, r2, ..., rk, the device is brought to the device state sk from
s0. With the set {s0, . . . , sn} of reproducible device states, we
can apply symbolic execution to each of these states with a
symbolic request. For each symbolic path explored, symbolic
path constraints are recorded and a concrete request satisfying
these constraints are generated. As shown in Figure 2, on the
state sk−1, we can generate three test cases as follows:

〈seqk−1, r
′
k,1〉, 〈seqk−1, r

′
k,2〉, 〈seqk−1, r

′
k,3〉

Algorithm 1 illustrates how to generate test cases. Here,
C is a temporary set for saving all constraints for each path
computed by symbolic execution, and TC saves all generated
test cases tc. We set the given sut as the state of virtual
device s

V
and create a symbolic request r

V
, and then execute

the virtual device. For each explored path c, we can get
its symbolic path constraints. Then a concrete request r is
generated for c based on its constraints. A test case tc consists
of a request sequence seqk leading the device to sut and
a newly generated request rk. For each sut, our approach
generates a set of test cases TC.

Algorithm 1 GENERATE_TEST_CASE (sut, seq, k)

1: C ← ∅, TC ← ∅;
2: s

V
← sut;

3: r
V
← Create_A_Symbolic_Request ( );

4: C ← Symbolic_Execution (s
V

, r
V

);
5: for each path c ∈ C do
6: r ← Generate_Concrete_Request (c);
7: tc ← 〈seqk, r〉;
8: TC ← TC ∪ {tc};
9: end for

10: return TC;



There can be a large number of subsequences {seqk}
in seq. To generate test cases from all {seqk} may entail
prohibiting overheads. We allow the user to select {seqk} via
assertions on device states and requests. Then a selected seqk
is replayed on virtual prototypes to get the state under test sut.
After replaying a set of selected sequences, we can obtain a
set of states Sut where Sut = {sut1, sut2, ..., sutn}. To help
users select states more efficiently, we provide an automatic
mechanism in Section III-C.

C. Transaction-based Test Selection Strategy

In order to make our concolic testing approach practical
and efficient, we need to address the following two key
challenges:

1) State selection problem: For a virtual device, we can
get a vast number of states under test by replaying a long
sequence of device requests. Applying test generation to all
these states is impractical. How to select states under test is a
critical challenge. Even if we allow users to select states with
filters, it can still be a laborious process.

2) Test case redundancy problem: Even if we only generate
test cases on states selected, we can still get a large number
of test cases. Applying all such test cases on a silicon device
takes much time. However, certain test cases trigger the same
behavior on a silicon device, i.e., they cover the same trans-
action. Therefore, to improve efficiency, we should eliminate
such redundant test cases.

We develop a transaction-based test selection strategy to
address the above two challenges. First, states under test
are selected based on device transactions. To select states,
we replay a sequence seq of device requests on the virtual

device. For each state transition si
ri+1
=⇒ si+1, we compute the

corresponding transaction. If a new transaction t is found, we
select si as a state under test. Based on analyzing virtual device
executions, we observed that such states have good chances of
triggering new transactions with different requests.

Algorithm 2 SELECT_STATES_UNDER_TEST (seq)

1: StateIndices ← ∅, T ← ∅;
2: i ← 0; //loop iteration
3: s0 ← Reset_Device ();
4: while i < seq.size do
5: ri+1 ← Get_Request (seq, i+ 1);
6: si+1 ← Compute_Next_State (si, ri+1);
7: t ← Compute_Transaction (si, ri+1);
8: if t /∈ T then
9: T ← T ∪ {t};

10: StateIndices ← StateIndices ∪ {i+ 1};
11: end if
12: i ← i+ 1;
13: end while
14: return StateIndices;

Algorithm 2 illustrates how to select states under test in
detail. StateIndices is a temporary set for saving indices of
all selected states, and T saves all unique transactions invoked.
We set the state after resetting the device as the initial state s0.
Then we run the virtual device with each request in the request
sequence seq. For each request, if there is a new transaction t

found, we save it in T and save the corresponding state index
in StateIndices. After all requests are executed, we get a
set of state indices. The corresponding states are the selected
states under test.

Second, we apply transaction-based test selection strategy
to eliminate redundant test cases. In the process of select-
ing states as discussed above, we can get a set of unique
transactions T . The set T can be further used for eliminating
redundant test cases. When we conduct test generation, every
time a transaction t is explored by symbolic execution, we
determine whether it is a new transaction that is not in T . If it is
new, the corresponding test case is saved and t is added into T .
If it is not a new transaction, it’s also possible that a particular
sequence of transactions might have not been observed and
can trigger an untested functionality in the physical device.
Therefore, we save the test case as a redundant test case so
that the user can utilize this test case if time permits.

IV. IMPLEMENTATION

A. Overview

As illustrated in Figure 3, our automatic concolic test
generation (ACTG) framework includes three key components:

1) Device Request Recorder: The recorder captures device
requests from a concrete execution of the virtual device in the
virtual machine. Any user or kernel level test case may be
issued in the guest OS. The request recorder fully hooks the
virtual device entries so that all device requests are intercepted
and recorded in the request sequence seq.

2) Symbolic Engine: The symbolic engine replays a sub-
sequence seqk of seq to trigger the desired state under test
and then symbolically executes the virtual device from this
concrete state with a symbolic request. Among the transactions
explored, a transaction of interest is selected, its symbolic
path constraints are recorded and a concrete device request
r satisfying the constraints is generated. A new test case tc
is composed of the request sequence seqk and the newly
generated request r.

3) Test Manager: The test manager is a kernel-level soft-
ware module residing on the test machine with the silicon
device. It applies a test case to the silicon device by issuing
the sequence of requests included in the test case.

B. Harness Generation for Symbolic Execution

For symbolic execution of QEMU virtual devices, we adapt
KLEE to handle the non-deterministic entry function calls and
symbolic inputs to device models. Since the virtual device
by itself is not a stand-alone program, in order for symbolic
engine to execute a virtual device, a harness must be provided
for the virtual device. A key challenge here is how to create
such a harness. This harness has to be faithful so that the
symbolic execution of the virtual device will not generate too
many paths infeasible in the real device. On the other hand, it
has to be simple enough so that symbolic engine can handle
the symbolic execution efficiently. To an extreme, the complete
QEMU with the guest OS can serve as the harness which,
however, is impractical for the symbolic engine to handle.
We discussed details about harness generation in our previous
work [15].
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Fig. 3: Automatic Concolic Test Generation Framework

The harness includes the following parts as shown in
Figure 4: (1) Declarations of state variables and parameters
of entry functions; (2) Code for loading the concrete state
and making parameters of entry functions symbolic; (3) Non-
deterministic calls to virtual device entry functions; (4) Stub
functions for virtual machine API functions invoked by virtual
devices.

// Declarations of necessary variables
E1000State state; //Device state
target_phys_addr_t address; //Address
......

int main() {
// Load the concrete state
load_state(&state, sizeof(state), "state");

// Make parameters symbolic
make_symbolic(&address, sizeof(address), "

address");
......

// Non−deterministic calls to entry functions
switch(svd_deviceEntry) {
case MMIO_WRITE:

write_reg((void *)&state, address, value);
break;

case MMIO_READ:
read_reg((void *)&state, address);
break;
......

}
}

// Stub functions
uint16_t net_checksum_finish(uint32_t sum) {

......
}

Fig. 4: Excerpt of E1000 virtual device harness

C. Symbolic Execution

To improve efficiency of symbolic execution, we modify
KLEE to address two key technical challenges for symbolic
execution of virtual devices.

1) Path Explosion Problem: Path explosion is a major
limitation for symbolic execution to thoroughly test software
programs. The number of paths through a program is roughly
exponential in program size. The problem also exists with
executing virtual devices symbolically.

We apply two constraints when executing the virtual device
to combat the path explosion problem. First, we add a loop
bound to each loop whose loop condition is a symbolic
expression. With the loop bound, the user controls the depth
of each loop explored. Currently, we add the loop bounds
manually in virtual devices. This is practical since there are
only a few loops in our analysis of three virtual devices.
Second, we can add a time bound to ensure that symbolic
execution will terminate in a given amount of time. If the
symbolic execution does not completely finish within the given
time bound, there may be unfinished paths. For such paths,
we still generate test cases with path constraints obtained so
far. More details and experimental results are available in our
previous work [15].

2) Environment Interaction Problem: A virtual device is a
software component and may invoke outside API functions to
interact with its environment. We divide such interactions into
two categories based on whether a function call affects the
values of variables in virtual devices. We detect whether the
function has any pointer argument, accesses global variables,
or returns a value. If so, this function potentially affects the
values of variables in virtual devices. We then use two different
mechanisms to handle functions in these two categories: (1) If
the function call doesn’t affect the values of variables in virtual
devices, we instruct KLEE to ignore it; (2) If the function call
may affect values of variables in virtual devices, we implement
this function in our stubs. As there are not many such function
calls for a category of virtual devices, such manual effort is
acceptable.

D. Testing with Generated Test Cases

After generating test cases, our approach can then apply a
generated test case to both real and virtual devices.

1) Application of test cases: A real (or virtual, respective)
device interacts with the high-level software in a real (or
virtual) machine, on which a test case tc can be applied using
Algorithm 3. In order to apply tc, we first reset both real and
virtual devices so that we can keep their states consistent. Our
approach employs a test manager (a kernel-level module) to
issue a tc in both real and virtual machines. Then we capture
concrete states of both real and virtual devices after applying a
tc. For a real device, it is difficult to capture the internal state.
Hence, we only capture the interface state for the real device.
Finally, we conduct consistency checks on the captured states
between silicon devices and virtual prototypes. Our approach
compares interface states of the real and virtual devices to



Algorithm 3 APPLY_TEST_CASES (TC)

1: for each tc ∈ TC do
2: i ← 0; //loop iteration
3: num ← number_of_requests_in_tc;
4: s

R,0
← Reset_Real_Device ();

5: s
V,0

← Reset_V irtual_Device ();
6: while i < num do
7: ri+1 ← Get_Request (tc, i+ 1);
8: s

R,i+1
← Compute_Next_State (s

R,i
, ri+1);

9: s
V,i+1

← Compute_Next_State (s
V,i

, ri+1);
10: Check_State (s

R,i+1
, s

V,i+1
);

11: i ← i+ 1;
12: end while
13: end for

detect any inconsistency. Such an inconsistency often indicates
divergence between real and virtual device states, reflecting an
error in either the real or virtual device.

2) Test case replay on virtual device: Upon detecting an
inconsistency or a hardware error, the triggering test case can
be replayed on the virtual device so that the user can better
understand the exercised transaction. The symbolic engine is
employed for replaying a test case tc = 〈seq, r〉. The engine
first brings the device to the state under test sut and then replay
the request r from sut. The engine follows the same code path
that it followed while generating r, since r is generated by
instantiating symbolic variables to concrete values that satisfy
the constraints of that path.

The power of the symbolic engine enables full control-
lability and observability while replaying a test case. Our
approach is sufficiently responsive to support interactive replay.
It enables the user to navigate backward and forward, step by
step through the execution path induced by a concrete test case.
Our approach can help the user better observe what variables
are changed where along the path, what inputs and initial state
trigger the path, and inspect values of variables at any step.

V. EXPERIMENTAL RESULTS

A. Experiment Setup

We apply ACTG to QEMU-based virtual devices for three
popular network adapters as shown in Table I. While our
tool currently focuses on QEMU-based virtual devices, the
principles also apply to other virtual prototypes.

TABLE I: Summary of three virtual prototypes

Virtual Prototype Harness

Lines Functions Lines Entry Functions

Intel E1000 2099 53 74 4

Broadcom Tigon3 4648 34 80 4

Intel EEPro100 2178 70 85 7

To execute virtual devices symbolically, we manually cre-
ated a simple harness for each virtual device. We also created a
common library of stub functions for all three virtual devices.
The stub library has 481 lines of C code. More details about
device models and their harnesses are given in Table I. All
device models are non-trivial in size ranging from 2099 lines

to 4648 lines. All harnesses are relatively easy to create, having
about 100 lines only. Only several hours are needed to create
and fine-tune each harness and the stub library.

In order to evaluate our approach, we capture a request
sequence triggered by a test suite from concrete executions
of virtual devices in QEMU. The test suite includes common
network testing programs. As shown in Table II, we give a
partial list of programs in the test suite due to space limitation.
For each virtual prototype, we have applied this test suite.

TABLE II: Summary of our test suite

Category Commands Descriptions

Driver Load/Unload
insmod Load driver module

rmmod Remove driver module

Basic Programs

ifup Bring a network interface up

ifdown Take a network interface down

ifconfig Configure a network interface

ping Send ICMP ECHO_REQUEST

scp Copy files between network hosts

Extra Programs
ethtool

Query or control network driver

and hardware settings

scapy Manipulate network packets

The experiments were performed on a desktop with an 8-
core Intel(R) Xeon(R) X3470 CPU, 8 GB of RAM, 250GB
and 7200RPM IDE disk drive and running the Ubuntu Linux
OS with 64-bit kernel version 3.0.61.

B. Evaluation of Transaction-based Test Selection Strategy

We have applied transaction-based test selection strategy
to select states and eliminate test case redundancy.

TABLE III: Comparison of different strategies

Requests Transaction Strategy Random Strategy

in Trace States Tests States Tests States Tests

E1000 64836 60 774 60 48 180 60

Tigon3 19157 52 175 52 46 156 54

EEPro100 41849 54 357 54 116 162 116

1) State selection: As shown in Table III, we captured a
large number of requests in the request sequence, for exam-
ple, 64,836 requests for the E1000 virtual device. With our
transaction-based test selection strategy, only a small number
of states are selected, for instance, 60 states for the E1000
virtual device. In order to evaluate the efficiency of our test
selection strategy, we compare it with the random strategy.
With the random strategy, we select states under test randomly.
Here, we select two sets of states with the random strategy. It
can be observed from Table III that with the same number of
states under test selected, our strategy can generate many more
useful tests, i.e., tests triggering distinctive device transactions.

TABLE IV: Time usage of transaction-based selection strategy

States
Time (Minutes)

Selection Generation Overall

E1000 60 3.5 26.5 30

Tigon3 52 2 17 19

EEPro100 54 2 91 93



TABLE V: Summary of coverage improvement

Virtual Prototype

Statement Block Function Branch

#
Test Suite Generated Tests

#
Test Suite Generated Tests

#
Test Suite Generated Tests

#
Test Suite Generated Tests

# % # % # % # % # % # % # % # %

E1000 3256 2602 79.91% 2835 87.07% 298 214 71.81% 252 84.56% 42 39 92.86% 42 100% 264 165 62.5% 210 79.55%

Tigon3 1791 1496 83.53% 1689 94.3% 138 104 75.36% 128 92.75% 25 23 92% 25 100% 120 70 46.67% 97 80.83%

EEPro100 2369 1767 74.59% 2089 88.18% 266 170 63.91% 222 83.46% 44 39 88.64% 42 95.45% 150 77 51.33% 115 76.67%

To further evaluate the efficiency of our approach, we
evaluate the time usages of the transaction-based selection
strategy as shown in Table IV. This strategy requires spending
time on both selecting states and generating test cases. The
overall time for E1000 is 30 minutes which includes 3.5
minutes for state selection and 26.5 minutes for test generation.

Moreover, we applied test generation to 6000 states of the
E1000 virtual device selected using the random strategy. It
takes 1 day, however only two new test cases are generated.
If we were to apply test generation on all 64836 states, it
would have taken 10 days. This results show that (1) it is not
cost-effective to apply test generation to all captured virtual
device states and (2) our transaction-based strategy is efficient:
order-of-magnitude reduction on time usage and effective: only
missing a few tests found with much higher time usage.

2) Test case redundancy elimination: As shown in Fig-
ure 5, our transaction-based strategy is very effective in
eliminating redundant tests. For each virtual device, we have
achieved order-of-magnitude reduction in the number of tests
that need to be applied to the virtual device.

774A
E1000

6982B

175A
Tigon3

2601B

357A
EEPro100

2828B

0 1000 2000 3000 4000 5000 6000 7000

Fig. 5: Number of generated tests (A: After elimination; B:
Before elimination)

C. Coverage Improvement

As shown in Table V, the generated test cases improve
test coverage significantly. Hereby, we utilize test coverage
over the virtual device to estimate the functional coverage over
the silicon device. Because the virtual device is software, we
utilize four different code coverage metrics to measure the
coverage improvement. Although the test suite we use has
already been able to get reasonable coverage on three virtual
devices, the coverage can still be significantly improved using
our generated test cases. Particularly, for E1000 and Tigon3,
the function coverage can be improved to 100%. For Tigon3,
the branch coverage can be improved by more than 30%.

D. Inconsistencies

As we apply the test cases on virtual and silicon de-
vices, we collect both virtual and silicon device states. We

then conduct consistency checking between the virtual and
silicon device states. Our test cases have uncovered several
inconsistencies between the real devices and their virtual
devices. In our study, even though all the devices are popular
devices which have gone through years of thorough testing
and their virtual devices are created after fact, we still detected
inconsistencies. The inconsistencies detected by our test suite
and generated test cases are shown in Figure 6.
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Fig. 6: Number of inconsistencies detected by test suite and
generated tests

One common inconsistency is that after certain special
requests, one or several device registers are modified in the real
devices while in the virtual devices, they are unchanged. This
inconsistency was introduced assuming the drivers would well
behave and would not issue such special requests. Two types
of inconsistencies detected are caused by silicon devices: (1)
devices are not initialized according to the device specifications
and (2) devices update registers that are specified as reserved
in the device specifications. We believe that if such tests are
conducted on a newly designed silicon device prototype, our
approach can discover more silicon device bugs.

VI. RELATED WORK

Post-silicon validation has become a bottleneck in system
development cycle and is a significant, growing part of overall
validation cost [16]. There has been much research on post-
silicon validation to reduce cost and improve observability [4],
[17]–[21]. However, many challenges remain in post-silicon
validation, such as coverage metrics, failure reproduction, and
test generation [2]. One approach to post-silicon test generation
is Automatic Test Pattern Generation (ATPG) [22], [23], which
targets exposing electrical and manufacturing defects rather
than functional errors. There has also been efforts on reusing
pre-silicon validation tests in post-silicon validation [24], [25].
Our approach shares the same goal of bridging the gap between
pre-silicon and post-silicon validation, while fully leveraging
the white box nature of virtual prototypes to efficiently gener-
ate high-quality functional tests.



There has been much recent work on using symbolic
execution to automatically generate test inputs, leading to
software testing tools such as Java PathFinder [26], CUTE
and jCUTE [27], CREST [28], BitBlaze [29], DART [7], and
SAGE [30]. These tools basically follow the same approach
as KLEE in solving a path’s constraints to generate a test
case and differ in the specifics of symbolic execution and
test case generation. Concolic execution [7], [30], combin-
ing concrete and symbolic execution, has also been used to
optimize symbolic execution efficiency. In our approach, we
applied symbolic execution to a special type of programs,
virtual devices, utilized characteristics of virtual devices to
improve symbolic execution effectiveness, generated test cases
characterizing paths (i.e., transactions) through virtual devices,
and provided facilities for applying the tests to real devices and
replaying the tests on virtual devices to assist debugging.

VII. CONCLUSIONS AND FUTURE WORK

We have presented an approach to generation of post-
silicon tests with virtual prototypes, which fully leverages the
observability and traceability of virtual prototypes. We have
evaluated our approach on virtual devices for three popular
network adapters. Our ACTG approach was able to generate
effective test cases in a modest amount of time using the
transaction-based test selection strategy. We have evaluated this
strategy from two aspects: state selection efficiency and redun-
dancy elimination. The results show that our strategy performs
significantly better than random selection of states under test
and has significant reduction on the number of tests applied.
We have also measured test coverage and found that ACTG
led to major improvement in coverage of device functionalities.
Moreover, we applied generated test cases to both virtual and
silicon devices and conducted consistency checking between
their states. We have detect 20 inconsistencies between virtual
and silicon devices, each of which reveals a defect in either
virtual or silicon device.

Our future research will explore the following directions.
(1) We will investigate how to use the requests captured on
silicon devices to guide test generation. (2) We will research
how to better utilize the results of symbolic execution. Based
on the results, we will develop test coverage metrics on virtual
prototypes that are specific for post-silicon validation.
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