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Statistical Inference 

• Use a sample statistic to 
estimate a population 
parameter 

 

True (“population”) value 
= parameter 

Population 

Sample 
Sample value  
= statistic 
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Statistical Inference (Continuous) 

• Example of continuous case:  
Use sample to estimate 
population mean and 
standard deviation 

2.0W 

Population 

2.5W 3.0W 3.5W 4.0W 

Sample 

Mean=2.98 
Stdev=0.50 

Mean=3.00 
Stdev=0.48 

1.5 2 2.5 3 3.5 4 4.5

1.5 2 2.5 3 3.5 4 4.5

statistics 

parameters 
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Good Unit Bad Unit 

Population 

Statistical Inference (Discrete) 

• Example of discrete case:  Use 
sample to estimate 
population defect DPM 

 (DPM=Defects Per Million) 

Sample 

25,000 DPM 
 
 
 

40,000 DPM 
statistic 

parameter 
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Note: Samples Must Be Random! 

• Samples must be 
representative of the entire 
population! 

• Best to select samples truly 
randomly 

– Not the first lot available or 
other partly-random 
methods 

• No statistical analysis can 
correct for non-random 
samples Good Unit Bad Unit 

Population 

Sample 

Not random 

Population = 55,000 DPM 
Sample = 204,000 DPM 
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Distributions of Statistics 

• Measured statistic is not enough 

• Need to add either 

– Confidence interval or limits 

– Answer to a statistically-well-posed question (“hypothesis test”) 

• Calculated from distributions of statistics 

– If we looked at many samples from many identical populations, what values of 
the statistics might we get? 

True (“population”) value = parameter 

Sample value = statistic 

Population 

Sample 
Distribution 
of statistic: 

Probability of Finding V

when True Value = 200
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Distributions of Statistics (Continuous) 
Population has one 
true distribution: 

μ (population mean) 

σ (pop stdev) 

     2.0        3.0        4.0      

Different samples have different distributions: 

S 

     2.0        3.0        4.0      

x 

     2.0        3.0        4.0      

x 
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S 

x 

… 

Distribution of Standard Deviations
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Distribution of Means
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Properties of sample distributions are statistics. 
We can calculate distributions of these statistics: 

We get one value for each from our one sample. 

(Normal) (Chi-square) 
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Distributions of Statistics (Discrete) 

Population has one 
true DPM: 

25,000 DPM 

Different samples have different DPMs: 

… 
20,000 DPM (1 fail) 0 DPM (0 fail) 

40,000 DPM (2 fail) 60,000 DPM (3 fail) 

20,000 DPM (1 fail) 40,000 DPM (2 fail) 

The measured sample DPM is a statistic. 
We can calculate the distribution of this statistic: 

PDF - Probability of Seeing x Fails
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We get one value from our one sample. 

(Binomial) 



DPM Simulation 
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Population Window 

• Shows 10,000 units, most good, a few bad 
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The Sample 

• You can move the sample box 
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DPM Indicator on DPM Histogram 

6000 DPM 

2000 DPM 
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Binomial Histogram 

• Gives probability of getting each measurement given the true DPM 



28 Jan 2013 S.C.Johnson, C.G.Shirley 15 

Binomial Distribution 

=binomdist 

(6, 1000, 0.005, false) 

6 fails 
1000 samples 
5000 DPM 
Not cumulative 

    fNf pp
f

N
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
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






 1,,,binomdist false
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True DPM 

• True DPM is adjustable 

– Not in the real world, only the simulation! 



28 Jan 2013 S.C.Johnson, C.G.Shirley 17 

Low DPM 
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High DPM 
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Please put True DPM back to 5,000 
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Small Sample Size 
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Large Sample Size 
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Statistical Measurement Uncertainty 

Small sample (400) 

 = wide range 

Large sample (2000) 
= narrow range 

1500 8500 

0 12,500 
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Exercise 6.1 
• (A) Set sample size = 1000 

• (B) Set True DPM = 1100 DPM and look for a sample with 3 fails − what 
DPM does that represent? 

• (C) Set True DPM = 6700 DPM and look for a sample with 3 fails − what 
DPM does that represent? 
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Why We Need Confidence Limits 

a good sample from 
a bad population? 

Did you get… 

a bad sample from 
a good population? 

…or… 



Confidence Limits 
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Confidence Interval Meaning 

• 90% of random sample means with this confidence interval 
include the true population mean 

True DPM 

m 

m 
m 

m 

m 

m 

m 

m 

m 

m 

Confidence level = 90% = 0.9 

Risk of being wrong 
= 1 − confidence level 

= α = 10% = 0.1 
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1-Sided vs. 2-Sided 

α/2 

2-sided 

1-sided 

Upper 

Lower 

α/2 

α 

α 
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1-Sided UCL Meaning 

• 90% of random sample means with this confidence interval 
include the true population mean 

True DPM 

m 
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Calculating Confidence Limits 
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Exercise 6.2a 
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Monte Carlo determination of binomial CL  



Exercise 6.2b 
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Compare Monte Carlo CL to analytic   



Monte Carlo Exponential CL 
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5% 

95% 

0.022 0.042 

λ=0.022 
MTTF = 45 hr 

λ=0.031 
MTTF = 32 hr 

λ=0.042 
MTTF = 24 hr 



Exercise 6.3a 
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Monte Carlo determination of exponential CL  
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Analytic Exponential CL 

• Answer:  a gamma or a chi-square 
distribution 

• Confidence intervals taken from 
that 

 



Exercise 6.3b 

28 Jan 2013 S.C.Johnson, C.G.Shirley 35 

Compare analytic to Monte Carlo values 
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The End 
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