ECE 510 Lecture 2 Plotting and Fitting 1

Histogram, CDF Plot, T\&T 1.1-4,7-8
Reliability Functions, T\&T 2.1-6, 9

Scott Johnson
Glenn Shirley

Looking At Data

Looking at Data

Bag \#1

-1.26755	1.778466	-1.37188	-1.14666	1.437807	-0.60299	-1.02321	2.284605
2.145411	0.69	-1.17339	0.36	0.724378	-1.50	0.1	0.40733
1.650385	0.630984	-0.1	1.2	-1.84423	-0.486	-0.	
0.316924	-0.	0.	0.	1.18916	0.	1.446249	0.373354
0.48024	-1.7889	0.4854	-0.74937	0.68816	-0.982	. 716	-0.33363
-0.36264	-0.7	0.26	1.9	-0.4	0.926	0.48861	
1.838188	-2.22	0.772391	1.1101	0.01931	-1.34591	4	0.022294
-0.86969	1.461931	909	. 09	0.07772	0.4957	. 009	0.38849
-0.5	-0.678	0.81962	-0.30	-0.44853	0.957	-0.76	0.873608
3218	,	0.5	-0.595				
0.62642	0.17970	-1.8587	0.26942	0.85858	0.419	1.404	-0.63827
0.97630	2.28077	.86685	1.63432	0.99	0.239	0.1275	2.19514
0.4489	1		1.4755		-0.184	0.866304	
0.55833	-0.85079	0.06765	-0.2173	-0.	-1.0839	-0.47462	
6552	-0.8659	1.650949	0.042898	0.89324	1.7690	-0.00528	0.505914
2623	1.01360	20	54	9028	-1.029	. 656	0.521887
0.90277	0.28692	887	0.27209	-0.39127	0.28067	-2.77599	
-	2.60		0.	0.435	0.31	-0.37	-0.
0.72614	-0.24025	335	0.	-1.23	596	0.149208	0.455159
1.18528	. 04	1.77	-0.306	-0.29853	0.657965	-601	

- What do you do with a bag of numbers?

Histograms

- One way to look at data is a histogram
- Counts number of data points per bin
- Bin range is adjustable, depends on data
- Lumpy approx. to the PDF (Probability Density Function)
- Useful for seeing the overall shape of the distribution

Making a Histogram in Excel

- Instructive - you must create your own bins
- Note, "FREQUENCY" function is another method

Using Excel

Cell Functions

Excel's greatest strength is cell functions (in my opinion)

DGET			$\rightarrow \times \checkmark \boldsymbol{f}_{\boldsymbol{x}}$ =AVERAGE(B2:B4)					
4	A	B	C	D	E	F	G	H
1		Data		Average				
2		3		(B2:B4)				
3		4						
4		5						
5								

Clicking the fx button

Relative Addressing, Copying Functions

Copy functions by dragging the black square

E2			-	f_{x} =SUM	M(D\$2:D2)	
4	A	B	C	D	E	F
1				Inputs	Sum	
2				3	3	
3				3		
4				3		
5				3		
6						

\$ means absolute address, which doesn't change while copying

DGET		- $-\times \checkmark f_{\boldsymbol{x}}=$ SUM (D\$2:D4)				
-	A	B	C	D	E	F
1				Inputs	Sum	
2				3	3	
3				3	6	
4				3	\$2:D4)	
5				3	12	

f_{x}				
C	D		E	F
	Inputs	Sum		
		3		
		3		
		3		
		3		

Style Suggestions

Strive to make your spreadsheets understandable to someone else (or to you next year)

Put inputs and outputs in tables with labels; color coding sometimes helps

J6			- f_{x}								
4	A	B	C	D	E	F	G	H	I	J	1
1			Inputs				Output			Inputs	
2		Name	Value	Units		Name	Value	Units		Outputs	
3		side A		m		Hypotenuse		5 m		Labels	
4		side B		m							
5											

Don't put input values as numbers in cells

$$
\checkmark\left(-x \checkmark f_{x}\right)=\operatorname{SQRT}\left(3^{\wedge} 2+4^{\wedge} 2\right)
$$

Put values in other cells and reference them

Graphs

Select data and then Insert the type of graph

Back to data plotting

Exercise 2.1

- Make a histogram of the data in tab "Ex 2.1".

Histograms in JMP

Our Excel histogram:

JMP makes histograms automatically:

Quantiles		Moments	
100.0\% maximum	2.867	Mean	0.1003821
99.5\%	2.866	Sta Dev	1.0077467
97.5\%	2.141	Std Err Mean	0.0712585
90.0\%	1.436	upper 95% Mean	0.2409006
75.0\% quartile	0.787	lower 95\% Mean	-0.040137
50.0\% median	0.125	N	200
25.0\% quartile	-0.604	Sum Wigt	200
10.0\%	-1.196	Sum	20.076412
2.5\%	-1.858	Variance	1.0155535
0.5\%	-2.773	Skewness	-0.01569
0.0\% minimum	-2.776	Kurtosis	-0.107046
		CV	1003.9112
		N Missing	0

CDF Plot

- PDF (Probability Density Function)
- Area under PDF = 1
- CDF (Cumulative Distribution Function)
- Range of values is 0 to 1
- Related to each other:

$$
\begin{aligned}
& C D F(x)=\int_{-\infty}^{x} P D F\left(x^{\prime}\right) d x^{\prime} \\
& \operatorname{PDF}(x)=\frac{d}{d x} C D F(x)
\end{aligned}
$$

CDF Plot

- See all data points; no binning

Statistical Inference

Population

True ("population") value
= parameter

Sample value
= statistic

- Use a sample statistic to estimate a population parameter

CDF Counting

- Why CDF = (Rank-0.3)/(Count+0.4) ?
- Median rank gives the median location if experiment repeated many times

Sampling a CDF

Want to sample uniformly

Sampling a CDF

Sample 1

- Range of possible CDF locations for each sample
- Median rank is median of this range

Sampling Uncertainty

- Different from measurement uncertainty

Exercise 2.2

Exercise 1 - Median Rank Demo

Press F9 repeatedly to get different synthesized data sets. Observe how often data points are within their 90% confidence levels of the true CDF

- Find the Median Rank Demo
- Press F9 several times to see different synthesized samples
- Observe the behavior

To Reduce Sampling Uncertainty...

...take more samples

CDF Plot in Excel

To remove "ties": $=($ RANK $(B 6, \$ B \$ 6: \$ B \$ 10000,1)+$ COUNTIF(\$B\$6:B6, " $=$ "\&B6)-1 - 0.3)/(\$C\$4+0.4)|

Exercise 2.3

- Make a CDF plot of the data given in the Ex 2.3 tab

Exercise 2.3 Solution

Reliability Functions

Reliability Functions

- Functions of time

$$
-\operatorname{CDF}(\mathrm{x}) \rightarrow \mathrm{F}(\mathrm{t})
$$

- Survival function $S(t)=1-F(t)$
- $\operatorname{PDF}(x) \rightarrow f(t)$

$$
\begin{aligned}
f(t) & =\frac{\text { fraction of ORIGINAL population that fails in } d t}{d t} \\
& =\frac{d F(t)}{d t}=-\frac{d S(t)}{d t}
\end{aligned}
$$

- Hazard function $h(t)$

$$
\begin{aligned}
h(t) & =\frac{\text { fraction of CURRENT population that fails in } d t}{d t} \\
& =\frac{f(t)}{S(t)}=-\frac{d S(t)}{d t} \frac{1}{S(t)}=-\frac{d \ln S(t)}{d t}
\end{aligned}
$$

- Cum hazard function $\mathrm{H}(\mathrm{t})$

$$
\begin{aligned}
H(t) & =\int_{0}^{t} h(t) d t \\
S(t) & =\exp [-H(t)] \\
F(t) & =1-\exp [-H(t)]
\end{aligned}
$$

Exercise 2.4a

- Calculate $\mathrm{H}(\mathrm{t}), \mathrm{S}(\mathrm{t})$, and $\mathrm{F}(\mathrm{t})$ for the given human mortality data, and plot $h(t), S(t)$, and $F(t)$. The data is given as $h(t)$ for each age, that is, the probability of a living person dying at the given age. Use a sum to approximate the integral for $\mathrm{H}(\mathrm{t})$.

Exercise 2.4a Solution, Part 1

Human Mortality Graphs

Reliability Indicators

- Mean time to failure (MTTF)

$$
M T T F=\int_{0}^{\infty} t f(t) d t=\frac{1}{N} \sum_{j=1}^{N} t_{N}=\int_{0}^{\infty} S(t) d t
$$

- Median time to failure $\left(\mathrm{t}_{50}\right)$ is the solution of

$$
S\left(t_{50}\right)=0.5
$$

- Time at which half of the initial population fails

Exercise 2.4b

- Find the mean and median times to failure for the human mortality data set from the last exercise

Exercise 2.4b Solution

- Sum $\mathrm{S}(\mathrm{t})$ to get MTTF

Reliability Measures: DPM

- Metric designed for low fail rates
- DPM = Defects $\underline{\text { Per Million }}$

\% pass	\% fail	DPM		
99	1	10,000		
99.9	0.1	1000		
99.95	0.05	500		
99.99	0.01	100		
99.999	0.001	10	\quad	Goal at end of
:---				
life	\quad	Typical range for		
:---				
semiconductor				
reliability				

Reliability Measures: FIT

- FIT = Failures In Time
- FIT is a fail rate, fails per billion device hours
- FIT = DPM per 1,000 hours
- DPM is a fail total, fails per million total devices
- DPM = FIT * hours $/ 1,000$

Reliability Indicators: AFR

- AFR, Average Fail Rate

$$
A F R\left(t_{1}, t_{2}\right)=\frac{\int_{t_{1}}^{t_{2}} h(t) d t}{t_{2}-t_{1}}=\frac{H\left(t_{2}\right)-H\left(t_{1}\right)}{t_{2}-t_{1}}=\frac{\ln S\left(t_{1}\right)-\ln S\left(t_{2}\right)}{t_{2}-t_{1}}
$$

- If t in hours, units are fail fraction per hour
- Multiply by 10^{9} for units of FIT

Exercise 2.4c

1. Plot the hazard function in FIT
2. Find the AFR (in FIT) for:

- The 10-year range from ages 6 to 15
- The 10-year range from ages 71 to 80
- The 10-year range from ages 91 to 100
- The entire 100-year range from ages 1 to 100

Exercise 2.4c Solution

Age Range	AFR (FIT)
$6-15$	22
$71-80$	4,311
$91-100$	24,116
$1-100$	4,270

The End

