ECE 510 Lecture 2 Plotting and Fitting 1

Histogram, CDF Plot, T&T 1.1-4,7-8 Reliability Functions, T&T 2.1-6, 9

> Scott Johnson Glenn Shirley

Looking At Data

Looking at Data

Bag #1

	-1.26755	1.778466	-1.37188	-1.14666	1.437807	-0.60299	-1.02321	2.284605
	2.145411	0.692451	-1.17339	0.364737	0.724378	-1.50313	0.190458	0.40733
	1.650385	0.630984	-0.12599	1.264115	-1.84423	-0.48658	-0.66664	0.320823
	0.316924	-0.33161	0.067807	0.481851	1.18916	0.933333	1.446249	0.373354
	0.480242	-1.78896	0.485449	-0.74937	0.688161	-0.98282	-0.71612	-0.33363
	-0.36264	-0.7888	0.269517	1.988823	-0.43457	0.926149	-0.48861	-0.6811
	1.838188	-2.22009	0.772391	1.11014	0.01931	-1.34591	-0.01784	0.022294
	-0.86969	1.461931	0.190981	-0.00919	0.077722	0.495746	1.00924	0.38849
	-0.5533	-0.6787	0.819628	-0.30203	-0.44853	0.957826	-0.76691	0.873608
	-0.32181	-1.99142	0.518891	-0.59561	-1.78149	-0.79414	1.0625	1.83861
	0.626424	0.179701	-1.85872	0.269425	0.858583	0.419005	1.40497	-0.63827
	0.976309	2.280774	2.866851	1.634329	0.990006	-0.23951	0.127575	-2.19514
	0.44894	1.075119	1.689274	1.475581	-1.03203	-0.18468	0.866304	-1.19854
	0.558334	-0.85079	0.067652	-0.21733	-0.27136	-1.08395	-0.47462	1.246703
	-0.65523	-0.86594	1.650949	0.042898	0.893246	1.769013	-0.00528	0.505914
	-1.26232	1.013604	1.147206	0.105458	0.590284	-1.02945	-0.65664	0.521887
	0.902779	0.286925	-0.18876	0.272094	-0.39127	0.280675	-2.77599	1.424694
	-1.17387	2.605709	-0.39121	0.122448	0.43523	0.314019	-0.37809	-0.66442
	0.726144	-0.24025	-0.03335	0.791683	-1.231	-1.59685	0.149208	0.455159
	1.18528	0.043876	1.777507	-0.30699	-0.29853	0.657965	0.601112	0.803147
ĺ	1 138225	0 887483	-0.52012	1 734477	Π 1218	-0.46349	1 165336	N 171781

Bag #2

1.265675	0.848201	0.819197	0.189162
2.914639	0.067836	3.785975	1.267826
0.686888	0.098782	6.034544	0.912695
1.029218	4.281229	0.711612	0.958154
6.985271	1.921583	1.121907	0.799197
0.54227	1.326231	1.582003	0.999151
0.428173	4.567446	0.19616	4.988572
8.785572	3.877789	5.698939	1.455257
0.191375	0.721186	0.633513	3.18961
3.753661	8.632928	3.928738	1.61795
0.442747	0.78904	0.182824	1.007515
4.614461	6.452247	1.54774	1.167165
3.775211	2.233818	0.39789	0.779513
0.791782	1.422401	0.766199	0.372987
0.857405	0.095834	7.152579	0.319819
2.591271	0.677541	5.013876	5.268087
0.799215	3.002185	0.366671	7.439692
1.79157	0.902246	1.771052	5.918061
4.16152	0.35055	1.357161	2.058974
1.521754	0.841953	1.838735	1.537069

• What do you do with a bag of numbers?

Histograms

- One way to look at data is a histogram
 - Counts number of data points per bin
 - Bin range is adjustable, depends on data
 - Lumpy approx. to the PDF (Probability Density Function)
- Useful for seeing the overall shape of the distribution

Making a Histogram in Excel

- Instructive you must create your own bins
 - Note, "FREQUENCY" function is another method

Using Excel

Cell Functions

Excel's greatest strength is cell functions (in my opinion)

	DGET	•	(= × <	′ <i>f</i> _x =AV	ERAGE(<mark>B2:</mark>	B4)		
	А	В	С	D	E	F	G	Н
1		Data		Average				
2		3		(B2:B4)				
3		4						
4		5						
5								

Clicking the fx button

ECE 510 S.C.Johnson, C.G.Shirley

Relative Addressing, Copying Functions

	E2	•	· (=	<i>f</i> _x =SUM(D\$2:D2)			
	А	В	С	D	E	F	
1				Inputs	Sum		
2				3	3		
3				3			
4				3			
5				3			
6							

Copy functions by dragging the black square

\$ means absolute address, which doesn't change while copying

	DGET	-	(= × <	′ <i>f</i> ∗ =SUN	V(D\$2:D4)	
	А	В	С	D	E	F
1				Inputs	Sum	
2				3	3	
3				3	6	
4				3)\$2:D4)	
5				3	12	
6						

	f_{x}			
С	D		E	F
	Inputs		Sum	
		3	3	
		3	6	
		3	9	
		3	12	

Style Suggestions

Strive to make your spreadsheets understandable to someone else (or to you next year)

Put inputs and outputs in tables with labels; color coding sometimes helps

	J6		• (=	f_{x}							
	А	В	С	D	E	F	G	Н	I	J	
1			Inputs				Output			Inputs	
2		Name	Value	Units		Name	Value	Units		Outputs	
3		side A	3	m		Hypotenuse	5	m		Labels	
4		side B	4	m							
5											

Don't put input values as numbers in cells

▼ ($X \checkmark f_x$ =SQRT(3^2 + 4^2)

Put values in other cells and reference them

	DGET	•	(= × <	∫ <i>f</i> ∗ =SQF	RT <mark>(C3</mark> ^2 + C	(4^2)			
	А	В	С	D	E	F	G	Н	1
1			Inputs				Output		
2		Name	Value	Units		Name	Value	Units	
3		side A	3	m		Hypotenuse	+ C4^2)	m	
4		side B	4	m					
5									

Graphs

Select data and then Insert the type of graph

Back to data plotting

Exercise 2.1

• Make a histogram of the data in tab "Ex 2.1".

Histograms in JMP

Our Excel histogram:

JMP makes histograms automatically:

CDF plot

CDF Plot

- PDF (Probability Density Function)
 - Area under PDF = 1
- CDF (Cumulative Distribution Function)
 - Range of values is 0 to 1
- Related to each other:

$$CDF(x) = \int_{-\infty}^{x} PDF(x') dx'$$
$$PDF(x) = \frac{d}{dx} CDF(x)$$

CDF Plot

Rank - 0.3

Count + 0.4

		. ↓
2	Data	CDF
3	2.476147	0.996507
4	-0.93374	0.133234
5	0.126027	0.567365
6	-1.71652	0.038423
7	-0.14318	0.487525
8	-1.20213	0.098303
9	-0.75337	0.233034
10	0.057801	0.542415
11	-0.43195	0.352794
12	-0.15637	0.482535
13	0.35763	0.652196
14	-0.2927	0.422655
15	-0.30083	0.417665
16	-0.38647	0.372754
17	-1.26719	0.088323
18	1.812076	0.966567
19	-0.53628	0.327844
20	1.553529	0.936627

• See all data points; no binning

Statistical Inference

CDF Counting

- Why CDF = (Rank-0.3)/(Count+0.4) ?
- Median rank gives the median location if experiment repeated many times

Sampling a CDF

1 1 0.8 0.8 0.6 0.6 G Ë 0.4 0.2 0.2 0 0 Data -2 -1 1 2

Want to sample uniformly

Actually sample randomly

Sampling a CDF

- Range of possible CDF locations for each sample
- Median rank is median of this range

Sampling Uncertainty

• Different from measurement uncertainty

Exercise 2.2

- Find the Median Rank Demo
- Press F9 several times to see different synthesized samples
- Observe the behavior

To Reduce Sampling Uncertainty...

CDF Plot in Excel

To remove "ties": _=(RA

=(RANK(B6, \$B\$6:\$B\$10000, 1) + COUNTIF(\$B\$6:B6, "="&B6)-1 - 0.3) / (\$C\$4 + 0.4)

Exercise 2.3

• Make a CDF plot of the data given in the Ex 2.3 tab

Exercise 2.3 Solution

Reliability Functions

Reliability Functions

- Functions of time
 - − CDF(x) \rightarrow F(t)
- Survival function S(t) = 1-F(t)
- PDF(x) \rightarrow f(t) $f(t) = \frac{\text{fraction of ORIGINAL population that fails in } dt}{dt}$ $= \frac{dF(t)}{dt} = -\frac{dS(t)}{dt}$
- Hazard function h(t) $h(t) = \frac{\text{fraction of CURRENT population that fails in } dt}{dt}$ $= \frac{f(t)}{S(t)} = -\frac{dS(t)}{dt}\frac{1}{S(t)} = -\frac{d\ln S(t)}{dt}$
- Cum hazard function H(t) $H(t) = \int_{0}^{t} h(t) dt$ $S(t) = \exp[-H(t)]$ $F(t) = 1 - \exp[-H(t)]$

Exercise 2.4a

 Calculate H(t), S(t), and F(t) for the given human mortality data, and plot h(t), S(t), and F(t). The data is given as h(t) for each age, that is, the probability of a living person dying at the given age. Use a sum to approximate the integral for H(t).

Exercise 2.4a Solution, Part 1

	OFFSE	т	- ($X \checkmark f_x$	=SUM(C\$6	5:C10)
	A E	}	С	D	E	F
1	Exe	rcis	e 3 – Haz	ard Func	tion for H	uman Mo
2	Calcu	ilate I	H, S, and F	. (For H, us	e a sum to a	approximate
3						
			Mortality	Cumulativa	Cumulativa	Currenteting
			hazard	hazar	survival	fail
4			function)	function	function	function
5	Ag	je	h(t)	H(t)	S(t)	F(t)
6		1	0.00706	0.00706	0.9929649	0.0070351
7		2	0.00053	0.00759	0.9924387	0.0075613
8		3	0.00036	0.00795	0.9920815	0.0079185
9		4	0.00027	0.00822	0.9918137	0.0081863
10		- 5	0.00022	C\$6:C10)	0.9915955	0.0084045
4.4		-		0.00004	0.0040070	0.0000000

Human Mortality Graphs

Reliability Indicators

• Mean time to failure (MTTF)

$$MTTF = \int_{0}^{\infty} t f(t) dt = \frac{1}{N} \sum_{j=1}^{N} t_{N} = \int_{0}^{\infty} S(t) dt$$

- Median time to failure (t₅₀) is the solution of $S(t_{50}) = 0.5$
 - Time at which half of the initial population fails

Exercise 2.4b

• Find the mean and median times to failure for the human mortality data set from the last exercise

Exercise 2.4b Solution

• Sum S(t) to get MTTF

Reliability Measures: DPM

- Metric designed for low fail rates
- DPM = <u>D</u>efects <u>P</u>er <u>M</u>illion

% pass	% fail	DPM	Goal at end of life
99	1 🕻	10,000	
99.9	0.1	1000	Goal at t=0
99.95	0.05 (500	Typical range for
99.99	0.01	100	semiconductor reliability
99.999	0.001	10	J

Reliability Measures: FIT

- FIT = <u>F</u>ailures <u>In</u> <u>T</u>ime
- FIT is a fail *rate*, fails per <u>b</u>illion device hours
 - FIT = DPM per 1,000 hours
- DPM is a fail total, fails per <u>m</u>illion total devices
 - DPM = FIT * hours / 1,000

Reliability Indicators: AFR

• AFR, Average Fail Rate

$$AFR(t_1, t_2) = \frac{\int_{t_1}^{t_2} h(t) dt}{t_2 - t_1} = \frac{H(t_2) - H(t_1)}{t_2 - t_1} = \frac{\ln S(t_1) - \ln S(t_2)}{t_2 - t_1}$$

- If t in hours, units are fail fraction per hour
- Multiply by 10⁹ for units of FIT

Exercise 2.4c

- 1. Plot the hazard function in FIT
- 2. Find the AFR (in FIT) for:
 - The 10-year range from ages 6 to 15
 - The 10-year range from ages 71 to 80
 - The 10-year range from ages 91 to 100
 - The entire 100-year range from ages 1 to 100

Exercise 2.4c Solution

Age Range	AFR (FIT)
6-15	22
71-80	4,311
91-100	24,116
1-100	4,270

The End