

The Essence of
Inheritance

Andrew P. Black

Joint work with Kim Bruce & James Noble

2

This talk

• Inheritance as an aid to human
understanding of programs

• Not about the formal properties of
inheritance.

• Not about types

3

4

2 Black, Bruce, and Noble

Inheritance has been shunned by the designers of functional languages. Cer-
tainly, it is a difficult feature to specify precisely, and to implement efficiently,
because it means (at least in the most general formulations) that any apparent
constant might, once inherited, become a variable. But, as Einstein is reputed
to have said, in the middle of difficulty lies opportunity. The especial value of
inheritance is as an aid to program understanding. It is particularly valuable
where the best way to understand a complex program is to start with a simpler
one and approach the complex goal in small steps.

Our emphasis on the value of inheritance as an aid to human understanding,
rather than on its formal properties, is deliberate, and long overdue. Since the
pioneering work of Cook and Palsberg (1989), it has been clear that, formally, in-
heritance is equivalent to parameterization. This has, we believe, caused design-
ers of functional languages to regard inheritance as unimportant, unnecessary, or
even undesirable, arguing (correctly) that it can be simulated using higher-order
parameterization. This argument misses the point that two formally-equivalent
mechanisms may behave quite differently with respect to human cognition.

It has also long been known that Inheritance is Not Subtyping (Cook et al.,
1990). In spite of this, many programming languages conflate subtyping and
inheritance; Java, for example, restricts the use of inheritance so that the inher-
itance hierarchy is a sub-tree of the type hierarchy. Our goal in this paper is to
consider inheritance as a mechanism in its own right, quite separate from the
subtyping relation. We are aided in this goal by casting our example in the Grace
programming language (Black et al., 2012), which cleanly separates inheritance
and subtyping.

The form and content of this paper are a homage to Wadler’s “Essence
of Functional Programming” (1992), which was itself inspired by Reynold’s
“Essence of ALGOL” (1981). The first example that we use to illustrate the
value of inheritance, discussed in Section 2, is based on Wadler’s interpreter for
a simple language, which is successively extended to include additional features.
(Reynolds (1972) had previously defined a series of interpreters in a classic pa-
per that motivated the use of continuations.) The second example is based on
Armstrong’s description of the Erlang OTP Platform (Armstrong, 2007, Ch 16);
this is discussed in Section 3. We conclude in Section 4, where we also discuss
some of the consequences for type-checking.

2 Interpreting Inheritance

This section demonstrates the thesis that inheritance enhances understandabil-
ity, by presenting several variations of an implementation of a fragment of an
expression language. Wadler (1992) uses an interpreter for the lambda calculus,
but we use a simpler language inspired by the “First Monad Tutorial” (Wadler,
2013).

We show our examples in Grace (Black et al., 2012), a simple object-oriented
language designed for teaching, but no prior knowledge of the language is as-
sumed. What the reader will require is a passing familiarity with the basics of

A Denotational Semantics of Inheritance

and its Correctness

William Cook*

Department of Computer Science

Box 1910 Brown University

Providence, RI 02912, USA

wrc@cs.brown.edu

Abstract

This paper presents a denotational model of inheritance.

The model is based on an intuitive motivation of the

purpose of inheritance. The correctness of the model is

demonstrated by proving it equivalent to an operational

semantics of inheritance based upon the method-lookup

algorithm of object-oriented languages. Although it was

originally developed to explain inheritance in object-

oriented languages, the model shows that inheritance is

a general mechanism that may be applied to any form

of recursive definition.

1 Introduction

Inheritance is one of the central concepts in object-

oriented programming. Despite its importance, there

seems to be a lack of consensus on the proper way to

describe inheritance. This is evident from the following

review of various formalizations of inheritance that have

been proposed.

The concept of prefizing in Simula [5], which evolved

into the modern concept of inheritance, was defined in

terms of textual concatenation of program blocks. How-

ever, this definition was informal, and only partially ac-

counted for more sophisticated aspects of prefixing like

the pseudo-variable this and virtual operations.

The most precise and widely used definition of inher-

itance is given by the operational semantics of object-

oriented languages. The canonical operational seman-

tics is the “method lookup” algorithm of Smalltalk:

* Current address: Hewlett-Packard Laboratories, P.O. Box

10490 Palo Alto, CA 94303-0969, cook@bplabs.hp.com.

Permission to copy without fee all or part of this material is granted provided

that the copies are not made or distributed for direct commercial advantage,

the ACM copyright notice and the title of the publication and its date appear,

and notice is given that copying is by permission of the Association for

Computing Machinery. To copy other&e, or to republish, requires a fee

and/or specilic permission.

0 1989 ACM 089791-333-7/89/0010/0433 $1.50

Jens Palsberg

Computer Science Department

Aarhus University

Ny Munkegade, DK-8000

Aarhus C, Denmark

palsberg@daimi.dk

When a message is sent, the methods in

the receiver’s class are searched for one with a

matching selector. If none is found, the meth-

ods in that class’s superclass are searched next.

The search continues up the superclass chain

until a matching method is found. . . .

When a method contains a message whose

receiver is self, the search for the method for

that message begins in the instance’s class, re-

gardless of which class contains the method

containing self. . . .

When a message is sent to super, the search

for a method . . . begins in the superclass of the

class containing the method. The use of super

allows a method to access methods defined in a

superclass even if the methods have been over-

ridden in the subclasses. [6, pp. 61-641

Unfortunately, such operational definitions do not nec-

essarily foster intuitive understanding. As a result, in-

sight into the proper use and purpose of inheritance is

often gained only through an “Aha!” experience [I].

Cardelli [2] identifies inheritance with the subtype re-

lation on record types: “a record type T is a subtype

(written 5) of a record type r’ if 7 has all the fields of T’,

and possibly more, and the common fields of 7 and r’ are

in the 5 relation.” His work shows that a sound type-

checking algorithm exists for strongly-typed, statically-

scoped languages with inheritance, but it doesn’t give

their dynamic semantics. More recently, McAllister and

Zabih [9] suggested a system of “boolean classes” simi-

lar to inheritance as used in knowledge representation.

Stein [16] focused on shared attributes and methods.

Minsky and Rozenshtein [lo] characterized inheritance

by “laws” regulating message sending. Although they

express various aspects of inheritance, none of these pre-

sentations are convincing because they provide no ver-

ifiable evidence that the formal model corresponds to

the form of inheritance actually used in object-oriented

October i-6, 1989
OOPSLA ‘89 Proceedings

433

Inheritance =  
Parametrization
of Generators 
 
(OOPSLA 1989)

6

2 Black, Bruce, and Noble

Inheritance has been shunned by the designers of functional languages. Cer-
tainly, it is a difficult feature to specify precisely, and to implement efficiently,
because it means (at least in the most general formulations) that any apparent
constant might, once inherited, become a variable. But, as Einstein is reputed
to have said, in the middle of difficulty lies opportunity. The especial value of
inheritance is as an aid to program understanding. It is particularly valuable
where the best way to understand a complex program is to start with a simpler
one and approach the complex goal in small steps.

Our emphasis on the value of inheritance as an aid to human understanding,
rather than on its formal properties, is deliberate, and long overdue. Since the
pioneering work of Cook and Palsberg (1989), it has been clear that, formally, in-
heritance is equivalent to parameterization. This has, we believe, caused design-
ers of functional languages to regard inheritance as unimportant, unnecessary, or
even undesirable, arguing (correctly) that it can be simulated using higher-order
parameterization. This argument misses the point that two formally-equivalent
mechanisms may behave quite differently with respect to human cognition.

It has also long been known that Inheritance is Not Subtyping (Cook et al.,
1990). In spite of this, many programming languages conflate subtyping and
inheritance; Java, for example, restricts the use of inheritance so that the inher-
itance hierarchy is a sub-tree of the type hierarchy. Our goal in this paper is to
consider inheritance as a mechanism in its own right, quite separate from the
subtyping relation. We are aided in this goal by casting our example in the Grace
programming language (Black et al., 2012), which cleanly separates inheritance
and subtyping.

The form and content of this paper are a homage to Wadler’s “Essence
of Functional Programming” (1992), which was itself inspired by Reynold’s
“Essence of ALGOL” (1981). The first example that we use to illustrate the
value of inheritance, discussed in Section 2, is based on Wadler’s interpreter for
a simple language, which is successively extended to include additional features.
(Reynolds (1972) had previously defined a series of interpreters in a classic pa-
per that motivated the use of continuations.) The second example is based on
Armstrong’s description of the Erlang OTP Platform (Armstrong, 2007, Ch 16);
this is discussed in Section 3. We conclude in Section 4, where we also discuss
some of the consequences for type-checking.

2 Interpreting Inheritance

This section demonstrates the thesis that inheritance enhances understandabil-
ity, by presenting several variations of an implementation of a fragment of an
expression language. Wadler (1992) uses an interpreter for the lambda calculus,
but we use a simpler language inspired by the “First Monad Tutorial” (Wadler,
2013).

We show our examples in Grace (Black et al., 2012), a simple object-oriented
language designed for teaching, but no prior knowledge of the language is as-
sumed. What the reader will require is a passing familiarity with the basics of

The Object-Oriented
gang do not always help

8

9

Problem:

• Explaining the value of inheritance

‣ especially to functional programmers

10

higher order

Abstract: good Concrete: not so good

Abstract

Can you please give me an example?
Wait!

Abstract

Concrete

Concrete

Abstract

Inheritance is good at doing this!

In the beginning…

Reynolds: The
Essence of Algol
(1981)
Proceedings of the
International Symposium
on Algorithmic Languages

values ≠ meanings

14

15

Reynolds: The Essence of Algol

Wadler: The
Essence of
Functional
Programming
PoPL 1992
values ≠
computations

16

The essence of functional programming
(Invited talk)

Philip Wadler, University of Glasgow*

Abstract

This paper explores the use monads to structure func-tional programs. No prior knowledge of monads orcategory theory is required.
Monads increase the ease with which programs maybe modified. They can mimic the effect of impurefeatures such as exceptions, state, and continuations;and also provide effects not easily achieved with suchfeatures. The types of a program reflect which effectsoccur.
The first section is an extended example of the useof monads. A simple interpreter is modified to supportvarious extra features: error messages, state, output,and non-deterministic choice. The second section de-scribes the relation bet ween monads and cent inuation-passing style. The third section sketches how monadsare used in a compiler for Haskell that is written inHaskell.

1 Introduction
Shall I be pure or impure?

Pure functional languages, such as Haskell or Mi-randa, offer the power of lazy evaluation and the sim-plicity of equational reasoning. Impure functional lan-guages, such as Standard ML or Scheme, offer a tempt-ing spread of features such as state, exception han-dling, or continuations.
One factor that should influence my choice is theease with which a program can be modified. Purelanguages ease change by making manifest the dataupon which each operation depends. But, sometimes,a seemingly small change may require a program in apure language to be extensively restructured, when ju-dicious use of an impure feature may obtain the same
*Author’s address: Department of Computing Science, UN-versity of Glasgow, Glasgow G12 8QQ, Scotland Email:wadlerfldcs .glasgow .ac .uk.

Permission to copy without fee all or part of this material is grantedprovided that the copies are not made or distributed for directcommercial advantage, the ACM copyright notice and the title of thepublication and its date appear, and notice is given that copying is bypermission of the Association for Computing Machinery, To wpy other-wise, or to republisb, requires a fee and/or specific permission.

effect by altering a mere handful of lines.Say I write an interpreter in a pure functional lan-guage.
To add error handling to it, I need to modify the re-sult type to include error values, and at each recursivecall to check for and handle errors appropriately. HadI used an impure language with exceptions, no suchrestructuring would be needed.
To add an execution count to it, I need to mod-ify the the result type to include such a count, andmodify each recursive call to pass around such countsappropriately. Had I used an impure language witha global variable that could be incremented, no suchrestructuring would be needed.
To add an output instruction to it, I need to modifythe result type to include an output list, and to modifyeach recursive call to pass around this list appropri-ately. Had I used an impure language that performedoutput as a side effect, no such restructuring would <eneeded.
Or I could use a monad.
This paper shows how to use monads to structure aninterpreter so that the changes mentioned above aresimple to make. In each case, all that is required is toredefine the monad and to make a few local changes.This programming style regains some of the flexibilityprovided by various features of impure languages. Italso may apply when there is no corresponding impurefeature.

The technique applies not just to interpreters, butto a wide range of functional programs. The GRASPteam at Glasgow is constructing a compiler for thefunctional language Haskell. The compiler is itselfwritten in Haskell, and uses monads to good effect.Though this paper concentrates on the use of monadsin a program tens of lines long, it also sketches ourexperience using them in a program three orders ofmagnitude larger.
Programming with monads strongly reminiscent ofcontinuation-passing style (CPS), and this paper ex-plores the relationship between the two. In a sensethey are equivalent: CPS arises as a special case of amonad, and any monad may be embedded in CIY3 bychanging the answer type. But the monadic approachprovides additionall insight and allows a finer degreeof control.@ 1992 ACM 089791453-8/92/0001/0001 $1.50

1

This motivated …

Wadlerfest

• PoPL 1992

17

The essence of functional programming
(Invited talk)

Philip Wadler, University of Glasgow*

Abstract

This paper explores the use monads to structure func-tional programs. No prior knowledge of monads orcategory theory is required.
Monads increase the ease with which programs maybe modified. They can mimic the effect of impurefeatures such as exceptions, state, and continuations;and also provide effects not easily achieved with suchfeatures. The types of a program reflect which effectsoccur.
The first section is an extended example of the useof monads. A simple interpreter is modified to supportvarious extra features: error messages, state, output,and non-deterministic choice. The second section de-scribes the relation bet ween monads and cent inuation-passing style. The third section sketches how monadsare used in a compiler for Haskell that is written inHaskell.

1 Introduction
Shall I be pure or impure?

Pure functional languages, such as Haskell or Mi-randa, offer the power of lazy evaluation and the sim-plicity of equational reasoning. Impure functional lan-guages, such as Standard ML or Scheme, offer a tempt-ing spread of features such as state, exception han-dling, or continuations.
One factor that should influence my choice is theease with which a program can be modified. Purelanguages ease change by making manifest the dataupon which each operation depends. But, sometimes,a seemingly small change may require a program in apure language to be extensively restructured, when ju-dicious use of an impure feature may obtain the same
*Author’s address: Department of Computing Science, UN-versity of Glasgow, Glasgow G12 8QQ, Scotland Email:wadlerfldcs .glasgow .ac .uk.

Permission to copy without fee all or part of this material is grantedprovided that the copies are not made or distributed for directcommercial advantage, the ACM copyright notice and the title of thepublication and its date appear, and notice is given that copying is bypermission of the Association for Computing Machinery, To wpy other-wise, or to republisb, requires a fee and/or specific permission.

effect by altering a mere handful of lines.Say I write an interpreter in a pure functional lan-guage.
To add error handling to it, I need to modify the re-sult type to include error values, and at each recursivecall to check for and handle errors appropriately. HadI used an impure language with exceptions, no suchrestructuring would be needed.
To add an execution count to it, I need to mod-ify the the result type to include such a count, andmodify each recursive call to pass around such countsappropriately. Had I used an impure language witha global variable that could be incremented, no suchrestructuring would be needed.
To add an output instruction to it, I need to modifythe result type to include an output list, and to modifyeach recursive call to pass around this list appropri-ately. Had I used an impure language that performedoutput as a side effect, no such restructuring would <eneeded.
Or I could use a monad.
This paper shows how to use monads to structure aninterpreter so that the changes mentioned above aresimple to make. In each case, all that is required is toredefine the monad and to make a few local changes.This programming style regains some of the flexibilityprovided by various features of impure languages. Italso may apply when there is no corresponding impurefeature.

The technique applies not just to interpreters, butto a wide range of functional programs. The GRASPteam at Glasgow is constructing a compiler for thefunctional language Haskell. The compiler is itselfwritten in Haskell, and uses monads to good effect.Though this paper concentrates on the use of monadsin a program tens of lines long, it also sketches ourexperience using them in a program three orders ofmagnitude larger.
Programming with monads strongly reminiscent ofcontinuation-passing style (CPS), and this paper ex-plores the relationship between the two. In a sensethey are equivalent: CPS arises as a special case of amonad, and any monad may be embedded in CIY3 bychanging the answer type. But the monadic approachprovides additionall insight and allows a finer degreeof control.@ 1992 ACM 089791453-8/92/0001/0001 $1.50

1

Black, Bruce,
and Noble:
Wadlerfest 2016

inheritance =  
ex post facto
parameterization

18

T

h

e

E

s

s

e

n

c

e

o

f

I

n

h

e

r

i

t

a

n

c

e

Andrew P. Black1, Kim B. Bruce2, and James Noble3

1 Portland State University, Oregon, USA,

b

l

a

c

k

@

c

s

.

p

d

x

.

e

d

u

,
2 Pomona College, Claremont, California, USA,

k

i

m

@

c

s

.

p

o

m

o

n

a

.

e

d

u

3 Victoria University of Wellington, New Zealand k

j

x

@

e

c

s

.

v

u

w

.

a

c

.

n

z

A

b

s

t

r

a

c

t

.

Programming languages serve a dual purpose: to communi-

cate programs to computers, and to communicate programs to humans.

Indeed, it is this dual purpose that makes programming language de-

sign a constrained and challenging problem. Inheritance is an essential

aspect of that second purpose: it is a tool to improve communication.

Humans understand new concepts most readily by first looking at a num-

ber of concrete examples, and later abstracting over those examples. The

essence of inheritance is that it mirrors this process: it provides a formal

mechanism for moving from the concrete to the abstract.

K

e

y

w

o

r

d

s

:

inheritance, object-oriented programming, programming lan-

guages abstraction, program understanding

1 Introduction

Shall I be abstract or concrete?
An abstract program is more general, and thus has greater potential to be

reused. However, a concrete program will usually solve the specific problem at

hand more simply.
One factor that should influence my choice is the ease with which a program

can be understood. Concrete programs ease understanding by making manifest

the action of their subcomponents. But, sometimes a seemingly small change

may require a concrete program to be extensively restructured, when judicious

use of abstraction would have allowed the same change to be made simply by

providing a different argument.
Or, I could use inheritance.
The essence of inheritance is that it lets us avoid the unsatisfying choice

between abstract and concrete. Inheritance lets us start by writing a concrete

program, and then later on abstracting over a concrete element. This abstraction

step is n

o

t

performed by editing the concrete program to introduce a new pa-

rameter. That is what would be necessary without inheritance. To the contrary:

inheritance allows us to treat the concrete element a

s

if

it

w

e

r

e

a

p

a

r

a

m

e

te

r

,

without actually changing the code. We call this ex post facto parameterization;

we will illustrate the process with examples in Sections 2 and 3.

19

T

h

e

E

s

s

e

n

c

e

o

f

I

n

h

e

r

i

t

a

n

c

e

Andrew P. Black1, Kim B. Bruce2, and James Noble3

1 Portland State University, Oregon, USA,

b

l

a

c

k

@

c

s

.

p

d

x

.

e

d

u

,
2 Pomona College, Claremont, California, USA,

k

i

m

@

c

s

.

p

o

m

o

n

a

.

e

d

u

3 Victoria University of Wellington, New Zealand k

j

x

@

e

c

s

.

v

u

w

.

a

c

.

n

z

A

b

s

t

r

a

c

t

.

Programming languages serve a dual purpose: to communi-

cate programs to computers, and to communicate programs to humans.

Indeed, it is this dual purpose that makes programming language de-

sign a constrained and challenging problem. Inheritance is an essential

aspect of that second purpose: it is a tool to improve communication.

Humans understand new concepts most readily by first looking at a num-

ber of concrete examples, and later abstracting over those examples. The

essence of inheritance is that it mirrors this process: it provides a formal

mechanism for moving from the concrete to the abstract.

K

e

y

w

o

r

d

s

:

inheritance, object-oriented programming, programming lan-

guages abstraction, program understanding

1 Introduction

Shall I be abstract or concrete?
An abstract program is more general, and thus has greater potential to be

reused. However, a concrete program will usually solve the specific problem at

hand more simply.
One factor that should influence my choice is the ease with which a program

can be understood. Concrete programs ease understanding by making manifest

the action of their subcomponents. But, sometimes a seemingly small change

may require a concrete program to be extensively restructured, when judicious

use of abstraction would have allowed the same change to be made simply by

providing a different argument.
Or, I could use inheritance.
The essence of inheritance is that it lets us avoid the unsatisfying choice

between abstract and concrete. Inheritance lets us start by writing a concrete

program, and then later on abstracting over a concrete element. This abstraction

step is n

o

t

performed by editing the concrete program to introduce a new pa-

rameter. That is what would be necessary without inheritance. To the contrary:

inheritance allows us to treat the concrete element a

s

i

f

i

t

w

e

r

e

a

p

a

r

a

m

e

t

e

r

,

without actually changing the code. We call this ex post facto parameterization;

we will illustrate the process with examples in Sections 2 and 3.

Shall I be Abstract or Concrete?

• Abstract programs are more general,
more potential for reuse

• Concrete programs are simpler, solve
the problem at hand more directly

• Inheritance lets us avoid this
unsatisfying choice

20

Inheritance isn’t about types
Inheritance ≠
Subtyping
Thank you, Cook &
colleagues (1990)

21

Inheritance Is Not Subtyping
William R. Cook Walter L. Hill Peter S. Canning Hewlett -Packard Laboratories

P.O. Box 10490 Palo Alto CA 94303-0969

Abstract
In typed object-oriented languages the subtype relation is typically based on the inheritance hierarchy. This ap- proach, however, leads either to insecure type-systems or to restrictions on inheritance that make it less flexible than untyped Smalltalk inheritance. We present a new typed model of inheritance that allows more of the flex- ibility of Smalltalk inheritance within a statically-typed system. Significant features of our analysis are the intro duction of polymorphism into the typing of inheritance and the uniform application of inheritance to objects, classes and types. The resulting notion of type inher- itance allows us to show that the type of an inherited object is an inherited type but not always a subtype.

1 Introduction
In strongly-typed object-oriented languages like Simula [I], C++ [28], Trellis [25], Eiffel [19], and Modula-3 [9], the inheritance hierarchy determines the conformance (subtype) relation. In most such languages, inheritance is restricted to satisfy the requirements of subtyping. Eiffel, on the other hand, has a more expressive type system that allows more of the flexibility of Smalltalk inheritance [14], but suffers from type insecurities be- cause its inheritance construct is not a sound baais for a subtype relation [12].

In this paper we present a new typed model of inher- itance that supports more of the flexibility of Smalltalk inheritance while allowing static type-checking. The typing is based on an extended polymorphic lambda- calculus and a denotational model of inheritance. The model contradicts the conventional wisdom that inher- itance must always make subtypes. In other words, we show that incremental change, by implementation inheritance, can produce objects that are not subtype compatible with the original objects. We introduce the notion of type inheritance and show that an inherited

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To copy other- wise, or to republish, requires a fee and/or specific permission.
0 1990 ACM 089791-3434/90/0001/0125 $1 SO 125

object has an inherited type. Type inheritance is the ba- sis for a new form of polymorphism for object-oriented programming.
Much of the work presented here is connected with the use of self-reference, or recursion, in object-oriented lan- guag- 13, 4, 51. 0 ur model of inheritance is intimately tied to recursion in that it is a mechanism for incre- mental extension of recursive structures [lI, 13, 221. In object-oriented languages, recursion is used at three lev- els: objects, classes, and types. We apply inheritance uniformly to each of these forms of recursion while en- suring that each form interacts properly with the others. Since our terminology is based on this uniform develop- ment, it is sometimes at odds with the numerous tech- nical terms used in the object-oriented paradigm. Our notion of object inheritance subsumes both delegation and the traditional notion of class inheritance, while our notion of class inheritance is related to Smalltalk meta- classes.

Object inheritance is used to construct objects incre- mentally. We show that when a recursive object defini- tion is inherited to define a new object, a correspond- ing change is often required in the type of the object. To achieve this effect, polymorphism is introduced into recursive object definitions by abstracting the type of self. Inheritance is defined to specialize the inherited definition to match the type of the new object being defined. A form of polymorphism developed for this purpose, called F-bounded polymorphism [3], is used to characterize the extended types that may be created by inheritors.
Class inheritance supports the incremental definition of classes, which are parameterized object definitions. A class is recursive if its instances use the class to cre- ate new instances. When a class is inherited to define a new class, the inherited creation operations are updated to create instances of the new,class. Since class recur- sion is also related to recursion in the object types, the polymorphic typing of inheritance is extended to cover class recursion. We also introduce a generalization of class inheritance that allows modification of instantia- tion parameters.

A final application of inheritance is to the definition of recursive types. Type inheritance extends a recursive

• I’m not going to
talk about types

• Examples will be
in Grace

Inheritance isn’t about
“accidental” reuse

• Highly unlikely that object that not
designed for reuse can be reused
‣ by inheritance

‣ or by any other mechanism!

• Can be refactored to facilitate reuse

22

Three Examples

• In the paper:
‣ Evaluating Expressions (Interpreter)

° with and without various monads

‣ The Erlang OTP Platform

• In this talk:
‣ Mutable Queues

23

A Simple Mutable Queue

24

0

1 2 3 4

var numberQ := queue.empty

A Simple Queue

25

Essence of Inheritance 23

module "queue"
// implements a queue using an array to store the elements

2

class empty {
4 // answers a new empty queue. The contents are in

// elements[firstIx], elements[firstIx+1], ... elements[endIx � 1]
6

def initialSize = 4
8 var elements := primitiveArray.new(initialSize)

var firstIx := 0
10 var endIx := 0

12 method size { endIx � firstIx }
method isEmpty { endIx == firstIx }

14 method capacity is confidential { elements.size }
method add(e) {

16 if (isFull) then { makeMoreRoom }
elements.at (endIx) put (e)

18 endIx := increment (endIx)
self

20 }
method remove {

22 if (size == 0) then { NoSuchObject.raise "can't remove from an empty queue" }
def result = elements.at(firstIx)

24 firstIx := increment(firstIx)
result

26 }
method asString {

28 var s := "`"
usedIndicesDo { ix �>

30 s := "{s} {elements.at(ix)} ^"
}

32 s
}

34 method asDebugString {
"q[{firstIx}..{endIx�1}]#{capacity} {size}:{asString}"

36 }
method makeMoreRoom is confidential {

38 def newElements = primitiveArray.new(capacity ∗ 2)
usedIndicesDo { i �>

40 newElements.at(i) put (elements.at(i))
}

42 elements := newElements
}

44 method isFull is confidential { endIx == capacity }
method usedIndicesDo (action) is confidential {

46 var i := firstIx
repeat (size) times {

48 action.apply (i)
i := increment (i)

50 }
}

52 method increment(ix) is confidential { ix + 1 }
}

A Simple Queue

26

Essence of Inheritance 23

module "queue"
// implements a queue using an array to store the elements

2

class empty {
4 // answers a new empty queue. The contents are in

// elements[firstIx], elements[firstIx+1], ... elements[endIx � 1]
6

def initialSize = 4
8 var elements := primitiveArray.new(initialSize)

var firstIx := 0
10 var endIx := 0

12 method size { endIx � firstIx }
method isEmpty { endIx == firstIx }

14 method capacity is confidential { elements.size }
method add(e) {

16 if (isFull) then { makeMoreRoom }
elements.at (endIx) put (e)

18 endIx := increment (endIx)
self

20 }
method remove {

22 if (size == 0) then { NoSuchObject.raise "can't remove from an empty queue" }
def result = elements.at(firstIx)

24 firstIx := increment(firstIx)
result

26 }
method asString {

28 var s := "`"
usedIndicesDo { ix �>

30 s := "{s} {elements.at(ix)} ^"
}

32 s
}

34 method asDebugString {
"q[{firstIx}..{endIx�1}]#{capacity} {size}:{asString}"

36 }
method makeMoreRoom is confidential {

38 def newElements = primitiveArray.new(capacity ∗ 2)
usedIndicesDo { i �>

40 newElements.at(i) put (elements.at(i))
}

42 elements := newElements
}

44 method isFull is confidential { endIx == capacity }
method usedIndicesDo (action) is confidential {

46 var i := firstIx
repeat (size) times {

48 action.apply (i)
i := increment (i)

50 }
}

52 method increment(ix) is confidential { ix + 1 }
}

making room when full

27

Essence of Inheritance 23

module "queue"
// implements a queue using an array to store the elements

2

class empty {
4 // answers a new empty queue. The contents are in

// elements[firstIx], elements[firstIx+1], ... elements[endIx � 1]
6

def initialSize = 4
8 var elements := primitiveArray.new(initialSize)

var firstIx := 0
10 var endIx := 0

12 method size { endIx � firstIx }
method isEmpty { endIx == firstIx }

14 method capacity is confidential { elements.size }
method add(e) {

16 if (isFull) then { makeMoreRoom }
elements.at (endIx) put (e)

18 endIx := increment (endIx)
self

20 }
method remove {

22 if (size == 0) then { NoSuchObject.raise "can't remove from an empty queue" }
def result = elements.at(firstIx)

24 firstIx := increment(firstIx)
result

26 }
method asString {

28 var s := "`"
usedIndicesDo { ix �>

30 s := "{s} {elements.at(ix)} ^"
}

32 s
}

34 method asDebugString {
"q[{firstIx}..{endIx�1}]#{capacity} {size}:{asString}"

36 }
method makeMoreRoom is confidential {

38 def newElements = primitiveArray.new(capacity ∗ 2)
usedIndicesDo { i �>

40 newElements.at(i) put (elements.at(i))
}

42 elements := newElements
}

44 method isFull is confidential { endIx == capacity }
method usedIndicesDo (action) is confidential {

46 var i := firstIx
repeat (size) times {

48 action.apply (i)
i := increment (i)

50 }
}

52 method increment(ix) is confidential { ix + 1 }
}

3 4

3 4 5 6

0

0

elements

elements

But ...

• This implementation wastes space at
the start of the internal array

• An obvious optimization is to “slide
down” the element when copying into
the new array

28

A Better Plan

29

24 Black, Bruce, and Noble

This clearly wastes space at the start of the array —space that can never
be reused. An obvious optimization is to copy the elements into the new array
starting at the bottom (index 0), rather than copying them straight across.

module "queue+slide"
// implements a queue using an array to store the elements

2

import "queue" as originalQueue
4

class empty {
6 // Similar to originalQueue except that, when my contents are copied into a larger elements

// array, we slide them to the bottom, rather than coping them into their former locations.
8

inherits originalQueue.empty
10

method makeMoreRoom is confidential, override {
12 def newElements = primitiveArray.new(capacity ∗ 2)

var j := 0
14 usedIndicesDo { i �>

newElements.at(j) put (elements.at(i))
16 j := increment(j)

}
18 elements := newElements

firstIx := 0
20 endIx := j

}
22 }

Once we have seen the idea of sliding the elements down to the bottom of the
array, we realize that we can also apply it to recycle the empty locations when
the queue contents reaches the top of the array, even without allocating a larger
one.

3 4

3 4 5 6

0
elements

elements

How to install the better plan?
• How do we combine these code

fragments?

30

24 Black, Bruce, and Noble

This clearly wastes space at the start of the array —space that can never
be reused. An obvious optimization is to copy the elements into the new array
starting at the bottom (index 0), rather than copying them straight across.

module "queue+slide"
// implements a queue using an array to store the elements

2

import "queue" as originalQueue
4

class empty {
6 // Similar to originalQueue except that, when my contents are copied into a larger elements

// array, we slide them to the bottom, rather than coping them into their former locations.
8

inherits originalQueue.empty
10

method makeMoreRoom is confidential, override {
12 def newElements = primitiveArray.new(capacity ∗ 2)

var j := 0
14 usedIndicesDo { i �>

newElements.at(j) put (elements.at(i))
16 j := increment(j)

}
18 elements := newElements

firstIx := 0
20 endIx := j

}
22 }

Once we have seen the idea of sliding the elements down to the bottom of the
array, we realize that we can also apply it to recycle the empty locations when
the queue contents reaches the top of the array, even without allocating a larger
one.

How to install the better plan?

31

24 Black, Bruce, and Noble

This clearly wastes space at the start of the array —space that can never
be reused. An obvious optimization is to copy the elements into the new array
starting at the bottom (index 0), rather than copying them straight across.

module "queue+slide"
// implements a queue using an array to store the elements

2

import "queue" as originalQueue
4

class empty {
6 // Similar to originalQueue except that, when my contents are copied into a larger elements

// array, we slide them to the bottom, rather than coping them into their former locations.
8

inherits originalQueue.empty
10

method makeMoreRoom is confidential, override {
12 def newElements = primitiveArray.new(capacity ∗ 2)

var j := 0
14 usedIndicesDo { i �>

newElements.at(j) put (elements.at(i))
16 j := increment(j)

}
18 elements := newElements

firstIx := 0
20 endIx := j

}
22 }

Once we have seen the idea of sliding the elements down to the bottom of the
array, we realize that we can also apply it to recycle the empty locations when
the queue contents reaches the top of the array, even without allocating a larger
one.

24 Black, Bruce, and Noble

This clearly wastes space at the start of the array —space that can never
be reused. An obvious optimization is to copy the elements into the new array
starting at the bottom (index 0), rather than copying them straight across.

module "queue+slide"
// implements a queue using an array to store the elements

2

import "queue" as originalQueue
4

class empty {
6 // Similar to originalQueue except that, when my contents are copied into a larger elements

// array, we slide them to the bottom, rather than coping them into their former locations.
8

inherit originalQueue.empty
10

method makeMoreRoom is confidential, override {
12 def newElements = primitiveArray.new(capacity ∗ 2)

var j := 0
14 usedIndicesDo { i �>

newElements.at(j) put (elements.at(i))
16 j := increment(j)

}
18 elements := newElements

firstIx := 0
20 endIx := j

}
22 }

Once we have seen the idea of sliding the elements down to the bottom of the
array, we realize that we can also apply it to recycle the empty locations when
the queue contents reaches the top of the array, even without allocating a larger
one.

32

24 Black, Bruce, and Noble

This clearly wastes space at the start of the array —space that can never
be reused. An obvious optimization is to copy the elements into the new array
starting at the bottom (index 0), rather than copying them straight across.

module "queue+slide"
// implements a queue using an array to store the elements

2

import "queue" as originalQueue
4

class empty {
6 // Similar to originalQueue except that, when my contents are copied into a larger elements

// array, we slide them to the bottom, rather than coping them into their former locations.
8

inherits originalQueue.empty
10

method makeMoreRoom is confidential, override {
12 def newElements = primitiveArray.new(capacity ∗ 2)

var j := 0
14 usedIndicesDo { i �>

newElements.at(j) put (elements.at(i))
16 j := increment(j)

}
18 elements := newElements

firstIx := 0
20 endIx := j

}
22 }

Once we have seen the idea of sliding the elements down to the bottom of the
array, we realize that we can also apply it to recycle the empty locations when
the queue contents reaches the top of the array, even without allocating a larger
one.

24 Black, Bruce, and Noble

This clearly wastes space at the start of the array —space that can never
be reused. An obvious optimization is to copy the elements into the new array
starting at the bottom (index 0), rather than copying them straight across.

module "queue+slide"
// implements a queue using an array to store the elements

2

import "queue" as originalQueue
4

class empty {
6 // Similar to originalQueue except that, when my contents are copied into a larger elements

// array, we slide them to the bottom, rather than coping them into their former locations.
8

inherit originalQueue.empty
10

method makeMoreRoom is confidential, override {
12 def newElements = primitiveArray.new(capacity ∗ 2)

var j := 0
14 usedIndicesDo { i �>

newElements.at(j) put (elements.at(i))
16 j := increment(j)

}
18 elements := newElements

firstIx := 0
20 endIx := j

}
22 }

Once we have seen the idea of sliding the elements down to the bottom of the
array, we realize that we can also apply it to recycle the empty locations when
the queue contents reaches the top of the array, even without allocating a larger
one.

Module (file)

What to notice:

• Inheritance combines new code with
“editing instructions” that say where to
put it.

• The part being replaced was not
originally declared to be a parameter
‣ inheritance is ex post facto parameterization

• Inheritance lets us focus on the changes

33

Contrast with Wadler

34

interp (Add u v) e
= interp u e ‘bindMC (\a ->

interp v e cbindMC (\b ->
add a b))

This can be read as follows: evaluate u; bind atothe
result; evaluate v; bind b to the result; add a to b.
The types workout: the calls to interpand addyield
results of type M Value, and variables a and b have
type Value.

Application is handled similarly; in particular, both
the function and its argument are evaluated, so this
interpreter is using a call-by-value strategy. An in-
terpreter with acall-by-name strategy is discussed in
Section 3.

Just as the type Value represents avalue, the type
M Value can be thought of as representing a compu-
tation. The purpose of unitM is to coerce a value into
a computation; the purpose of bindM is to evaluate a
computation, yielding a value.

Informally, unitM gets us into a monad, and bindM
gets us around the monad. How do we get out of the
monad? In general, such operations require a more ad
hoc design. For our purposes, it will suffice to provide
the following.

showM :: H Value -> String

This is used in test.
By changing the definitions of M, unltM, bindM, and

showM, and making other small changes, the inter-
preter can be made to exhibit a wide variety of be-
haviors, as will now be demonstrated.

2.2 Variation zero:
Standard interpreter

To begin, define the trivial monad.

type I a = a

unit I a = a
a ‘bindI (k =ka
showI a — showval a

This is called the identity monad: I is the iden-
tity function on types, unitI is the identity function,
bindI is postfix application, and showI is equivalent
to showval.

Substitute monad I for monad M in the interpreter
(that is, substitute I, unitI, bindI, showI for each
occurrence of M, unitM, bindM, showM). Simplify-
ing yields the standard meta-circular interpreter for
lambda calculus shown in Figure 2. The other func-
tions in the interpreter simplify similarly.

For this variant of the interpreter, evaluating

test termO

returns the string “42”, as we would expect.

2.3 Variation one:
Error messages

To add error messages to the interpreter, define the
following monad.

data E a = Suc a I Err String

nnitE a = Suc a
errorE s = Err s

(Sue a) ‘bi.ndE’ k = k a
(Err s) ‘bindE’ k = Err s

showE (Sue a) = “Success: “ ++ showval a
showE (Err s) = “Error: “ ++ s

Each function in the interpreter either returns nor-
mally by yielding a value of the form Suc a, or
indicates an error by yielding a value of the form
Err s where s is an error message. If m :: E a and
k :: a -> E b then m ‘bindE f k acts as strict post-
fix application: if m succeeds then k is applied to the
successful result; if m fails then so does the application.
The show function displays either the successful result
or the error message.

To modify the interpreter, substitute monad E for
monad M, and replace each occurrence of unitE Wrong
by a suitable call to errorE. The only occurrences are
in lookup, add, and apply.

lookup X [1
= errorE (“unbound variable: “ ++ x)

add a b
= errorE (“should be numbers: “

++ showval a ++ “, 1’
++ showval b)

apply f a
= errorE (“should be function: “

++ showval f)

No other changes are required.
Evaluating

test termO

now returns “Success: 42”; and evaluating

test (App (Con 1) (Con 2))

returns “Error: should be function: l“.
In an impure language, this modification could be

made using exceptions or continuations to signal an
error,

2.4 Variation two:
Error messages with positions

Let Position be a type that indicates a place in the
source text (say, a line number). Extend the Term
datatype with a constructor that indicates a location:

4

interp (Add u v) e
= interp u e ‘bindMC (\a ->

interp v e cbindMC (\b ->
add a b))

This can be read as follows: evaluate u; bind atothe
result; evaluate v; bind b to the result; add a to b.
The types workout: the calls to interpand addyield
results of type M Value, and variables a and b have
type Value.

Application is handled similarly; in particular, both
the function and its argument are evaluated, so this
interpreter is using a call-by-value strategy. An in-
terpreter with acall-by-name strategy is discussed in
Section 3.

Just as the type Value represents avalue, the type
M Value can be thought of as representing a compu-
tation. The purpose of unitM is to coerce a value into
a computation; the purpose of bindM is to evaluate a
computation, yielding a value.

Informally, unitM gets us into a monad, and bindM
gets us around the monad. How do we get out of the
monad? In general, such operations require a more ad
hoc design. For our purposes, it will suffice to provide
the following.

showM :: H Value -> String

This is used in test.
By changing the definitions of M, unltM, bindM, and

showM, and making other small changes, the inter-
preter can be made to exhibit a wide variety of be-
haviors, as will now be demonstrated.

2.2 Variation zero:
Standard interpreter

To begin, define the trivial monad.

type I a = a

unit I a = a
a ‘bindI (k =ka
showI a — showval a

This is called the identity monad: I is the iden-
tity function on types, unitI is the identity function,
bindI is postfix application, and showI is equivalent
to showval.

Substitute monad I for monad M in the interpreter
(that is, substitute I, unitI, bindI, showI for each
occurrence of M, unitM, bindM, showM). Simplify-
ing yields the standard meta-circular interpreter for
lambda calculus shown in Figure 2. The other func-
tions in the interpreter simplify similarly.

For this variant of the interpreter, evaluating

test termO

returns the string “42”, as we would expect.

2.3 Variation one:
Error messages

To add error messages to the interpreter, define the
following monad.

data E a = Suc a I Err String

nnitE a = Suc a
errorE s = Err s

(Sue a) ‘bi.ndE’ k = k a
(Err s) ‘bindE’ k = Err s

showE (Sue a) = “Success: “ ++ showval a
showE (Err s) = “Error: “ ++ s

Each function in the interpreter either returns nor-
mally by yielding a value of the form Suc a, or
indicates an error by yielding a value of the form
Err s where s is an error message. If m :: E a and
k :: a -> E b then m ‘bindE f k acts as strict post-
fix application: if m succeeds then k is applied to the
successful result; if m fails then so does the application.
The show function displays either the successful result
or the error message.

To modify the interpreter, substitute monad E for
monad M, and replace each occurrence of unitE Wrong
by a suitable call to errorE. The only occurrences are
in lookup, add, and apply.

lookup X [1
= errorE (“unbound variable: “ ++ x)

add a b
= errorE (“should be numbers: “

++ showval a ++ “, 1’
++ showval b)

apply f a
= errorE (“should be function: “

++ showval f)

No other changes are required.
Evaluating

test termO

now returns “Success: 42”; and evaluating

test (App (Con 1) (Con 2))

returns “Error: should be function: l“.
In an impure language, this modification could be

made using exceptions or continuations to signal an
error,

2.4 Variation two:
Error messages with positions

Let Position be a type that indicates a place in the
source text (say, a line number). Extend the Term
datatype with a constructor that indicates a location:

4

• Inheritance provides a packaging
mechanism for deltas
‣ Inheritance = code + editing instructions

Both super- and subclass 
are units of understanding

• How do you explain a complex artifact?

‣ You don’t: you start with a simple one, and
gradually add the complexities, one at a time

• This is what Wadler does in Essence of
Functional Programming

• This is what Armstrong does in Programming
Erlang

• This is what I do when I teach a class
… and it’s probably what you do too.

35

Consequence

• You can’t see the whole object in one
place

• True!
‣ the behaviour of an object defined using

inheritance is distributed through the
inheritance hierarchy

• This is a feature, not a problem

36

Back to the queue

Meanwhile, somewhere in Britain …

Recycling Space
• Once we see the idea of sliding

elements to the bottom,

• We should ask: why allocate a larger
array at all?

38

0

3 4

Recycling Space
• Once we see the idea of sliding

elements to the bottom,

• We should ask: why allocate a larger
array at all?

39

0

3 4

Recycling Space
• Once we see the idea of sliding

elements to the bottom,

• We should ask: why allocate a larger
array at all?

40

0

3 4 5 6
• Can we add this

feature to the
original queue using
inheritance?

41

Essence of Inheritance 25

module "queue+recycle"
// implements a queue using an array to store the elements

24

import "queue" as originalQueue
26

class empty {
28 // Similar to originalQueue except that, before allocating a larger elements array, we see

// if it is worthwhile to recycle the now�unused space at the bottom of the current array.
30

inherit originalQueue.empty
32 alias enlarge = makeMoreRoom

34 method makeMoreRoom is confidential, override {
def threshold = 2

36 if ((capacity � size) > threshold)
then { slideInPlace } else { enlarge }

38 }

40 method slideInPlace is confidential {
usedIndicesDo { i �>

42 elements.at(i � firstIx) put (elements.at(i))
}

44 endIx := endIx � firstIx
firstIx := 0

46 }
}

This works fine, but prompts us to wonder why we are doing all the copying.
We can get the same effect, with no copying, by treating elements as a circular
array. This brings us to the final version:

module "queue+wrap"
// implements a queue using an array to store the elements

2

import "queue" as originalQueue
4

class empty {
6 // answers a new empty queue. The contents are in elements[firstIx], elements[firstIx+1], ...,

// elements[endIx � 1], but there is no assumption that endIx <= startIx. Instead, elements
8 // is treated as a circular array, and indexing is modulo its capacity. When "full",

// endIx == startIx � 1 (mod capacity); this enables us to distinguish this case from "empty",
10 // when endIx == startIx (mod capacity).

12 inherit originalQueue.empty

14 method size is override { (endIx � firstIx) % capacity }
method increment(ix) is override, confidential { (ix + 1) % capacity }

16 method isFull is override, confidential { endIx == ((firstIx � 1) % capacity) }
}

Why Slide?

• The price of recycling space is seems to
be sliding.

• But it’s not: we can treat elements as a
circular array

42

43

• Three method overrides implement the
change

Essence of Inheritance 25

module "queue+recycle"
// implements a queue using an array to store the elements

24

import "queue" as originalQueue
26

class empty {
28 // Similar to originalQueue except that, before allocating a larger elements array, we see

// if it is worthwhile to recycle the now�unused space at the bottom of the current array.
30

inherit originalQueue.empty
32 alias enlarge = makeMoreRoom

34 method makeMoreRoom is confidential, override {
def threshold = 2

36 if ((capacity � size) > threshold)
then { slideInPlace } else { enlarge }

38 }

40 method slideInPlace is confidential {
usedIndicesDo { i �>

42 elements.at(i � firstIx) put (elements.at(i))
}

44 endIx := endIx � firstIx
firstIx := 0

46 }
}

This works fine, but prompts us to wonder why we are doing all the copying.
We can get the same effect, with no copying, by treating elements as a circular
array. This brings us to the final version:

module "queue+wrap"
// implements a queue using an array to store the elements

2

import "queue" as originalQueue
4

class empty {
6 // answers a new empty queue. The contents are in elements[firstIx], elements[firstIx+1], ...,

// elements[endIx � 1], but there is no assumption that endIx <= startIx. Instead, elements
8 // is treated as a circular array, and indexing is modulo its capacity. When "full",

// endIx == startIx � 1 (mod capacity); this enables us to distinguish this case from "empty",
10 // when endIx == startIx (mod capacity).

12 inherit originalQueue.empty

14 method size is override { (endIx � firstIx) % capacity }
method increment(ix) is override, confidential { (ix + 1) % capacity }

16 method isFull is override, confidential { endIx == ((firstIx � 1) % capacity) }
}

26 Black, Bruce, and Noble

Here is a simple test suite:

dialect "minitest"
// test four different implementations of a queue. They all support the same add
// and remove operations, but differ in the way that they allocate and reuse space.
// These differences are revealed by requesting asDebugString after the test sequence.
import "queue" as qOrig
import "queue+slide" as qSlide
import "queue+recycle" as qRecycle
import "queue+wrap" as qWrap

[qOrig, qSlide, qRecycle, qWrap].do { queue �>

testSuite {
def q = queue.empty
test "empty" by {

assert (q.size) shouldBe 0
assert (q.asString) shouldBe "`"

}
test "add 3" by {

q.add "first"
q.add "second".add "third"
assert (q.size) shouldBe 3
assert (q.asString) shouldBe "` first ^ second ^ third ^"

}
test "add and remove" by {

q.add "first"
q.add "second".add "third"
assert (q.remove) shouldBe "first"
assert (q.remove) shouldBe "second"
assert (q.remove) shouldBe "third"
assert (q.size) shouldBe 0
assert {q.remove} shouldRaise (NoSuchObject)

}
test "+20 �18" by {

using (q) add 20 remove 18 add 0 remove 0
assert (q.asString) shouldBe "` 19 ^ 20 ^"

}
test "+4, �3, +5, �5" by {

using (q) add 4 remove 3 add 5 remove 5
assert (q.asString) shouldBe "` 9 ^"

}
test "+8, �6, +4, �5" by {

using (q) add 8 remove 6 add 4 remove 5
assert (q.asString) shouldBe "` 12 ^"

}
test "+7, �5, +4, �5" by {

using (q) add 7 remove 5 add 4 remove 5
assert (q.asString) shouldBe "` 11 ^"

}
}

}

26 Black, Bruce, and Noble

Here is a simple test suite:

dialect "minitest"
// test four different implementations of a queue. They all support the same add
// and remove operations, but differ in the way that they allocate and reuse space.
// These differences are revealed by requesting asDebugString after the test sequence.
import "queue" as qOrig
import "queue+slide" as qSlide
import "queue+recycle" as qRecycle
import "queue+wrap" as qWrap

[qOrig, qSlide, qRecycle, qWrap].do { queue �>

testSuite {
def q = queue.empty
test "empty" by {

assert (q.size) shouldBe 0
assert (q.asString) shouldBe "`"

}
test "add 3" by {

q.add "first"
q.add "second".add "third"
assert (q.size) shouldBe 3
assert (q.asString) shouldBe "` first ^ second ^ third ^"

}
test "add and remove" by {

q.add "first"
q.add "second".add "third"
assert (q.remove) shouldBe "first"
assert (q.remove) shouldBe "second"
assert (q.remove) shouldBe "third"
assert (q.size) shouldBe 0
assert {q.remove} shouldRaise (NoSuchObject)

}
test "+20 �18" by {

using (q) add 20 remove 18 add 0 remove 0
assert (q.asString) shouldBe "` 19 ^ 20 ^"

}
test "+4, �3, +5, �5" by {

using (q) add 4 remove 3 add 5 remove 5
assert (q.asString) shouldBe "` 9 ^"

}
test "+8, �6, +4, �5" by {

using (q) add 8 remove 6 add 4 remove 5
assert (q.asString) shouldBe "` 12 ^"

}
test "+7, �5, +4, �5" by {

using (q) add 7 remove 5 add 4 remove 5
assert (q.asString) shouldBe "` 11 ^"

}
}

}

Test output:

46

Essence of Inheritance 27

method using (q) add (a1) remove (r1) add (a2) remove (r2) is confidential {
// a helper method that for the test cases above.

(1..a1).do { i �> q.add (i) }
assert (q.size) shouldBe (a1)
(1..r1).do { i �> assert (q.remove) shouldBe (i) }
assert (q.size) shouldBe (a1�r1)
((a1+1)..(a1+a2)).do { i �> q.add (i) }
assert (q.size) shouldBe (a1 + a2 � r1)
((r1+1)..(r1+r2)).do { i �> assert (q.remove) shouldBe (i) }
assert (q.size) shouldBe (a1 + a2 � r1 �r2)
print "after +{a1}, �{r1}, +{a2}, �{r2}: q = {q.asDebugString}"

}

The output from these tests is as follows:

after +20, �18, +0, �0: q = q[18..19]#32 2:` 19 ^ 20 ^
after +4, �3, +5, �5: q = q[8..8]#16 1:` 9 ^
after +8, �6, +4, �5: q = q[11..11]#16 1:` 12 ^
after +7, �5, +4, �5: q = q[10..10]#16 1:` 11 ^
7 run, 0 failed, 0 errors
after +20, �18, +0, �0: q = q[18..19]#32 2:` 19 ^ 20 ^
after +4, �3, +5, �5: q = q[5..5]#8 1:` 9 ^
after +8, �6, +4, �5: q = q[5..5]#16 1:` 12 ^
after +7, �5, +4, �5: q = q[5..5]#16 1:` 11 ^
7 run, 0 failed, 0 errors
after +20, �18, +0, �0: q = q[18..19]#32 2:` 19 ^ 20 ^
after +4, �3, +5, �5: q = q[5..5]#8 1:` 9 ^
after +8, �6, +4, �5: q = q[5..5]#8 1:` 12 ^
after +7, �5, +4, �5: q = q[5..5]#8 1:` 11 ^
7 run, 0 failed, 0 errors
after +20, �18, +0, �0: q = q[18..19]#32 2:` 19 ^ 20 ^
after +4, �3, +5, �5: q = q[0..0]#8 1:` 9 ^
after +8, �6, +4, �5: q = q[11..11]#16 1:` 12 ^
after +7, �5, +4, �5: q = q[2..2]#8 1:` 11 ^
7 run, 0 failed, 0 errors

The output from asDebugString shows the interval of elements that is in
use, the capacity of elements, the size of the queue, and the queue contents.
So, for example, q[18..19]#32 2:` 19 ^ 20 ^ means that elements 18 and 19
are occupied, that the capacity of elements is 32, and that the queue contains 2
values, 19 at the head and 20 at the back. Notice that each refinement reduces
memory usage, except for the penultimate test, where queue+wrap uses an array
of capacity 16 for a test in which queue+recycle has managed with an array of
capacity 8. In this test case queue+recycle completely fills elements, which queue
+wrap cannot do, because it preserves at least one unused element to enable it
to distinguish between full and empty queues.

qOrig

Test output:

47

Essence of Inheritance 27

method using (q) add (a1) remove (r1) add (a2) remove (r2) is confidential {
// a helper method that for the test cases above.

(1..a1).do { i �> q.add (i) }
assert (q.size) shouldBe (a1)
(1..r1).do { i �> assert (q.remove) shouldBe (i) }
assert (q.size) shouldBe (a1�r1)
((a1+1)..(a1+a2)).do { i �> q.add (i) }
assert (q.size) shouldBe (a1 + a2 � r1)
((r1+1)..(r1+r2)).do { i �> assert (q.remove) shouldBe (i) }
assert (q.size) shouldBe (a1 + a2 � r1 �r2)
print "after +{a1}, �{r1}, +{a2}, �{r2}: q = {q.asDebugString}"

}

The output from these tests is as follows:

after +20, �18, +0, �0: q = q[18..19]#32 2:` 19 ^ 20 ^
after +4, �3, +5, �5: q = q[8..8]#16 1:` 9 ^
after +8, �6, +4, �5: q = q[11..11]#16 1:` 12 ^
after +7, �5, +4, �5: q = q[10..10]#16 1:` 11 ^
7 run, 0 failed, 0 errors
after +20, �18, +0, �0: q = q[18..19]#32 2:` 19 ^ 20 ^
after +4, �3, +5, �5: q = q[5..5]#8 1:` 9 ^
after +8, �6, +4, �5: q = q[5..5]#16 1:` 12 ^
after +7, �5, +4, �5: q = q[5..5]#16 1:` 11 ^
7 run, 0 failed, 0 errors
after +20, �18, +0, �0: q = q[18..19]#32 2:` 19 ^ 20 ^
after +4, �3, +5, �5: q = q[5..5]#8 1:` 9 ^
after +8, �6, +4, �5: q = q[5..5]#8 1:` 12 ^
after +7, �5, +4, �5: q = q[5..5]#8 1:` 11 ^
7 run, 0 failed, 0 errors
after +20, �18, +0, �0: q = q[18..19]#32 2:` 19 ^ 20 ^
after +4, �3, +5, �5: q = q[0..0]#8 1:` 9 ^
after +8, �6, +4, �5: q = q[11..11]#16 1:` 12 ^
after +7, �5, +4, �5: q = q[2..2]#8 1:` 11 ^
7 run, 0 failed, 0 errors

The output from asDebugString shows the interval of elements that is in
use, the capacity of elements, the size of the queue, and the queue contents.
So, for example, q[18..19]#32 2:` 19 ^ 20 ^ means that elements 18 and 19
are occupied, that the capacity of elements is 32, and that the queue contains 2
values, 19 at the head and 20 at the back. Notice that each refinement reduces
memory usage, except for the penultimate test, where queue+wrap uses an array
of capacity 16 for a test in which queue+recycle has managed with an array of
capacity 8. In this test case queue+recycle completely fills elements, which queue
+wrap cannot do, because it preserves at least one unused element to enable it
to distinguish between full and empty queues.

qSlide

qOrig

Test output:

48

Essence of Inheritance 27

method using (q) add (a1) remove (r1) add (a2) remove (r2) is confidential {
// a helper method that for the test cases above.

(1..a1).do { i �> q.add (i) }
assert (q.size) shouldBe (a1)
(1..r1).do { i �> assert (q.remove) shouldBe (i) }
assert (q.size) shouldBe (a1�r1)
((a1+1)..(a1+a2)).do { i �> q.add (i) }
assert (q.size) shouldBe (a1 + a2 � r1)
((r1+1)..(r1+r2)).do { i �> assert (q.remove) shouldBe (i) }
assert (q.size) shouldBe (a1 + a2 � r1 �r2)
print "after +{a1}, �{r1}, +{a2}, �{r2}: q = {q.asDebugString}"

}

The output from these tests is as follows:

after +20, �18, +0, �0: q = q[18..19]#32 2:` 19 ^ 20 ^
after +4, �3, +5, �5: q = q[8..8]#16 1:` 9 ^
after +8, �6, +4, �5: q = q[11..11]#16 1:` 12 ^
after +7, �5, +4, �5: q = q[10..10]#16 1:` 11 ^
7 run, 0 failed, 0 errors
after +20, �18, +0, �0: q = q[18..19]#32 2:` 19 ^ 20 ^
after +4, �3, +5, �5: q = q[5..5]#8 1:` 9 ^
after +8, �6, +4, �5: q = q[5..5]#16 1:` 12 ^
after +7, �5, +4, �5: q = q[5..5]#16 1:` 11 ^
7 run, 0 failed, 0 errors
after +20, �18, +0, �0: q = q[18..19]#32 2:` 19 ^ 20 ^
after +4, �3, +5, �5: q = q[5..5]#8 1:` 9 ^
after +8, �6, +4, �5: q = q[5..5]#8 1:` 12 ^
after +7, �5, +4, �5: q = q[5..5]#8 1:` 11 ^
7 run, 0 failed, 0 errors
after +20, �18, +0, �0: q = q[18..19]#32 2:` 19 ^ 20 ^
after +4, �3, +5, �5: q = q[0..0]#8 1:` 9 ^
after +8, �6, +4, �5: q = q[11..11]#16 1:` 12 ^
after +7, �5, +4, �5: q = q[2..2]#8 1:` 11 ^
7 run, 0 failed, 0 errors

The output from asDebugString shows the interval of elements that is in
use, the capacity of elements, the size of the queue, and the queue contents.
So, for example, q[18..19]#32 2:` 19 ^ 20 ^ means that elements 18 and 19
are occupied, that the capacity of elements is 32, and that the queue contains 2
values, 19 at the head and 20 at the back. Notice that each refinement reduces
memory usage, except for the penultimate test, where queue+wrap uses an array
of capacity 16 for a test in which queue+recycle has managed with an array of
capacity 8. In this test case queue+recycle completely fills elements, which queue
+wrap cannot do, because it preserves at least one unused element to enable it
to distinguish between full and empty queues.

qSlide

qOrig

qRecycle

Test output:

49

Essence of Inheritance 27

method using (q) add (a1) remove (r1) add (a2) remove (r2) is confidential {
// a helper method that for the test cases above.

(1..a1).do { i �> q.add (i) }
assert (q.size) shouldBe (a1)
(1..r1).do { i �> assert (q.remove) shouldBe (i) }
assert (q.size) shouldBe (a1�r1)
((a1+1)..(a1+a2)).do { i �> q.add (i) }
assert (q.size) shouldBe (a1 + a2 � r1)
((r1+1)..(r1+r2)).do { i �> assert (q.remove) shouldBe (i) }
assert (q.size) shouldBe (a1 + a2 � r1 �r2)
print "after +{a1}, �{r1}, +{a2}, �{r2}: q = {q.asDebugString}"

}

The output from these tests is as follows:

after +20, �18, +0, �0: q = q[18..19]#32 2:` 19 ^ 20 ^
after +4, �3, +5, �5: q = q[8..8]#16 1:` 9 ^
after +8, �6, +4, �5: q = q[11..11]#16 1:` 12 ^
after +7, �5, +4, �5: q = q[10..10]#16 1:` 11 ^
7 run, 0 failed, 0 errors
after +20, �18, +0, �0: q = q[18..19]#32 2:` 19 ^ 20 ^
after +4, �3, +5, �5: q = q[5..5]#8 1:` 9 ^
after +8, �6, +4, �5: q = q[5..5]#16 1:` 12 ^
after +7, �5, +4, �5: q = q[5..5]#16 1:` 11 ^
7 run, 0 failed, 0 errors
after +20, �18, +0, �0: q = q[18..19]#32 2:` 19 ^ 20 ^
after +4, �3, +5, �5: q = q[5..5]#8 1:` 9 ^
after +8, �6, +4, �5: q = q[5..5]#8 1:` 12 ^
after +7, �5, +4, �5: q = q[5..5]#8 1:` 11 ^
7 run, 0 failed, 0 errors
after +20, �18, +0, �0: q = q[18..19]#32 2:` 19 ^ 20 ^
after +4, �3, +5, �5: q = q[0..0]#8 1:` 9 ^
after +8, �6, +4, �5: q = q[11..11]#16 1:` 12 ^
after +7, �5, +4, �5: q = q[2..2]#8 1:` 11 ^
7 run, 0 failed, 0 errors

The output from asDebugString shows the interval of elements that is in
use, the capacity of elements, the size of the queue, and the queue contents.
So, for example, q[18..19]#32 2:` 19 ^ 20 ^ means that elements 18 and 19
are occupied, that the capacity of elements is 32, and that the queue contains 2
values, 19 at the head and 20 at the back. Notice that each refinement reduces
memory usage, except for the penultimate test, where queue+wrap uses an array
of capacity 16 for a test in which queue+recycle has managed with an array of
capacity 8. In this test case queue+recycle completely fills elements, which queue
+wrap cannot do, because it preserves at least one unused element to enable it
to distinguish between full and empty queues.

qSlide

qWrap

qOrig

qRecycle

What about “Accidental Reuse”?

• I’m not claiming that inheritance
supports “accidental reuse”

• Usually, code must be refactored to
provide the hooks for an inheriting
object to override.

50

51

My Changes

Adds several helper methods

52

These changes introduce intention-revealing method names.
They improve communication as well as enabling inheritance

Armstrong’s Explanation 
of Open Telecom Platform

OTP = framework for building scalable,
fault-tolerant distributed systems

54

Key idea: separate concerns

• OTP provides behaviors such as a
“generic server”
‣ generic server supports fault tolerance,

transactions, hot-swapping of code, …

• Application programmer provides specific
functionality in a callback
‣ callback is simple, sequential code

55

Example Callbacks

56

Essence of Inheritance 11

3.1 Armstrong’s Goal

What does Armstrong seek to achieve with the generic server? In this context,
a “server” is a computational engine with access to persistent memory. Servers
typically run on a remote computer, and in the Erlang world the primary server
is backed-up by a secondary server that takes over if the primary should fail. For
uniformity with the proceeding example, we here present a simplified version of
the OTP server in Grace; in addition to Armstrong’s Erlang version, our code
is also based on Bierman, Parkinson, and Noble’s translation of the OTP server
to a Java-like language (2008). For brevity, and to focus attention on the use
of inheritance, our version omits name resolution, remote requests, concurrency
and failover.

To be concrete, let’s imagine two particular servers: a “name server” and a
“calculation server”. The name server remembers the locations of objects, with
interface:

type NameServer = {
add(name:String) place(p:Location) �> Done
whereIs(name:String) �> Location

}

The name of the first method in the above type is add()place(), a two-part name
with two parameters.

The calculation server acts like a one-function calculator with a memory;
clear clears the memory, and add adds its argument to the memory, and stores
the result in the memory as well as returning it. The calculation server has the
interface

type CalculationServer = {
clear �> Number
add(e:Number) �> Number

}

Both of these servers maintain state; we will see later why this is relevant.
Armstrong refers to the actual server code as “the callback”. His goal is to

write these callbacks in a simple sequential style, but with explicit state. The
generic server can then add properties such as transactions, failover and hot-
swapping. The simple sequential implementation of the name server is shown on
the following page.

The state of this “callback” is represented by a Dictionary object that stores
the name ! location mapping. The method initialState returns the initial state:
a new, empty, Dictionary. The method add()place()state() is used to implement
the client’s add()place() method. The generic server provides the additional state
argument, an object representing the callback’s state. The method returns a
Response (as in Section 2.5) comprising the newState dictionary, and the ac-
tual result of the operation, p. Similarly, the method whereIs()state() is used
to implement the client’s whereIs() method. The generic server again provides
the additional state argument. This method returns a Response comprising the
result of looking-up name in dict and the (unchanged) state.

Essence of Inheritance 11

3.1 Armstrong’s Goal

What does Armstrong seek to achieve with the generic server? In this context,
a “server” is a computational engine with access to persistent memory. Servers
typically run on a remote computer, and in the Erlang world the primary server
is backed-up by a secondary server that takes over if the primary should fail. For
uniformity with the proceeding example, we here present a simplified version of
the OTP server in Grace; in addition to Armstrong’s Erlang version, our code
is also based on Bierman, Parkinson, and Noble’s translation of the OTP server
to a Java-like language (2008). For brevity, and to focus attention on the use
of inheritance, our version omits name resolution, remote requests, concurrency
and failover.

To be concrete, let’s imagine two particular servers: a “name server” and a
“calculation server”. The name server remembers the locations of objects, with
interface:

type NameServer = {
add(name:String) place(p:Location) �> Done
whereIs(name:String) �> Location

}

The name of the first method in the above type is add()place(), a two-part name
with two parameters.

The calculation server acts like a one-function calculator with a memory;
clear clears the memory, and add adds its argument to the memory, and stores
the result in the memory as well as returning it. The calculation server has the
interface

type CalculationServer = {
clear �> Number
add(e:Number) �> Number

}

Both of these servers maintain state; we will see later why this is relevant.
Armstrong refers to the actual server code as “the callback”. His goal is to

write these callbacks in a simple sequential style, but with explicit state. The
generic server can then add properties such as transactions, failover and hot-
swapping. The simple sequential implementation of the name server is shown on
the following page.

The state of this “callback” is represented by a Dictionary object that stores
the name ! location mapping. The method initialState returns the initial state:
a new, empty, Dictionary. The method add()place()state() is used to implement
the client’s add()place() method. The generic server provides the additional state
argument, an object representing the callback’s state. The method returns a
Response (as in Section 2.5) comprising the newState dictionary, and the ac-
tual result of the operation, p. Similarly, the method whereIs()state() is used
to implement the client’s whereIs() method. The generic server again provides
the additional state argument. This method returns a Response comprising the
result of looking-up name in dict and the (unchanged) state.

Implemented with Explicit State

57

12 Black, Bruce, and Noble

module "nameServer"

import "response" as r
2

type Location = Unknown
4 type NameServer = {

add(name:String) place(p:Location) �> Done
6 whereIs(name:String) �> Location

}
8 type NsState = Dictionary<String, Location>

10 class callback {
method initialState �> NsState { dictionary.empty }

12 method add(name:String) place(p) state (dict:NsState) �> r.Response {
def newState = dict.copy

14 newState.at(name) put(p)
r.result(p) state(newState)

16 }
method whereIs(name:String) state(dict:NsState) �> r.Response {

18 def res = dict.at(name)
r.result(res) state(dict)

20 }
}

Finally, let’s consider what happens if this name server callback is asked for
the location of a name that is not in the dictionary. The lookup dict.at(name)
will raise an exception, which the callback itself does not handle.

Notice that our nameServer module contains a class callback whose instances
match the type

type Callback<S> = type {
initialState �> S

}

for appropriate values of S. This is true of all server callback modules. Particular
server callbacks extend this type with additional methods, all of which have a
name that ends with the word state, and which take an extra argument of type
S that represents their state.

3.2 The Basic Server

Our class server corresponds to Armstrong’s module server1. This is the “generic
server” into which is installed the “callback” that programs it to provide a par-
ticular function (like name lookup, or calculation).

A Request encapsulates the name of an operation and an argument list. The
basic server implements two methods: handle(), which processes a single incoming
request, and serverLoop(), which manages the request queue.

Implemented with Explicit State

58

12 Black, Bruce, and Noble

module "nameServer"

import "response" as r
2

type Location = Unknown
4 type NameServer = {

add(name:String) place(p:Location) �> Done
6 whereIs(name:String) �> Location

}
8 type NsState = Dictionary<String, Location>

10 class callback {
method initialState �> NsState { dictionary.empty }

12 method add(name:String) place(p) state (dict:NsState) �> r.Response {
def newState = dict.copy

14 newState.at(name) put(p)
r.result(p) state(newState)

16 }
method whereIs(name:String) state(dict:NsState) �> r.Response {

18 def res = dict.at(name)
r.result(res) state(dict)

20 }
}

Finally, let’s consider what happens if this name server callback is asked for
the location of a name that is not in the dictionary. The lookup dict.at(name)
will raise an exception, which the callback itself does not handle.

Notice that our nameServer module contains a class callback whose instances
match the type

type Callback<S> = type {
initialState �> S

}

for appropriate values of S. This is true of all server callback modules. Particular
server callbacks extend this type with additional methods, all of which have a
name that ends with the word state, and which take an extra argument of type
S that represents their state.

3.2 The Basic Server

Our class server corresponds to Armstrong’s module server1. This is the “generic
server” into which is installed the “callback” that programs it to provide a par-
ticular function (like name lookup, or calculation).

A Request encapsulates the name of an operation and an argument list. The
basic server implements two methods: handle(), which processes a single incoming
request, and serverLoop(), which manages the request queue.

Essence of Inheritance 7

We must also change the eval methods to raise exceptions at the appropriate
time. Since the evaluation of constants cannot raise an exception, the con class is
unchanged, so we say nothing, and use the inherited con. In contrast, evaluating
a div can raise an exception, so we have to provide a new eval method for div,
shown on lines 11–16. This code returns a value in the raise monad when the
divisor is zero.

If you are familiar with Wadler’s addition of error messages to his monadic
interpreter (Wadler, 1992, §2.3) this will look quite familiar. In fact, the devel-
opments are so similar that it is easy to overlook the differences:

1. At the end of his description of the changes necessary to introduce error
messages, Wadler writes: “To modify the interpreter, substitute monad E
for monad M, and replace each occurrence of unitE Wrong by a suitable call
to errorE. . . . No other changes are required.” Wadler is giving us editing
instructions! In contrast, the box above represents a file of real Grace code
that can be compiled and executed. It contains, if you will, not only the
new definitions for the eval method and the monad, but also the editing

instructions required to install them.
2. Not only does the boxed code represent a unit of compilation, it also repre-

sents a unit of understanding. We believe that it is easier to understand a
complex structure like a monad with exceptions by first understanding the
monad pure, and then understanding the exceptions. Perhaps Wadler agrees
with this, for he himself uses just this form of exposition in his paper. But,
lacking inheritance, he cannot capture this stepwise exposition in his code.

2.5 Variation Three: Propagating State

To illustrate the manipulation of state, Wadler keeps a count of the number of
reductions; we will count the number of divisions. Each computation is given an
input state in which to execute, and returns a potentially different output state;
the difference between the input and output states reflect the changes to the
state effected by the computation. Rather than representing hresult , statei pairs
with anonymous tuples, we will use Response objects with two methods, shown
below.

module "response"
type Response = type {

2 result �> Unknown
state �> Unknown

4 }
class result(r) state(s) �> Response {

6 method result { r }
method state { s }

8 method asString { "result({r}) state({s})" }
}

What changes must be made to monadicExpressions to support state? The key
difference between the stateMonad and the pure monad is in the >>= method.
We follow the conventional functional approach, with the contents of the monad

59

Basic Server

60

Adding Transactions

61

…and then Armstrong re-writes the whole server

Essence of Inheritance 15

module "transactionServer"
import "mirrors" as mirrors

2 import "basicServer" as basic

4 type Request = basic.Request

6 class server(callbackName:String) {
inherits basic.server(callbackName)

8 alias basicHandle = handle

10 method handle(request:Request) is override {
try {

12 basicHandle(request)
} catch { why �>

14 log "Error — server crashed with {why}"
"!CRASH!"

16 }
}

18 }

The handle method is overridden, but nothing else changes. It’s easy to see that
the extent of the change is the addition of the try()catch() clause to the handle
method.

If we now try and make bogus requests:
import "transactionServer" as transaction

class request(methodName)withArgs(args) {
method name { methodName }
method arguments { args }

}
def queue = [

request "add()place()" withArgs ["BuckinghamPalace", "London"],
request "add()place()" withArgs ["EiffelTower", "Paris"],
request "whereIs()" withArgs ["EiffelTower"],
request "boojum()" withArgs ["EiffelTower"],
request "whereIs()" withArgs ["BuckinghamPalace"]

]
print "starting transactionServer"
transaction.server("nameServer").serverLoop(queue)
print "done"

they will be safely ignored:

starting transactionServer
handle: add()place() args: [BuckinghamPalace, London]

result: London
handle: add()place() args: [EiffelTower, Paris]

result: Paris
handle: whereIs() args: [EiffelTower]

result: Paris
Error — server crashed with NoSuchMethod: no method boojum()state in mir-
ror for a callback
handle: boojum() args: [EiffelTower]

result: !CRASH!

Using inheritance, we need specify only the differences:

and so it goes on …

63

…and then Armstrong re-writes the whole server once again

16 Black, Bruce, and Noble

handle: whereIs() args: [BuckinghamPalace]
result: London

done

Armstrong emphasizes that the same server callback can be run under both
the basic server and the transaction sever. This is also true for the Grace version,
but that’s not what we wish to emphasize. Our point is that inheritance makes
it much easier to understand the critical differences between basicServer and
transactionServer than does rewriting the whole server, as Armstrong is forced
to do.

3.4 The Hot-Swap Server

Armstrong’s server3 adds “hot swapping” to his server1; once again he is forced
to rewrite the whole server from scratch, and the reader must compare the two
versions of the code, line by line, to find the differences. Our Grace version
instead adds hot swapping to the transactionServer, again using inheritance.

module "hotSwapServer"
import "mirrors" as mirrors

2 import "transactionServer" as base

4 type Request = base.Request

6 class server(callbackName:String) {
inherits base.server(callbackName)

8 alias baseHandle = handle

10 method handle(request:Request) is override {
if (request.name == "!HOTSWAP!") then {

12 def newCallback = request.arguments.first
startUp(newCallback)

14 "{newCallback} started."
} else {

16 baseHandle(request)
}

18 }
}

In hotSwapServer, class server overrides the handle method with a version that
checks for the special request !HOTSWAP!. Other requests are delegated to the
handle method inherited from transactionServer. Once again, it is clear that
nothing else changes.

Now we can try to change the name server into a calculation server:
import "hotSwapServer" as hotSwap

class request(methodName) withArgs(args) {
method name { methodName }
method arguments { args }

}
def queue = [

request "add()place()" withArgs ["EiffelTower", "Paris"],

Using inheritance, we override just one method:

Essence of Inheritance 13

module "basicServer"
import "mirrors" as m

2

type Request = type {
4 name �> String

arguments �> List<Unknown>
6 }

8 class server(callbackName:String) {
var callbackMirror

10 var state
startUp(callbackName)

12

method startUp(name) {
14 def callbackModule = m.loadDynamicModule(name)

def callbackObject = callbackModule.callback
16 callbackMirror := m.reflect(callbackObject)

state := callbackObject.initialState
18 }

method handle(request:Request) {
20 def cbMethodMirror = callbackMirror.getMethod(request.name ++ "state")

def arguments = request.arguments ++ [state]
22 def ans = cbMethodMirror.requestWithArgs(arguments)

state := ans.state
24 ans.result

}
26 method serverLoop(requestQ) {

requestQ.do { request �>
28 def res = handle(request)

log "handle: {request.name} args: {request.arguments}"
30 log " result: {res}"

}
32 }

method log(message) { print(message) }
34 }

A server implements three methods. Method startUp(name) loads the callback
module name and initializes the server’s state to that required by the newly-
loaded callback.

The method handle accepts an incoming request, such as "add()place()", and
appends the string "state", to obtain a method name like "add()place()state". It
then requests that the callback executes its method with this name, passing it
the arguments from the request and an additional state argument. Thus, a re-
quest like add "BuckinghamPalace" place "London" might be transmitted to the
nameServer as add "BuckinghamPalace" place "London" state (dictionary.empty).
The state component of the response would then be a dictionary containing
the mapping from "BuckinghamPalace" to "London"; this new dictionary would
provide the state argument for the next request.

The method serverLoop is a simplified version of Armstrong’s loop/3 that
omits the code necessary to receive messages and send back replies, and instead
uses a local queue of messages and Grace’s normal method-return mechanism.

Here is some code that exercises the basic server:

Essence of Inheritance 13

module "basicServer"
import "mirrors" as m

2

type Request = type {
4 name �> String

arguments �> List<Unknown>
6 }

8 class server(callbackName:String) {
var callbackMirror

10 var state
startUp(callbackName)

12

method startUp(name) {
14 def callbackModule = m.loadDynamicModule(name)

def callbackObject = callbackModule.callback
16 callbackMirror := m.reflect(callbackObject)

state := callbackObject.initialState
18 }

method handle(request:Request) {
20 def cbMethodMirror = callbackMirror.getMethod(request.name ++ "state")

def arguments = request.arguments ++ [state]
22 def ans = cbMethodMirror.requestWithArgs(arguments)

state := ans.state
24 ans.result

}
26 method serverLoop(requestQ) {

requestQ.do { request �>
28 def res = handle(request)

log "handle: {request.name} args: {request.arguments}"
30 log " result: {res}"

}
32 }

method log(message) { print(message) }
34 }

A server implements three methods. Method startUp(name) loads the callback
module name and initializes the server’s state to that required by the newly-
loaded callback.

The method handle accepts an incoming request, such as "add()place()", and
appends the string "state", to obtain a method name like "add()place()state". It
then requests that the callback executes its method with this name, passing it
the arguments from the request and an additional state argument. Thus, a re-
quest like add "BuckinghamPalace" place "London" might be transmitted to the
nameServer as add "BuckinghamPalace" place "London" state (dictionary.empty).
The state component of the response would then be a dictionary containing
the mapping from "BuckinghamPalace" to "London"; this new dictionary would
provide the state argument for the next request.

The method serverLoop is a simplified version of Armstrong’s loop/3 that
omits the code necessary to receive messages and send back replies, and instead
uses a local queue of messages and Grace’s normal method-return mechanism.

Here is some code that exercises the basic server:

Essence of Inheritance 15

module "transactionServer"
import "mirrors" as mirrors

2 import "basicServer" as basic

4 type Request = basic.Request

6 class server(callbackName:String) {
inherits basic.server(callbackName)

8 alias basicHandle = handle

10 method handle(request:Request) is override {
try {

12 basicHandle(request)
} catch { why �>

14 log "Error — server crashed with {why}"
"!CRASH!"

16 }
}

18 }

The handle method is overridden, but nothing else changes. It’s easy to see that
the extent of the change is the addition of the try()catch() clause to the handle
method.

If we now try and make bogus requests:
import "transactionServer" as transaction

class request(methodName)withArgs(args) {
method name { methodName }
method arguments { args }

}
def queue = [

request "add()place()" withArgs ["BuckinghamPalace", "London"],
request "add()place()" withArgs ["EiffelTower", "Paris"],
request "whereIs()" withArgs ["EiffelTower"],
request "boojum()" withArgs ["EiffelTower"],
request "whereIs()" withArgs ["BuckinghamPalace"]

]
print "starting transactionServer"
transaction.server("nameServer").serverLoop(queue)
print "done"

they will be safely ignored:

starting transactionServer
handle: add()place() args: [BuckinghamPalace, London]

result: London
handle: add()place() args: [EiffelTower, Paris]

result: Paris
handle: whereIs() args: [EiffelTower]

result: Paris
Error — server crashed with NoSuchMethod: no method boojum()state in mir-
ror for a callback
handle: boojum() args: [EiffelTower]

result: !CRASH!

16 Black, Bruce, and Noble

handle: whereIs() args: [BuckinghamPalace]
result: London

done

Armstrong emphasizes that the same server callback can be run under both
the basic server and the transaction sever. This is also true for the Grace version,
but that’s not what we wish to emphasize. Our point is that inheritance makes
it much easier to understand the critical differences between basicServer and
transactionServer than does rewriting the whole server, as Armstrong is forced
to do.

3.4 The Hot-Swap Server

Armstrong’s server3 adds “hot swapping” to his server1; once again he is forced
to rewrite the whole server from scratch, and the reader must compare the two
versions of the code, line by line, to find the differences. Our Grace version
instead adds hot swapping to the transactionServer, again using inheritance.

module "hotSwapServer"
import "mirrors" as mirrors

2 import "transactionServer" as base

4 type Request = base.Request

6 class server(callbackName:String) {
inherits base.server(callbackName)

8 alias baseHandle = handle

10 method handle(request:Request) is override {
if (request.name == "!HOTSWAP!") then {

12 def newCallback = request.arguments.first
startUp(newCallback)

14 "{newCallback} started."
} else {

16 baseHandle(request)
}

18 }
}

In hotSwapServer, class server overrides the handle method with a version that
checks for the special request !HOTSWAP!. Other requests are delegated to the
handle method inherited from transactionServer. Once again, it is clear that
nothing else changes.

Now we can try to change the name server into a calculation server:
import "hotSwapServer" as hotSwap

class request(methodName) withArgs(args) {
method name { methodName }
method arguments { args }

}
def queue = [

request "add()place()" withArgs ["EiffelTower", "Paris"],

Client code

67

14 Black, Bruce, and Noble

import "basicServer" as basic

class request(methodName)withArgs(args) {
method name { methodName }
method arguments { args }

}
def queue = [

request "add()place()" withArgs ["BuckinghamPalace", "London"],
request "add()place()" withArgs ["EiffelTower", "Paris"],
request "whereIs()" withArgs ["EiffelTower"]

]
print "starting basicServer"
basic.server("nameServer").serverLoop(queue)
print "done"

To keep this illustration as simple as possible, this code constructs the re-
quests explicitly; in a real remote server system, the requests would be con-
structed using reflection, or an RPC stub generator. This is why they appear as,
for example, request "add()place()" withArgs ["BuckinghamPalace", "London"],
instead of as add "BuckinghamPalace" place "London". Here is the log output:

starting basicServer
handle: add()place() args: [BuckinghamPalace, London]

result: London
handle: add()place() args: [EiffelTower, Paris]

result: Paris
handle: whereIs() args: [EiffelTower]

result: Paris
done

Note that if the server callback raises an exception, it will crash the whole server.

3.3 Adding Transactions

Armstrong’s server2 adds transaction semantics: if the requested operation raises
an exception, the server loop continues with the original value of the state. In
contrast, if the requested operation completes normally, the server continues
with the new value of the state.

Lacking inheritance, the only way that Armstrong can explain this to his
readers is to present the entire text of a new module, server2. The reader is
left to compare each function in server2 with the prior version in server1. The
start functions seem to be identical; the rpc functions are similar, except that
the receive clause in server2 has been extended to accommodate an additional
component in the reply messages. The function loop seems to be completely
different.

In the Grace version, the differences are much easier to find. In the trans-

actionServer module, the class server is derived from basicServer ’s server using
inheritance:

Client code

68

14 Black, Bruce, and Noble

import "basicServer" as basic

class request(methodName)withArgs(args) {
method name { methodName }
method arguments { args }

}
def queue = [

request "add()place()" withArgs ["BuckinghamPalace", "London"],
request "add()place()" withArgs ["EiffelTower", "Paris"],
request "whereIs()" withArgs ["EiffelTower"]

]
print "starting basicServer"
basic.server("nameServer").serverLoop(queue)
print "done"

To keep this illustration as simple as possible, this code constructs the re-
quests explicitly; in a real remote server system, the requests would be con-
structed using reflection, or an RPC stub generator. This is why they appear as,
for example, request "add()place()" withArgs ["BuckinghamPalace", "London"],
instead of as add "BuckinghamPalace" place "London". Here is the log output:

starting basicServer
handle: add()place() args: [BuckinghamPalace, London]

result: London
handle: add()place() args: [EiffelTower, Paris]

result: Paris
handle: whereIs() args: [EiffelTower]

result: Paris
done

Note that if the server callback raises an exception, it will crash the whole server.

3.3 Adding Transactions

Armstrong’s server2 adds transaction semantics: if the requested operation raises
an exception, the server loop continues with the original value of the state. In
contrast, if the requested operation completes normally, the server continues
with the new value of the state.

Lacking inheritance, the only way that Armstrong can explain this to his
readers is to present the entire text of a new module, server2. The reader is
left to compare each function in server2 with the prior version in server1. The
start functions seem to be identical; the rpc functions are similar, except that
the receive clause in server2 has been extended to accommodate an additional
component in the reply messages. The function loop seems to be completely
different.

In the Grace version, the differences are much easier to find. In the trans-

actionServer module, the class server is derived from basicServer ’s server using
inheritance:

14 Black, Bruce, and Noble

import "basicServer" as basic

class request(methodName)withArgs(args) {
method name { methodName }
method arguments { args }

}
def queue = [

request "add()place()" withArgs ["BuckinghamPalace", "London"],
request "add()place()" withArgs ["EiffelTower", "Paris"],
request "whereIs()" withArgs ["EiffelTower"]

]
print "starting basicServer"
basic.server("nameServer").serverLoop(queue)
print "done"

To keep this illustration as simple as possible, this code constructs the re-
quests explicitly; in a real remote server system, the requests would be con-
structed using reflection, or an RPC stub generator. This is why they appear as,
for example, request "add()place()" withArgs ["BuckinghamPalace", "London"],
instead of as add "BuckinghamPalace" place "London". Here is the log output:

starting basicServer
handle: add()place() args: [BuckinghamPalace, London]

result: London
handle: add()place() args: [EiffelTower, Paris]

result: Paris
handle: whereIs() args: [EiffelTower]

result: Paris
done

Note that if the server callback raises an exception, it will crash the whole server.

3.3 Adding Transactions

Armstrong’s server2 adds transaction semantics: if the requested operation raises
an exception, the server loop continues with the original value of the state. In
contrast, if the requested operation completes normally, the server continues
with the new value of the state.

Lacking inheritance, the only way that Armstrong can explain this to his
readers is to present the entire text of a new module, server2. The reader is
left to compare each function in server2 with the prior version in server1. The
start functions seem to be identical; the rpc functions are similar, except that
the receive clause in server2 has been extended to accommodate an additional
component in the reply messages. The function loop seems to be completely
different.

In the Grace version, the differences are much easier to find. In the trans-

actionServer module, the class server is derived from basicServer ’s server using
inheritance:

Client Code

69

16 Black, Bruce, and Noble

handle: whereIs() args: [BuckinghamPalace]
result: London

done

Armstrong emphasizes that the same server callback can be run under both
the basic server and the transaction sever. This is also true for the Grace version,
but that’s not what we wish to emphasize. Our point is that inheritance makes
it much easier to understand the critical differences between basicServer and
transactionServer than does rewriting the whole server, as Armstrong is forced
to do.

3.4 The Hot-Swap Server

Armstrong’s server3 adds “hot swapping” to his server1; once again he is forced
to rewrite the whole server from scratch, and the reader must compare the two
versions of the code, line by line, to find the differences. Our Grace version
instead adds hot swapping to the transactionServer, again using inheritance.

module "hotSwapServer"
import "mirrors" as mirrors

2 import "transactionServer" as base

4 type Request = base.Request

6 class server(callbackName:String) {
inherits base.server(callbackName)

8 alias baseHandle = handle

10 method handle(request:Request) is override {
if (request.name == "!HOTSWAP!") then {

12 def newCallback = request.arguments.first
startUp(newCallback)

14 "{newCallback} started."
} else {

16 baseHandle(request)
}

18 }
}

In hotSwapServer, class server overrides the handle method with a version that
checks for the special request !HOTSWAP!. Other requests are delegated to the
handle method inherited from transactionServer. Once again, it is clear that
nothing else changes.

Now we can try to change the name server into a calculation server:
import "hotSwapServer" as hotSwap

class request(methodName) withArgs(args) {
method name { methodName }
method arguments { args }

}
def queue = [

request "add()place()" withArgs ["EiffelTower", "Paris"],

Essence of Inheritance 17

request "whereIs()" withArgs ["EiffelTower"],
request "!HOTSWAP!" withArgs ["calculator"],
request "whereIs()" withArgs ["EiffelTower"],
request "add()" withArgs [3],
request "add()" withArgs [4]

]
print "starting hotSwapServer"
hotSwap.server("nameServer").serverLoop(queue)
print "done"

Here is the output:

starting hotSwapServer
handle: add()place() args: [EiffelTower, Paris]

result: Paris
handle: whereIs() args: [EiffelTower]

result: Paris
handle: !HOTSWAP! args: [calculator]

result: calculator started.
Error — server crashed with NoSuchMethod: no method whereIs()state in mir-
ror for a callback
handle: whereIs() args: [EiffelTower]

result: !CRASH!
handle: add() args: [3]

result: 3
handle: add() args: [4]

result: 7
done

3.5 Summary

In summary, we can say that what Armstrong found necessary to present as a
series of completely separate programs, can be conveniently expressed in Grace
as one program that uses inheritance. As a consequence, the final goal —a hot-
swappable server that supports transactions —cannot be found in a single, mono-
lithic piece of code, but instead is a composition of three modules. But far from
being a problem, this is an advantage. The presentation using inheritance lets
each feature be implemented, and understood, separately. Indeed, the structure
of the code mirrors quite closely the structure of Armstrong’s own exposition in
his book.

4 Discussion and Conclusion

We will be the first to admit that a few small examples prove nothing. Moreover,
we are aware that there are places where our argument needs improvement. Here
we comment on two of these.

Essence of Inheritance 17

request "whereIs()" withArgs ["EiffelTower"],
request "!HOTSWAP!" withArgs ["calculator"],
request "whereIs()" withArgs ["EiffelTower"],
request "add()" withArgs [3],
request "add()" withArgs [4]

]
print "starting hotSwapServer"
hotSwap.server("nameServer").serverLoop(queue)
print "done"

Here is the output:

starting hotSwapServer
handle: add()place() args: [EiffelTower, Paris]

result: Paris
handle: whereIs() args: [EiffelTower]

result: Paris
handle: !HOTSWAP! args: [calculator]

result: calculator started.
Error — server crashed with NoSuchMethod: no method whereIs()state in mir-
ror for a callback
handle: whereIs() args: [EiffelTower]

result: !CRASH!
handle: add() args: [3]

result: 3
handle: add() args: [4]

result: 7
done

3.5 Summary

In summary, we can say that what Armstrong found necessary to present as a
series of completely separate programs, can be conveniently expressed in Grace
as one program that uses inheritance. As a consequence, the final goal —a hot-
swappable server that supports transactions —cannot be found in a single, mono-
lithic piece of code, but instead is a composition of three modules. But far from
being a problem, this is an advantage. The presentation using inheritance lets
each feature be implemented, and understood, separately. Indeed, the structure
of the code mirrors quite closely the structure of Armstrong’s own exposition in
his book.

4 Discussion and Conclusion

We will be the first to admit that a few small examples prove nothing. Moreover,
we are aware that there are places where our argument needs improvement. Here
we comment on two of these.

Summary
• Armstrong wrote a series of separate

server modules, duplicating code
‣ Readers must diff to understand the changes

• Inheritance lets us write one basic server
‣ Each derived server becomes a module that

inherits from the basic server

‣ Changes are manifest as method overrides

• Each feature can be implemented, and
70

Our Thesis:

• The Essence of Inheritance is that it
lets us go from the concrete to the
abstract

• It does this using ex post facto
parameterization: taking a constant
and turning it into a parameter

71

Essence

“Essence is the property of a thing without
which it could not be what it is.”
Blackwell Dictionary of Western Philosophy

• Our claim: the essence of inheritance is its ability to
override a concrete entity, and thus effectively turn a
constant into a parameter

• No other construct in programmingdom does that

72

Why “Essence” ?
• Inheritance is often used in other

ways,
‣ e.g., to go from the abstract to the concrete

• But used in this way, we are explicit
about what the parameters are
‣ method-placeholders labelled abstract or

required

‣ no more than a clumsy parametrization
mechanism [Cook & Palsberg 1989]

73

Conclusion
The code that constitutes a program actually forms a higher-
level, program-specific language. … As such, a program is
both a language definition, and the only use of that
language. This specificity means that reading a never-before
encountered program involves learning a new natural
language

Baniassad and Myers [2009]  
An exploration of program as language

74

