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This talk

* Inheritance as an aid to human
understanding of programs

e Not about the formal properties of
inheritance.

* Not about types
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2 Black, Bruce, and Noble

Inheritance has been shunned by the designers of functional languages. Cer-
tainly, it is a difficult feature to specify precisely, and to implement efficiently,
because it means (at least in the most general formulations) that any apparent
constant might, once inherited, become a variable. But, as Einstein is reputed
to have said, in the middle of difficulty lies opportunity. The especial value of
inheritance is as an aid to program understanding. It is particularly valuable
where the best way to understand a complex program is to start with a simpler
one and approach the complex goal in small steps.

Our emphasis on the value of inheritance as an aid to human understanding,
rather than on its formal properties, is deliberate, and long overdue. Since the
pioneering work of Cook and Palsberg (1989), it has been clear that, formally, in-
heritance is equivalent to parameterization. This has, we believe, caused design-
ers of functional languages to regard inheritance as unimportant, unnecessary, or
even undesirable, arguing (correctly) that it can be simulated using higher-order
parameterization. This argument misses the point that two formally-equivalent
mechanisms may behave quite differently with respect to human cognition.

Portland State 4

UNIVERSITY



Inheritance =
Parametrization
of Generators

(OOPSLA 1989)
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Abstract

This paper presents & denotational model of inheritance.
The model is based on an intuitive motivation of the
purpose of inheritance. The correctness of the model is
demonstrated by proving it equivalent to an operational
semantics of inheritance based upon the method-lookup
algorithm of object-oriented languages. Although it was
originally developed to explain inheritance in object-
oriented languages, the model shows that inheritance is
a general mechanism that may be applied to any form
of recursive definition.

1 Introduction

Inheritance is one of the central concepts in object-
oriented pxogr.amming. Despite its importance, there
seems to be a lack of consensus ol the proper way to
describe inheritance. This is evident from the following
review of various formalizations of inheritance that have
been proposed.

The concept of prefizing in Simula (5], which evolved
into the modern concept of inheritance, was defined in
terms of textual concatenation of program blocks. How-
ever, this definition was informal, and only partially ac-
counted for more sophisticated aspects of prefixing like
the pseudo-variable this and virtual operations.

The most precise and widely used definition of inher-
itance is given by the operational semantics of object-
oriented languages. The canonical operational seman-
tics is the «“method lookup” algorithm of Smalltalk:

-
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When a message i sent, the methods in
the receiver’s class are searched for one with a
matching selector. If none is found, the meth-
ods in that class’s superclass are searched next.
The search continues up the superclass chain
until a matching method is found. ...

When a method contains a message whose
receiver is self, the search for the method for
that message begins in the instance’s class, Te-
gardless of which class contains the method
containing self. .-

When a message is sent to super, the search
for a method ... begins in the superclass of the
class containing the method. The use of super
allows a method to access methods defined in a
superclass even if the methods have been over-
ridden in the subclasses. [6, pp- 61-64]

Unfortunately, such operational definitions do not nec-
essarily foster intuitive understanding. As a result, in-
sight into the proper useé and purpose of inheritance is
often gained only through an «Aha? experience .
Cardelli [2) identifies inheritance with the subtype re-
lation on record types: «q yecord type 7 is a subtype
(written <) of a record type 7' i T has all the fields of T,
and possibly more, and the common fields of 7 and T’ are
in the < relation.” His work shows that 2 sound type-
checking algorithm exists for strongly-typed, statically-
scoped languages with inheritance, but it doesn’t give
their dynamic semantics. More recently, McAllister and
Zabih [9] suggested a system of “boolean classes” simi-
lar to inheritance as used in knowledge representation.
Stein [16] focused on shared attributes and methods.
Minsky and Rozenshtein {10 characterized inheritance
by “laws’ egulating message sending. Although they
express various aspects of inheritance, none of these pre-
sentations are convincing because they provide no ver-
ifiable evidence that the formal model corresponds to
the form of inheritance actually used in object~oriented
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Inheritance has been shunned by the designers of functional languages. Cer-
tainly, it is a difficult feature to specify precisely, and to implement efficiently,
because it means (at least in the most general formulations) that any apparent
constant might, once inherited, become a variable. But, as Einstein is reputed
to have said, in the middle of difficulty lies opportunity. The especial value of
inheritance is as an aid to program understanding. It is particularly valuable
where the best way to understand a complex program is to start with a simpler
one and approach the complex goal in small steps.

Our emphasis on the value of inheritance as an aid to human understanding,
rather than on its formal properties, is deliberate, and long overdue. Since the
pioneering work of Cook and Palsberg (1989), it has been clear that, formally, in-
heritance is equivalent to parameterization. This has, we believe, caused design-
ers of functional languages to regard inheritance as unimportant, unnecessary, or
even undesirable, arguing (correctly) that it can be simulated using higher-order
parameterization. This argument misses the point that two formally-equivalent
mechanisms may behave quite differently with respect to human cognition.
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Design Patterns

20 INTRODUCTION CHAPTER 1

That leads us to our second principle of object-oriented design:

Favor object composition over class inheritance.

Ideally, you shouldn’t have to create new components to achieve reuse. You should
be able to get all the functionality you need just by assembling existing components
through object composition. But this is rarely the case, because the set of available
components is never quite rich enough in practice. Reuse by inheritance makes it easier
to make new components that can be composed with old ones. Inheritance and object
composition thus work together.
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Problem:

e Explaining the value of inheritance

/7/:9/78/‘ order
> especially t9<functional programmers

Abstract: good
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In the beginning...

leynolds: The
Essence of Algol
(1981

Proceedings of the |
International Symposium
on Algorithmic Languages

values # meanings
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The Essence of Algol!

Syracuse University, yracuse, NY, U.S.A.

Abstract

Although Algol 60 has been uniquely influential in programming language design,
its descendants have been significantly different than their prototype. In this paper,
Wwe cnumerate the principles that we believe embody the essence of Algol, describe a
model that satisfies these principles, and illustrate this model with a language that
while more uniform and general, retains the character of Algol.

,

1. The Influence of Models of Algol

Among programming languages, Algol 60 [1] has been uniquely influential in the theory and
practice of language design. It has inspired a variety of models which have in turn inspired a
multitude of lauguages. Yet, almost without, exception, the character of these languages has
been quite different than that of Algol itsell. To some extent, the models failed to capture
the essence of Algol and gave rise to languages that reflected that failure.

One main line of development, centered around the work of P, J, Landin, who devised an
abstract language of applicative expressions [2] and showed that Algol could be translated
into this language [3. This work was in fAvenced by McCarthy’s Lisp [1] and probably by
unpublished ideas of (!, Strachey; in turn it led to more elaborate models such as those of the
Vienna group [5]. Later many of its basic ideas, often considerably transformed, reappeared
in the denotational semantics of Scott and Strachey [6].

In [2], after giving a functional description of applicative expressions, Landin presented
a state-transition machine, called the ¢ CD machine, for their evaluation. Then in [3]
he extended applicative expressions Lo “imperative applicative expressions” by introducing
ignment and a lahel-like mechanism called the J-operator. The imperative applicative
expressions were not described functionally, but by an extension of {he SECD machine
called the “sharing machine.” T later models, such as that of the Vienna group, sharing
was elucidated by introducing a siate cornponent usually called the “store” or “memory.”
_—

"Work supported by National Seience Foundation Grant MCS-8017577 and U .S, Arniy Coutract DAAKS(-
~0529. First appeared in J. W. do Bakker and J. C. van Vliet, editors, Algorithmic Languages, pages
345 372, Proceedings of the International Symposium on Algorithmic Languages, Amsterdam, October 1981.
North-Holland, Amsterdam. Reprinted in Algol-like Languages, ed. P. W. O’Hearn and R. D. Teunent, vol.
I, pp. 67 88, Birkhiuser, 1997,

ag




2. There are two fundamentally different kinds of type: data types, each of which denotes
a set of values appropriate for certain variables and expressions, and phrase types, each
of which denotes a set of meanings appropriate for certain identifiers and phrases.

This syntactic distinction reflects that fact that in Algol values (which can be assigned to
variables) are inherently different from meanings (which can be denoted by identifiers and
phrases, and passed as parameters). Thus Algol-like languages contradict the principle of
completeness [9].

Moreover, in Algol itself data types are limited to unstructured types such as integer or
Boolean, while structuring mechanisms such as procedures and arrays are only applicable
to phrase types.

Reynolds: The Essence of Algol
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This motivated ...

Wadler: The
Essence of
Functional
Programming

PoPL 1992

values =
computations

The essence of functional programming
(Invited talk)

Philip Wadler, University of Glasgow*

Abstract

This paper explores the use monads to structure fupc.-
tional programs. No prior knowledge of monads or
category theory is required.

Monads increase the ease with which Programs may
be modified. They can mimic the effect of impure
features such as exceptions, state, and continuations;
and also provide effects not easily achieved with such
features. The types of a Program reflect which effects
occur.

The first section is an extended example of the use
of monads. A simple interpreter is modified to support
various extra features: error messages, state, output,
and non-deterministic choice. The second section de-
scribes the relation between monads and continuation-
passing style. The third section sketches how monads
are used in a compiler for Haskell that is written in
Haskell.

1 Introduction

One factor that should influence my choice is the
ease with which a Program can be modified. Pure
languages ease change by making manifest the data
upon which each operation depends. But, sometimes,
a seemingly small change may require a program in a
pure language to be extensively restructured, when Ju-
dicious use of an impure feature may obtain the same

“Author’s address: Department of Computing Science, Uni.
vessity of Glasgow, Glasgow G12 8QQ, Scotland. E.mail;
wadler@des.glasgow.ac.uk.

Permission to €opy without fec afl or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, ang notice is given that copying is by
Permission of the Association for Computing Machinery. To copy other-
Wwise, or to republish, requires a fee and/or specific permission,
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effect by altering a mere handful of lines,
Say I write an interpreter in a pure functional lan-
guage.

restructuring would be needed.

To add an execution count to it, I need to mod-
ify the the result type to include such a count, and
modify each recursive call to pass around such counts
appropriately. Had I used an impure language with
a global variable that could be incremented, no such
testructuring would be needed.

To add an output instruction to it, I need to modify
the result type to include an output list, and to modify

ately. Had I used an impure language that performed
output as a side effect, no such restructuring would be
needed.

Or I could use a monad.

This paper shows how to use monads to structure an
interpreter so that the changes mentioned above are
simple to make. In each case, all that js required is to
redefine the monad and to make a few local changes,
This Pbrogramming style regains some of the flexibility
provided by various features of impure languages. It
also may apply when there is no corresponding impure
feature.

The technique applies not just to interpreters, but
to a wide range of functional programs. The GRASP
team at Glasgow is constructing a compiler for the
functional language Haskell, The compiler is itself
written in Haskell, and uges monads to good effect,
Though this Paper concentrates on the yge of monads

Programming with monads strongly reminiscent of
continuation»passing style (CPS), and this paper ex-
plores the relationship between the two. In a senge
they are equivalent: CPS arises as a special case of a
monad, and any monad may be embedded in CPS by
changing the answer type. But the monadic approach
provides additional insight and allows a finer degree
of control.
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The essence of functional programming
(Invited talk)

Philip Wadler, University of Glasgow*

Abstract

This paper explores the use monads to structure func-
tional programs. No prior knowledge of monads or
category theory is required.

Monads increage the ease with which programs may
be modified. They can mimic the effect of impure

and non-deterministjc choice. The second section de-
scribes the relation between monads and continuation-
passing style. The third section sketches how monads
are used in a compiler for Haskell that is written in
Haskell.
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Shall T be pure or impure?
Pure functional langnages, sucl

skell or Mi-
randa SUWCE 0L lazy evaluation and the gim-

plicity of equationa] reasoning. Impure functional Ian-
guages, such as Standard ML or Sehern. g oorat

effect by altering a mere handful of lines.

Say I write an Interpreter in a pure functional Jan-
guage,

To add error handling to it, I need to modify the re~
sult type to include error values, and at each recursive

restructuring would be needed.

To add an execution count to it, I need to mod-
ify the the result type to include such 5 count, and
modify each recursjve call to pass around such counts

a global variable that could be Incremented, no such
restructuring would be needed.

To add an output instruction to it, I need to modify
the result type to include an output list, and to modify
each recursive call to pass around this list appropri-
ately. Had I used an impure language that performed
output as a side effect, no such restructuring would be
needed.

Or I could use a monad.

This paper shows how to use monads to structure an
interpreter so that the changes mentioned above are
simple to make. In each case, all that is required is to
redefine the monad and to make a few Jocal changes.
This Programming style regains some of the flexibility
brovided he w..s o 2 o
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Abstract. Programming languages serve a dual purpose: to communi-
cate programs to computers, and to communicate programs to humans.
Indeed, it is this dual purpose that makes programming language de-
sign a constrained and challenging problem. Inheritance is an essential
aspect of that second purpose: it is a tool to improve communication.
Humans understand new concepts most readily by first looking at a num-
ber of concrete examples, and later abstracting over those examples. The
essence of inheritance is that it mirrors this process: it provides a formal
mechanism for moving from the concrete to the abstract.

Keywords: inheritance, object-oriented programming, programming lan-
guages abstraction, program understanding

1 Introduction

Shall I be abstract or concrete?

An abstract program is more general, and thus has greater potential to be
reused. However, a concrete prograin will usually solve the specific problem at
hand more simply.

One factor that should influence my choice is the ease with which a program
can be understood. Concrete programs ease understanding by making manifest
the action of their subcomponents. But, sometimes a seemingly small change
may require a concrete prograi to be extensively restructured, when judicious
use of abstraction would have allowed the same change to be made simply by
providing a different argument.

Or, 1 could use inheritance.

The essence of inheritance is that it lets us avoid the unsatisfying choice
between abstract and concrete. Inheritance lets us start by writing a concrete
program, and then later on abstracting over a concrete element. This abstraction
step is not performed by editing the concrete program to introduce a new pa-
rameter. That is what would be necessary without inheritance. To the contrary:
inheritance allows us to treat the concrete element as if it were a parameter,
without actually changing the code. We call this ex post facto parameterization;
we will illustrate the process with examples in Sections 2 and 3.
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Abstract. Programming languages serve a dual purpose: to communi-
cate programs to computers, and to communicate programs to humans.
Indeed, it is this dual purpose that makes programming language de-
sign a constrained and challenging problem. Inheritance is an essential
aspect of that second purpose: it is a tool to improve communication.
Humans understand new concepts most readily by first looking at a num-
ber of concrete examples, and later abstracting over those examples. The
essence of inheritance is that it mirrors this process: it provides a formal
mechanism for moving from the concrete to the abstract.

Keywords: inheritance, object-oriented programming, programming lan-
guages abstraction, prograr understanding

1 Introduction

Shall I be abstract or concrete”?

An abstract program is more general, and thus has greater potential to be
reused. However, a concrete program will usually solve the specific problem at
hand more simply.

One factor that should influence my choice is the ease with which a program
can be understood. Concrete programs €ase understanding by making manifest
the action of their subcomponents. But, sometimes a seemingly small change
may require a concrete program to be extensively restructured, when judicious
use of abstraction would have allowed the same change to be made simply by
providing a different argument.

Or, I could use inheritance.

The essence of inheritance is that it lets us avoid the unsatisfying choice
between abstract and concrete. Inheritance lets us start by writing a concrete
program, and then later on abstracting over a concrete element. This abstraction

. - 1 e e seam to Introduce a new pa-




Shall | be Abstract or Concrete?

* Abstract programs are more general,
more potential for reuse

e Concrete programs are simpler, solve
the problem at hand more directly

e |nheritance lets us avoid this
unsatisfying choice
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Inheritance isn’t about types

Inheritance Is Not Subtyping

Inheritance #
Subtyping

Thank you, Cook &
colleagues (1990

* I'm not going to
talk about types

« Examples will be

N 9'/%0&
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Hewlett-Packard Laboratories
P.O. Box 10490 Palo Alto CA 94303-0969

Abstract

In typed object-oriented languages the subtype relation
is typically based on the inheritance hierarchy. This ap-
proach, however, leads either to insecure type-systems
or to restrictions on inheritance that make it less flexible
than untyped Smalltalk inheritance. We present a new
typed model of inheritance that allows more of the flex-
ibility of Smalltalk inheritance within a statically-typed
system. Significant features of our analysis are the intro-
duction of polymorphism into the typing of inheritance
and the uniform application of inheritance to objects,
classes and types. The resulting notion of type inker-
itance allows us to show that the type of an inherited
object is an inherited type but not always a subtype.

1 Introduction

In strongly-typed object-oriented languages like Simula
{1], C++ [28], Trellis (25}, Eiffel [19], and Modula.3 91,
the inheritance hierarchy determines the conformance
(subtype) relation. In most such languages, inheritance
is restricted to satisfy the requirements of subtyping,
Eiffel, on the other hand, has a more expressive type
system that allows more of the flexibility of Smalltalk
inheritance [14], but suffers from type insecurities be-
cause its inheritance construct is not a sound basis for
a subtype relation [12].

In this paper we present a new typed model of inher-
itance that supports more of the flexibility of Smalltalk
inheritance while allowing static type-checking. The
typing is based on an extended polymorphic lambda-
calculus and a denotational model of inheritance. The
model contradicts the conventional wisdom that inher-
itance must always make subtypes. In other words,
we show that incremental change, by implementation
inheritance, can produce objects that are not subtype
compatible with the original objects. We introduce the
notion of type inheritance and show that an inherited
_—

Permission to copy without fee all or part of this material is granted
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wise, or to republish, requires a fee and/or specific permission,
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object has an inherited type. Type inheritance is the ba-
sis for a new form of polymorphism for object-oriented
programming.

Much of the work presented here s connected with the
use of self-reference, or recursion, in object-oriented lan-
guages [3, 4, 5]. Our model of inheritance is intimately
tied to recursion in that it is a mechanism for incre-
mental extension of recursive structures [11,13,22). In
object-oriented languages, recursion is used at three lev-
els: objects, classes, and types. We apply inheritance
uniformly to each of these forms of recursion while en-
suring that each form interacts properly with the others,
Since our terminology is based on this uniform develop-
ment, it is sometimes at odds with the numerous tech-
nical terms used in the object-oriented paradigm. Our
notion of object inheritance subsumes both delegation
and the traditional notion of class inheritance, while our
notion of class inheritance is related to Smalltalk meta-
classes.

Object inheritance is used to construct objects incre-
mentally. We show that when a recursive object defini-
tion is inherited to define a new object, a correspond-
ing change is often required in the type of the object.
To achieve this effect, polymorphism is introduced into
recursive object definitions by abstracting the type of
self. Inheritance is defined to specialize the inherited
definition to match the type of the new object being
defined. A form of polymorphism developed for this
purpose, called F-bounded polymorphism [3], is used to
characterize the extended types that may be created by
inheritors.

Class inheritance supports the incremental definition
of classes, which are parameterized object definitions.
A class is recursive if its instances use the class to cre-
ate new instances. When a class is inherited to define a
new class, the inherited creation operations are updated
to create instances of the newclass, Since class recur-
sion is also related to recursion in the object types, the
polymorphic typing of inheritance is extended to cover
class recursion. We also introduce a generalization of
class inheritance that allows modification of instantia-
tion parameters.

A final application of inheritance is to the definition
of recursive types. Type inheritance extends a recursive




Inheritance isn’t about
“accidental” reuse

 Highly unlikely that object that not
designed for reuse can be reused

> by inheritance

> or by any other mechanism!

e Can be refactored to facilitate reuse
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Three Examples

e |n the paper:

> Evaluating Expressions (Interpreter)

o with and without various monads

> The Erlang OTP Platform
e |n this talk:

> Mutable Queues

Portland State
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A Simple Mutable Queue

var numberQ := queue.empty
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A Simple Queue

module "queue"

// implements a queue using an array to store the elements

class empty {
/ answers a new empty queue. The contents are in
// elements[firstlx], elements[firstlx+1], ... elementsfendlr — 1]

def initialSize = 4

var elements := primitiveArray.new(initialSize)
var firstlx := 0

var endlx := 0

method size { endlx — firstlx }
method isEmpty { endlx == firstlx }
method capacity is confidential { elements.size }
method add(e) {
if (isFull) then { makeMoreRoom }
elements.at (endlx) put (e)
endlx := increment (endlIx)
self

method remove {

if (size == 0) then { NoSuchObject.raise "can't remove from an empty queue" }
def result = elements.at(firstlx)

firstlx := increment(firstlx)

result

method asString {
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}
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def result = elements.at(firstlx)
firstlx := increment(firstlx)
result

method asString {

var s := "'
usedIndicesDo { ix —>

s := "{s} {elements.at(ix)} <"
S

method asDebugString {
"q[{firstlx}..{endIx—1}]#{capacity} {size}:{asString}"

method makeMoreRoom is confidential {
def newElements = primitiveArray.new(capacity * 2)
usedIndicesDo { i —>
newElements.at(i) put (elements.at(i))
}

elements := newElements

method isFull is confidential { endlx == capacity }
method usedIndicesDo (action) is confidential {
var i := firstlx
repeat (size) times {
action.apply (i)
i := increment (i)

}

method increment(ix) is confidential { ix + 1 }

J
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making room when full

method makeMoreRoom is confidential {
def newElements = primitiveArray.new(capacity * 2)
usedIndicesDo { i —>
newElements.at(i) put (elements.at(i))
¥

elements := newElements

elements

elements

o
W |l«|W
gL Y N
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But ...

 This implementation wastes space at
the start of the internal array

e An obvious optimization is to “slide
down” the element when copying into
the new array

Portland State 28
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A Better Plan

elements 3 4

elements 3 4 5 6

method makeMoreRoom is confidential, override {
def newElements = primitiveArray.new(capacity * 2)
var j ;=0
usedIndicesDo { i —>
newElements.at(j) put (elements.at(i))
j := increment(j)

elements := newElements
firstlx := 0
endlx := j

Portland State 29
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How to install the better plan?

e How do we combine these code
fragments?

method makeMoreRoom is confidential, override {
def newElements = primitiveArray.new(capacity * 2)
var j ;=0
usedIndicesDo { i —>
newElements.at(j) put (elements.at(i))
j := increment(j)

elements := newElements
firstlx := 0
endlx := j

Portland State 30
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How to install the better plan?

module "queue+slide"

// implements a queue using an array to store the elements
import "queue" as originalQueue

class empty {
6 // Similar to originalQueue except that, when my contents are copied into a larger elements
// array, we slide them to the bottom, rather than coping them into their former locations.

inherit originalQueue.empty
10
method makeMoreRoom is confidential, override {

12 def newElements = primitiveArray.new(capacity * 2)
var j =0
14 usedindicesDo { i —>
newElements.at(j) put (elements.at(i))
16 j := increment(j)
}
18 elements := newElements
firstlx := 0
20 endlx := j

22}

Portland State 3|
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Module (file)

module "queue+slide"

// implements a queue using an array to store the elements
import "queue" as originalQueue

class empty {
// Similar to originalQueue except that, when my contents are copied into a larger elements
// array, we slide them to the bottom, rather than coping them into their former locations.

inherit originalQueue.empty

method makeMoreRoom is confidential, override {
def newElements = primitiveArray.new(capacity * 2)
var j :=0
usedIndicesDo { i —>
newElements.at(j) put (elements.at(i))
j := increment(j)
}
elements := newElements
firstlx := 0
endlx := j

Portland State 32
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What to notice:

e |Inheritance combines new code with
“editing instructions” that say where to

put it.

e The part being replaced was not
originally declared to be a parameter

> Inheritance is ex post facto parameterization

e |nheritance lets us focus on the changes
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Contrast with Wadler

2.3 Variation one:
Error messages

To add error messages to the interpreter, define the
following monad.

data E a = Suc a | Err String
unitE a = Suc a

errorE s = FErr s

(Suc a) ‘bindE‘ k = k a

(Exr s) ‘bindE‘ k = Err s

showE (Suc a) = '"Success: " ++ showval a
showE (Exrxr s) = ‘“Error: " ++ s

Each function in the interpreter either returns nor-
mally by yielding a value of the form Suc a, or
indicates an error by yielding a value of the form
Err s where s 1s an error message. If m :: E a and
k :: a > E bthenm ‘bindE‘ k acts as sfrict post-
fix application: if m succeeds then k is applied to the
successful result; if m fails then so does the application.
The show function displays either the successful result
or the error message.

To modify the interpreter, substitute monad E for
monad M, and replace each occurrence of unitE Wrong
by a suitable call to errorE. The only occurrences are
in lookup, add, and apply.

* |nheritance provides a packaging
mechanism for deltas

> Inheritance = code + editing instructions
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Both super- and subclass
are units of understanding

e How do you explain a complex artifact?

» You don’t: you start with a simple one, and
gradually add the complexities, one at a time

e This is what Wadler does in Essence of
Functional Programming

e This is what Armstrong does in Programming
Erlang

e This is what | do when | teach a class

... and it’s probably what you do too.

Portland State »
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Conseqguence

e You can’t see the whole object in one
place

e True!

> the behaviour of an object defined using
inheritance is distributed through the
iInheritance hierarchy

e This is a feature, not a problem
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Meanwhile, somewhere in Britain ...

Back to the Clueue
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Recycling Space
 Once we see the idea of sliding
elements to the bottom,

e We should ask: why allocate a larger
array at all?
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Recycling Space
 Once we see the idea of sliding
elements to the bottom,

e We should ask: why allocate a larger
array at all?

Portland State

IIIIIIIIII

39



Recycling Space

 Once we see the idea of sliding
elements to the bottom,

e We should ask: why allocate a larger

array at all?
0 e Can we add this
314|5(6 feature to the
S original queue using

Inheritance?

40
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module "queue+recycle"

// implements a queue using an array to store the elements
import "queue" as originalQueue

class empty {
// Similar to originalQueue except that, before allocating a larger elements array, we see
// if it is worthwhile to recycle the now—unused space at the bottom of the current array.

inherit originalQueue.empty
alias enlarge = makeMoreRoom

method makeMoreRoom is confidential, override {
def threshold = 2
if ((capacity — size) > threshold)
then { slideIlnPlace } else { enlarge }

}

method slideInPlace is confidential {
usedindicesDo { i —>
elements.at(i — firstlx) put (elements.at(i))
¥

endlx := endlx — firstlx
firstlx := 0

¥
¥
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Why Slide?

 The price of recycling space is seems to
be sliding.

e But it’'s not: we can treat elements as a
circular array
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module "queue+wrap"

// implements a queue using an array to store the elements
import "queue" as originalQueue

class empty {
// answers a new empty queue. The contents are in elements[firstlx[, elements[firstlx+1/, ...,
// elements[endlr — 1], but there is no assumption that endlr <= startlx. Instead, elements
// is treated as a circular array, and indexing is modulo its capacity. When "full”,
// endlr == startlt — 1 (mod capacity); this enables us to distinguish this case from "empty”,
// when endlx == startlx (mod capacity).

inherit originalQueue.empty
method size is override { (endIx — firstlx) % capacity }

method increment(ix) is override, confidential { (ix + 1) % capacity }
method isFull is override, confidential { endIx == ((firstlx — 1) % capacity) }

e Three method overrides implement the
change
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dialect "minitest"

// test four different implementations of a queue. They all support the same add
// and remove operations, but differ in the way that they allocate and reuse space.
// These differences are revealed by requesting asDebugString after the test sequence.
import "queue" as qOrig

import "queue-+tslide" as qSlide

import "queue+recycle" as qRecycle

import "queue+wrap" as qWrap

[qOrig, qSlide, qRecycle, qWrap].do { queue —>

testSuite {
def g = queue.empty
test "empty" by {
assert (q.size) shouldBe 0
assert (q.asString) shouldBe "H"

test "add 3" by {

q.add "first"

g.add "second".add "third"

assert (q.size) shouldBe 3

assert (q.asString) shouldBe "I- first <— second < third <"
¥
test "add and remove" by {

q.add "first"

g.add "second".add "third"

assert (g.remove) shouldBe "first"

~Accart (ﬂ rnmn\/n\ Cl‘\ﬁlll(’IRQ ”cnrr\nr~|"



[qOrig, gqSlide, qRecycle, gWrap].do { queue —>

testSuite {
def g = queue.empty
test "empty" by {
assert (q.size) shouldBe 0
assert (qg.asString) shouldBe ""
¥
test "add 3" by {
g.add "first"
g.add "second".add "third"
assert (q.size) shouldBe 3
assert (qg.asString) shouldBe "I~ first < second < third <"

test "add and remove" by {
q.add "first"
g.add "second".add "third"
assert (g.remove) shouldBe "first"
assert (g.remove) shouldBe "second"
assert (g.remove) shouldBe "third"
assert (q.size) shouldBe 0
assert {q.remove} shouldRaise (NoSuchObject)



Test output:

after +20, —18, +0, —0: q = q[18..19]#32 2:- 19 < 20 <+
) after +4, —3, +5, —5: q = q[8..8]#16 1:F 9 <
qOFrig  after +8, —6, +4, —5: q = q[11..11]#16 1:+ 12 «
after +7, —5, +4, —5: q = q[10..10]#16 1:F 11 <
7 run, O failed, O errors
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Test output:

after 120, —18, +-0, —0: q = q[18..19]#32 2:F 19 + 20 +—
) after +4, —3, +5, —5: q = q[8..8]#16 1:F 9 <
qOFrig  after +8, —6, +4, —5: q = q[11..11]#16 1:+ 12 «
after +7, —5, +4, —5: q = q[10..10]#16 1:F 11 <
7 run, O failed, O errors
after 420, —18, +0, —0: q = q[18..19]#32 2: 19 <+ 20 <
. after +4, —3, 45, —5: q = q[5..5]#8 1:- 9 <
qSIIde after +8, —6, +4, —5: q = q[5..5]#16 1:F 12 <
after +7, —5, +4, —5: q = q[5..5]#16 1:F 11 <
7 run, 0 failed, O errors
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qOrig

qSlide

qRecycle

Test output:

after +-20, —18, 40, —0: q = q[18..19]432 2:- 19 < 20 <+
after +4, —3, +5, —5: q = q[8..8]#16 1:F 9 <

after +8, —6, +4, —5: q = q[11..11]#16 1:F 12 <

after +7, —5, +4, —5: q = q[10..10]#16 1:F 11 <

7 run, O failed, O errors

after 420, —18, +0, —0: q = q[18..19]#32 2: 19 <+ 20 <
after +4, —3, 45, —5: q = q[5..5]#8 1:- 9 <

after +8, —6, +4, —5: q = q[5..5]#16 1:F 12 <+

after +7, —5, +4, —5: q = q[5..5]#16 1:F 11 <

7 run, 0 failed, O errors

after 420, —18, 40, —0: q = q[18..19]#32 2: 19 + 20 <
after +4, —3, 45, —5: q = q[5..5]#8 1:- 9 <+

after +8, —6, +4, —5: q = q[5..5]#8 1:F 12 +

after +7, —5, +4, —5: q = q[5..5]#8 1:F 11 <+

7 run, 0 failed, O errors
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qOrig

qSlide

qRecycle

qVVrap

Test output:

after +20, —18, +0, —0: q = q[18..19]#32 2:- 19 < 20 <+
after +4, —3, +5, —5: q = q[8..8]#16 1:F 9 <

after +8, —6, +4, —5: q = q[11..11]#16 1:F 12 <

after +7, —5, +4, —5: q = q[10..10]#16 1:F 11 <

7 run, O failed, O errors

after 420, —18, +0, —0: q = q[18..19]#32 2: 19 <+ 20 <
after +4, —3, 45, —5: q = q[5..5]#8 1:- 9 <

after +8, —6, +4, —5: q = q[5..5]#16 1:F 12 <+

after +7, —5, +4, —5: q = q[5..5]#16 1:F 11 <

7 run, 0 failed, O errors

after 420, —18, 40, —0: q = q[18..19]#32 2: 19 + 20 <
after +4, —3, 45, —5: q = q[5..5]#8 1:- 9 <+

after +8, —6, +4, —5: q = q[5..5]#8 1:F 12 +

after +7, —5, +4, —5: q = q[5..5]#8 1:F 11 <+

7 run, 0 failed, O errors

after +20, —18, +0, —0: q = q[18..19]#32 2:-- 19 <« 20 <+
after +4, —3, 45, —5: q = q[0..0]#8 1:- 9 <

after +8, —6, +4, —5: q = q[11..11]#16 1:+ 12 <

after +7, —5, +4, —5: q = q[2..2]#8 1:F 11 <+

7 run, O failed, O errors
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What about “Accidental Reuse”?

* |I’'m not claiming that inheritance
supports “accidental reuse”

e Usually, code must be refactored to
provide the hooks for an inheriting
object to override.
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My Changes

def initialSize = 4

var elements := primitiveArray.new(initialSize) def initialSize = 4
var firstIx := @ var elements := primitiveArray.new(initialSize)
var endIx := 0 var firstIx := 0
var endIx := 0
method size { endIx - firstIx }
method isEmpty { endIx == firstIx } method size { endIx - firstIx }
method capacity is confidential method capacity is confidential
{ elements.size } { elements.size }
method add(e) { method add(e) {
if (isFull) then { makeMoreRoom } if (endIx == elements.size) then
elements.at (endIx) put (e) { makeMoreRoom }
endIx := increment (endIx) elements.at(endIx) put (e)
self endIx := endIx + 1

} self

method remove { }
if (size == @) then { NoSuchObject.raise method remove {

"can't remove from an empty queue" } if (size == @) then { NoSuchObject.raise
def result = elements.at(firstIx) "can't remove from an empty queue" }
firstIx := increment(firstIx) def result = elements.at(firstIx)
result firstIx := firstIx + 1

} result

method asString { }
var s := "t" method asString {
usedIndicesDo { ix —> var s :=""

s := "{s} {elements.at(ix)} «" (firstIx..(endIx-1)).reversed.do { i —>
} s := "{s} » {elements.at(i)}"
s }
} S ++ u_lu
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Adds several helper methods

method makeMoreRoom is confidential { method makeMoreRoom is confidential {
def newElements = def newElements =

primitiveArray.new(capacity x 2) primitiveArray.new(capacity * 2)
usedIndicesDo { i —> (firstIx..(endIx-1)).do { i —>

newElements.at(i) put (elements.at(i)) newElements.at(i) put (elements.at(i))

} }
elements := newElements elements := newElements

} }

method isFull is confidential { endIx == capacity }

method usedIndicesDo (action) is confidential {
var i := firstIx

repeat (size) times {
action.apply (i)
i := increment (i)
}
}

method increment(ix) is confidential { ix + 1 }

These changes introduce intention-revealing method names.
They improve communication as well as enabling inheritance
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Armstrong’s Explanation
of Open Telecom Platform

OTP = framework for building scalable,

fault-tolerant distributed systems
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OTP stands for the Open Telecom Platform. The name is actually mis-
leading, because OTP is far more general than yvou might think. It's an
application operating system and a set of libraries and procedures used
for building large-scale, fault-tolerant, distributed applications. It was
developed at the Swedish telecom company Ericsson and is used within

Ericsson for building fault-telerant systems.’

=

-

Joe Armstrong

Portland State >4



Key idea: separate concerns

e OTP provides behaviors such as a
“generic server’

> generic server supports fault tolerance,
transactions, hot-swapping of code, ...

e Application programmer provides specific
functionality in a callback

> callback is simple, sequential code

Portland State >
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Example Callbacks

type NameServer = {
add(name:String) place(p:Location) —> Done
wherels(name:String) —> Location

}

type CalculationServer = {
clear —> Number
add(e:Number) —> Number

}
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Implemented with Explicit State

module "nameServer"

import "response" as r

type Location = Unknown

1| type NameServer = {

add(name:String) place(p:Location) —> Done
6 wherels(name:String) —> Location

}

s | type NsState = Dictionary<String, Location>

10 | class callback {

method initialState —> NsState { dictionary.empty }

12 method add(name:String) place(p) state (dict:NsState) —> r.Response {
def newState = dict.copy

14 newState.at(name) put(p)

r.result(p) state(newState)

16
method wherels(name:String) state(dict:NsState) —> r.Response {
18 def res = dict.at(name)

r.result(res) state(dict)

20
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12
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Implemented with Explicit State

module "nameServer" module "response"

type Response = type {
2 result —> Unknown
state —> Unknown

import "response" as r

type Location = Unknown

type NameServer = { 4
add(name:String) place(p:Location) —> Done | class result(r) state(s) —> Response {
wherels(name:String) —> Location 6 method result { r }

1 method state { s }

type NsState = Dictionary<String, Location> s method asString { "result({r}) state({s})" }

}
class callback {
method initialState —> NsState { dictionary.empty }
method add(name:String) place(p) state (dict:NsState) —> r.Response {
def newState = dict.copy
newState.at(name) put(p)
r.result(p) state(newState)

method wherels(name:String) state(dict:NsState) —> r.Response {
def res = dict.at(name)
r.result(res) state(dict)

}
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Th
1 ematic

ogrammers

Here is the plan of this chapter:
1. Write a small client-server program in Erlang.
2. Slowly generalize this program and add a number of features.

3. Move to the real code.

16.1 The Road to the Generic Server

This is the most important section in the entire book, so read. it once, read
it twice, read it 100 times—just make sure the message sinks in.

We're going to write four little servers called serverl, server2..., each
slightly different from the last. The goal is to totally separate the non-
functional parts of the problem from the functional parts of the prob-
lem. That last sentence probably didn’t mean much to you now, but
don’t worry—it soon will. Take a deep breath....

Joe Armstrong
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Basic Server

Server 1: The Basic Server

Here’s our first attempt. It’s a little server that we can parameterize with
a callback module:

60
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Adding Transactions

Server 2: A Server with Transactions

Here’s a server that crashes the client if the query in the server results
in an exception:

-module(server?).
-export([start/2, rpc/2]).

L —————

This one gives you “transaction semantics” in the server—it loops with
the original value of State if an exception was raised in the handler
function. But if the handler function succeeded, then it loops with the
value of NewState provided by the handler function.

...and then Armstrong re-writes the whole server
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Using inheritance, we need specify only the differences:

module "transactionServer"

import "mirrors" as mirrors
2 | import "basicServer" as basic

4| type Request = basic.Request

¢ | class server(callbackName:String) {
inherits basic.server(callbackName)

8 alias basicHandle = handle
10 method handle(request:Request) is override {
try {
12 basicHandle(request)
} catch { why —>
14 log "Error — server crashed with {why}"
"ICRASH!"

16 1
18 }




and so it goes on ...

Now we'll add hot code swapping:

~module(serveri),
~export({start/2, rnc/2, swap_code/21).

start{Name, Mod) -»
register(Mame,
spawn{fun(h -> Toop(Mame,Mod ,Mod:init ()3 end) .,

...and then Armstrong re-writes the whole server once again
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Using inheritance, we override just one method:

module "hotSwapServer"

import "mirrors" as mirrors
import "transactionServer" as base

type Request = base.Request

class server(callbackName:String) {
inherits base.server(callbackName)
alias baseHandle = handle

method handle(request:Request) is override {

if ( request.name == "IHOTSWAP!" ) then {
def newCallback = request.arguments.first
startUp(newCallback)
"{newCallback} started."

} else {
baseHandle(request)

}

¥
¥
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module "basicServer"

import "mirrors" as m

type Request = type {

}

name —> String
arguments —> List<Unknown>

class server(callbackName:String) {

var callbackMirror
var state
startUp(callbackName)

method startUp(name) {
def callbackModule = m.loadDynamicModule(name)
def callbackObject = callbackModule.callback
callbackMirror := m.reflect(callbackObject)
state := callbackObject.initialState

method handle(request:Request) {
def cbMethodMirror = callbackMirror.getMethod(request.name ++ "state")
def arguments = request.arguments ++ [state]
def ans = cbMethodMirror.requestWithArgs(arguments)
state := ans.state
ans.result

method serverLoop(requestQ) {
requestQ.do { request —>
def res = handle(request)
log "handle: {request.name} args: {request.arguments}"
log " result: {res}"

method log(message) { print(message) }
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module "basicServer"

import "mirrors" as m

type Request = type {
name —> String
arciiments —> | ist< lInknown™>

1 module "transactionServer"

class| Import "mirrors" as mirrors
g4 IMpo module "hotSwapServer"
;,f import "mirrors" as mirrors
typg import "transactionServer" as base
m
g clas.,i type Request = base.Request
in
8 6 | class server(callbackName:String) {
inherits base.server(callbackName)
1:5'] £y alias baseHandle = handle
12 10 method handle(request:Request) is override {
if ( request.name == "IHOTSWAP!" ) then {
14 12 def newCallback = request.arguments.first
startUp(newCallback)
3 14 "{newCallback} started."
m ) 1 else {
5|} 6 baseHandle(request)
}

method log(message) { print(message) }

}




Client code

import "basicServer" as basic

class request(methodName)withArgs(args) {
method name { methodName }
method arguments { args }
}
def queue = |
request "add()place()" withArgs ["BuckinghamPalace", "London"],
request "add()place()" withArgs ["EiffelTower", "Paris"],
request "wherels()" withArgs ["Eiffel Tower"]
|
print "starting basicServer"
basic.server("nameServer").serverLoop(queue)
print "done"
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Client code

import "basicServer" as basic

class request(methodName)withArgs(args) {
method name { methodName }
method arguments { args }

¥

def queue = |

request "add()place()" withArgs ["BuckinghamPalace", "London"],

request "add()place()" withArgs ["EiffelTower", "Paris"],
request "wherels()" withArgs ["Eiffel Tower"]

print "starting basicServer"
basic.server(""nameServer").serverLoop(queue)
print "done"

starting basicServer

handle: add()place() args: [BuckinghamPalace, London]
result: London

handle: add()place() args: [FiffelTower, Paris/
result: Paris

handle: wherels() args: [Eiffel Tower]|
result: Paris

done
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Client Code

import "hotSwapServer" as hotSwap

class request(methodName) withArgs(args) {
method name { methodName }
method arguments { args }

}

def queue = |

request "add()place()" withArgs ["Eiffel Tower",

request "wherels()" withArgs ["EiffelTower"],

request "IHOTSWAP!" withArgs ["calculator"],

request "wherels()" withArgs ["Eiffel Tower"],
request "add()" withArgs [3],
request "add()" withArgs [4]
]
print "starting hotSwapServer"
hotSwap.server("nameServer").serverLoop(queue)
print "done"
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"Paris"],

starting hotSwapServer
handle: add()place() args: [EiffelTower, Paris/
result: Paris
handle: wherels() args: [Eiffel Tower]
result: Paris
handle: THOTSWAP! args: [calculator]
result: calculator started.
Error — server crashed with NoSuchMethod: no
ror for a callback
handle: wherels() args: [Fiffel Tower]
result: /CRASH!
handle: add() args: [3]
result: 3
handle: add() args: [4]
result: 7
done
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Summary

 Armstrong wrote a series of separate
server modules, duplicating code

> Readers must diff to understand the changes

e |nheritance lets us write one basic server

> Each derived server becomes a module that
Inherits from the basic server

> Changes are manifest as method overrides

e Each feature can be implemented, and

Portland State 70

IIIIIIIIII



Our Thesis:

e The Essence of Inheritance is that it
lets us go from the concrete to the
abstract

e |t does this using ex post facto
parameterization: taking a constant
and turning it into a parameter
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Essence

“Essence is the property of a thing without
which it could not be what it is.”

Blackwell Dictionary of Western Philosophy

* Qur claim: the essence of inheritance is its ability to
override a concrete entity, and thus effectively turn a
constant into a parameter

* No other construct in programmingdom does that
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Why “Essence” ?

 |nheritance is often used in other
ways,

> e.g., 1o go from the abstract to the concrete
e But used in this way, we are explicit
about what the parameters are

> method-placeholders labelled abstract or
required

> N0 more than a clumsy parametrization
mechanism [Cook & Palsberg 1989]
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Conclusion

The code that constitutes a program actually forms a higher-
level, program-specific language. ... As such, a program is
both a language definition, and the only use of that
language. This specificity means that reading a never-before
encountered program involves learning a new natural

language

Baniassad and Myers [2009]
An exploration of program as language
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