
 

Traits: Composable Units of Behavior

 

Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz
and Andrew Black

 

Department of Computer Science and Engineering
OGI School of Science & Engineering
Oregon Health & Science University

20000 NW Walker Road
Beaverton, OR 97006-8921 USA

 

Technical Report Number CSE 02-012

25

 

th

 

 November 2002

A version of this paper has been submitted to the 2003

European Conference on Object-Oriented Programming (ECOOP). 

If accepted, the paper will appear in the proceedings of ECOOP 2003,

and subsequent bibliographic citations should

refer to the conference proceeding 



Traits: Composable Units of Behaviour?

Nathanael Scḧarli, St́ephane Ducasse, Oscar Nierstrasz, and Andrew Black

Software Composition Group, University of Bern, Switzerland
OGI School of Science & Engineering, Oregon Health and Science University

{schaerli, ducasse, oscar }@iam.unibe.ch, black@cse.ogi.edu

Abstract. Inheritance is the fundamental reuse mechanism in object-oriented
programming languages; its most prominent variants are single inheritance, mul-
tiple inheritance, and mixin inheritance. In the first part of this paper, we identify
and illustrate the conceptual and practical reusability problems that arise with
these forms of inheritance. We then present a simple compositional model for
structuring object-oriented programs, which we calltraits. Traits are essentially
groups of methods that serve as building blocks for classes and are primitive units
of code reuse. In this model, classes arecomposedfrom a set of traits by speci-
fying glue codethat connects the traits together and accesses the necessary state.
We demonstrate how traits overcome the problems arising with the different vari-
ants of inheritance, we discuss how traits can be implemented effectively, and we
summarize our experience applying traits to refactor an existing class hierarchy.
Keywords: Inheritance, Mixins, Multiple Inheritance, Traits, Reuse, Smalltalk

1 Introduction

Although single inheritance is widely accepted as thesine qua nonof object-orientation,
programmers have long realized that single inheritance is not expressive enough to fac-
tor out common features (i.e., instance variables and methods) shared by classes in a
complex hierarchy. As a consequence, language designers have proposed various forms
of multiple inheritance [Mey88][Kee89][Str86], as well as other mechanisms, such as
mixins [Moo86][BC90][FKF98], that allow classes to be composed incrementally from
sets of features.

Despite the passage of nearly twenty years, neither multiple inheritance nor mixins
have achieved wide acceptance [Tai96]. Summarizing Alan Snyder’s contribution to the
inheritance panel discussion at OOPSLA ’87, Steve Cook wrote:

“Multiple inheritance is good, but there is no good way to do it.” [Coo87]

The trend seems to be away from multiple inheritance; the designers of recent languages
such as Java and of C# decided that the complexities introduced by multiple inheritance
outweighed its utility. It is widely accepted that multiple inheritance creates some se-
rious implementation problems [DMVS89][SG99]; we believe that it also introduces
seriousconceptualproblems. Our study of these problems has led us to the present
design for traits.

? This research was partially supported by the National Science Foundation under award CCR-
0098323.



2 Nathanael Scḧarli, St́ephane Ducasse, Oscar Nierstrasz, and Andrew Black

Although multiple inheritance makes it possible to reuse any desired set of classes,
a class is frequently not an appropriate element to reuse. This is because classes play
two contradictory roles. A class has a primary role as agenerator of instances: it must
therefore be complete. But as aunit of reuse, a class should be small. These proper-
ties often conflict. Furthermore, the role of classes as instance generators requires that
each class have a unique place in the class hierarchy, whereas units of reuse should be
applicable at arbitrary places.

Moon’s Flavors [Moo86] were an early attempt to address this problem: Flavors
are small, not necessarily complete, and they can be “mixed in” at arbitrary places in
the class hierarchy. More sophisticated notions of mixins were subsequently developed
by Bracha and Cook [BC90], and Flatt, Krishnamurthi and Felleisen [FKF98]. These
approaches all permit the programmer to create components that are designed for reuse,
rather than for instantiation.

Mixins use the ordinary single inheritance operator to extend various base classes
with the same set of features. However, although this inheritance operator is well-suited
for deriving new classes from existing ones, it is not appropriate for composing reusable
building blocks. Specifically, mixins must be composed linearly using inheritance; this
severely restricts our ability to specify the glue code that is necessary to adapt the mixins
so that they fit together.

In our proposal, lightweight entities calledtraits serve as the primitive units of code
reuse. The design oftraits started from the observation that the conflict between the
goals of reuse and understandability is more apparent than real. In general, we believe
that understanding a program is easier if it is possible to view the program in multiple
forms. Even though a class may have beenconstructedby composing small traits in
a complex hierarchy, there is no need to require that it beviewedin the same way. It
should be possible to view the classeitheras a flat collection of methodsor as a com-
posite entity built from traits. The flattened view promotes understanding; the hierarchic
view promotes reuse. There is no conflict so long as both of these views can coexist,
which requires that the hierarchy is used only as a structuring tool and hasno effect on
the meaning of the class.

Traits satisfy this requirement. They provide structure, modularity and reusability
within classes, but they can be ignored when one looks at the way that classes relate to
each other. Traits provide an excellent balance between reusability and understandabil-
ity, while enabling better conceptual modelling. Moreover, because traits are concerned
solely with the reuse of behaviour, and not with the reuse of state, they avoid all of
the implementation difficulties that characterize multiple inheritance and mixins. Traits
have the following properties.

– A trait providesa set of methods that implement behaviour.
– A trait requiresa set of methods that parameterize the provided behaviour.
– Traits do not specify any state variables, and the methods provided by traits never

directly access state variables.
– Traits can be composed: trait composition is symmetric and conflicting methods

areexcludedfrom the composition.
– Traits can be nested, but the nesting has no semantics for classes—nested traits are

equivalent toflattenedtraits.



Traits: Composable Units of Behaviour 3

A class can be constructed from a set of traits by inheriting from a superclass, and
providing the necessary state variables and the required methods. These methods rep-
resentglue that specifies how the traits are connected together and how conflicts are
resolved. This approach allows a class to be decomposed into a set of coherent features,
and factors out the glue code that connects the features together. Because the semantics
of a method is independent of whether it is defined in a trait or in a class that uses the
trait, it is always possible toflattena nested trait structure at any level.

The contributions of this paper are the precise identification of the reusability and
understandability problems associated with multiple inheritance and mixins, and the
presentation of traits as a composition model that solves these problems. We proceed as
follows: in Section 2 we describe the problems of multiple inheritance and mixins, and
in Section 3 we present traits and illustrate their use on some small examples. In Section
4 we summarize a formal model for traits. In Section 5, we discuss the most important
design decisions and evaluate traits against the problems we identified in Section 2.
In Section 6, we present our implementation of traits. In Section 7, we summarize the
results of a realistic application of traits: a refactoring of the Smalltalk-80 collection
hierarchy. We discuss related work in Section 8. We conclude the paper and indicate
future work in Section 9.

2 Reusability Problems with Inheritance

Inheritance is commonly regarded as one of the fundamental features of object-oriented
programming, but at the same time, inheritance is also a mechanism with many com-
peting and often contradictory meanings and interpretations [Tai96]. Over the years,
researchers have developed various inheritance models including single inheritance,
multiple inheritance, and mixin inheritance. We give a brief overview of these models
and point out their conceptual and practical problems regarding reusability. In partic-
ular we describe specific problems of mixin composition that have not been identified
previously in the literature.

Note that this section is focused on reusability issues. Other problems with inheri-
tance such as implementation difficulties [DMVS89][SG99] and conflicts between in-
heritance and subtyping [Ame90][MMMP90][LP91] are outside the scope of this paper.

Single Inheritance. Single inheritance is the simplest inheritance model; it allows a
class to inherit from (at most) one superclass. Although this model is well-accepted, it
is not expressive enough to allow the programmer to factor out all the common features
shared by classes in a complex hierarchy. Hence single inheritance sometimes forces
code duplication. Note that extension of single inheritance with interfaces as promoted
by Java addresses the issues of subtyping and conceptual modeling, but does not provide
any help with the problem of code duplication.

Multiple Inheritance. Multiple inheritance enables a class to inherit features from
more than one parent class, thus providing the benefits of better code reuse and more



4 Nathanael Scḧarli, St́ephane Ducasse, Oscar Nierstrasz, and Andrew Black

flexible modeling. However, multiple inheritance uses the notion of class in two con-
tradictory roles, namely as the generator of instances and as the smallest unit of code
reuse. This causes the following problems and limitations.

Conflicting features. One of the problems with multiple inheritance is the ambiguity
that arises when conflicting features are inherited along different paths [DT01]. A
particularly problematic situation is the “diamond problem” [BC90] (also known
as “fork-join inheritance” [Sak89]) that occurs when a class inherits from thesame
base class via multiple paths. Since classes are instance generators, they need to
provide some minimal behaviour (e.g., methods=, hash , andasString ), which
is typically enforced by making them inherit from a common root class (e.g., Ob-
ject). However, this is precisely what causes the conflicts when several of these
classes are reused.
Conflicting features manifest themselves asconflicting methodsand conflicting
state variables. Whereas method conflicts can be resolved relatively easily (e.g.,
by overriding), conflicting state is more problematic. Even if the declarations are
consistent, it is not clear whether conflicting state should be inherited once or mul-
tiply [Mey88][Sak92].

Fig. 1. In (a), the synchronization code is directly implemented in the subclassSyncA . In (b)
we show an attempt to reuse the synchronization code for bothSyncA and SyncB . This is
impossible, because the methods inSyncReadWrite cannot refer to theread andwrite
methods defined inA andB.

Accessing overridden features.Since identically named features can be inherited from
different base classes, a single keyword (e.g., super ) is not enough to access
inherited methods unambiguously. For example, C++ [Str86] forces one to explic-
itly name the superclass to access an overridden method; recent versions of Eiffel
[Mey97] suggest the same technique1. This leads to tangled class references in
the source code and makes the code vulnerable to changes in the architecture of
the class hierarchy. Explicit superclass references are avoided in languages such

1 The ability to access an overridden method using the keywordPrecursor followed by an
optional superclass name was added to Eiffel in 1997 [Mey97]. In earlier versions of Eiffel,
access to original methods required repeated inheritance of the same class [Mey92]



Traits: Composable Units of Behaviour 5

as CLOS [Ste90] that impose a linear order on the superclasses. However, such a
linearization often leads to unexpected behaviour [DH87][DHHM92] and violates
encapsulation, because it may change the parent-child relationships among classes
in the inheritance hierarchy [Sny86][Sny87].

Limited compositional power. Multiple inheritance allows a class to reuse features
from multiple base classes. But unlike mixin inheritance, it does not allow one
to write a reusable entity that both uses and exports adapted forms of methods
implemented in unrelated classes2.
This limitation is illustrated in Figure 1. Assume that classA contains methods
read andwrite that provide unsynchronized access to some data. If it becomes
necessary to synchronize access, we can create a classSyncA that inherits fromA
and overrides the methodsread andwrite so that they call the inherited imple-
mentation under control of a lock (see Figure 1a).
Now suppose that classA is part of a framework that also contains another class
B with read andwrite methods, and that we want to use the same technique
to create a synchronized version ofB. Naturally, we would like to factor out the
synchronization code so that it can be reused in bothSyncA andSyncB .
With multiple inheritance, the only way of sharing code among different classes is
to inherit from a common superclass. This means that we have to move the syn-
chronization code into a classSyncReadWrite that will become the superclass
of bothSyncA andSyncB (see Figure 1b). But a superclass cannotexplicitly refer
to a method likeread that a possible subclass inherits from another superclass. It
is possible toimplicitly access such a method, by calling an abstract method on self
that will eventually be implemented by the subclass. However, the whole point of
this example is that unsynchronized readsare notandshould notbe available in
SyncA ! Thus, the classSyncReadWrite cannot access theread andwrite
method provided byA andB, and it is not possible to factor out all the necessary
synchronization code intoSyncReadWrite .

Mixin Inheritance. A mixin is an abstract subclass specification that may be applied
to various parent classes to extend them with the same set of features. Mixins allow the
programmer to achieve better code reuse than single inheritance while maintaining the
simplicity of the inheritance operation. However, although inheritance works well for
extending a class with a single orthogonal mixin, it does not work so well for compos-
ing a class from many mixins. The problem is that usually the mixins do notquite fit
together,i.e., their features may conflict, and that inheritance is not expressive enough
to resolve such conflicts. This problem manifests itself in various guises.

Total ordering. Mixin composition is linear: all the mixins used by a class must be in-
herited one at a time. Mixins appearing later in the order overrideall the identically
named features of earlier mixins. Where conflicts should be resolved by selecting
features from different mixins, a suitable total order may not exist.

2 In C++ and Eiffel, parameterized structures such as templates [Str94] and generic classes
[Mey92] compensate for this limitation.



6 Nathanael Scḧarli, St́ephane Ducasse, Oscar Nierstrasz, and Andrew Black

Fig. 2.The code that interconnects the mixins is specified in the mixinMBorder . The composite
entity MyRectangle cannot access the implementations ofasString in the mixinMColor
and the classRectangle . The classes containing+ in their names are intermediate classes
generated by mixin application.

Dispersal of glue code.With mixins, the composite entity is not in full control of the
way that the mixins are composed: the conflict resolution code must be hardwired
in the intermediate classes that are created as the mixins are used, one at a time.
Obtaining the desired combination of features may require modifying the mixins,
introducing new mixins, or, sometimes, using the same mixin twice.
As an example, consider the situation shown in Figure 2, where a classMyRectan-
gle uses two mixinsMColor and MBorder that both provide a methodas-
String . The implementations of these methods in the mixins first call the original
implementation via the keywordsuper and then extend the resulting string with
specific information about their own state. When we compose the two mixins to
make the classMyRectangle , we can choose which of them should come first,
but we cannot specify how the two implementations should be composed. This is
because the mixins must be added one at a time: inRectangle + MColor +
MBorder we can access the behaviour ofMBorder and themixedbehaviour of
Rectangle + MColor , but not the original behaviour ofMColor andRectan-
gle .

Fragile hierarchies. Because of the strict linearity and the limited expressiveness re-
garding conflict resolution, composing multiple mixins results in inheritance chains
that are fragile with respect to change. Adding a new method to one of the mixins
may silently override an identically named method of a mixin that appears earlier
in the chain. It may furthermore be impossible to reestablish the original behaviour
of the composite without having to add or change several mixins in the inheritance
chain. This is especially critical if one modifies a mixin that is used in many places
across the class hierarchy.
As an illustration, suppose that in the previous example the mixinMBorder does
not initially define a methodasString . This means that the implementation of



Traits: Composable Units of Behaviour 7

asString in MyRectangle is the one specified byMColor . At a later point,
suppose that the methodasString is added to the mixinMBorder . Because of
the total order, this implicitly overrides the implementation provided byMColor .
Worse, the original behaviour of the composite classMyRectangle cannot be
reestablished without changing more of the involved mixins.

3 Traits

We propose a compositional model as a solution to the problems illustrated in the pre-
vious section. Our model is based on lightweight entities calledtraits, which serve as
the basic building blocks for classes and the primitive units of code reuse. Thus, traits
satisfy the needs for structure, modularization and reusabilitywithin classes.

Traits, and all the examples given in this paper, are implemented in the Squeak
dialect of Smalltalk-80 [IKM+97], but we believe that traits could also be applied to
other single inheritance languages such as Java.

In this section we present the details of traits by using a running example. We show
how classes are composed from traits, how traits are composed from other traits, and
how naming conflicts are resolved.

3.1 Running Example and Notational Conventions

Suppose that we want to represent graphical objects such as circles or squares that can
be drawn on a canvas. We will use traits to structure the classes and factor out the
reusable behaviour. We focus on the representation of circles, but the same techniques
can be applied to the other classes.

In the examples, trait names start with the letter T, and class names do not. We itali-
cize required methods and embolden glue methods. Because the traits are implemented
in Squeak, we present the code in Smalltalk. The notationClassName>>method-
Nameindicates that the methodmethodName is defined in the classClassName .

3.2 Specifying Traits

A trait contains a set of methods that implement the behaviour that itprovides. In gen-
eral, a trait mayrequire a set of methods that parameterize the provided behaviour.
Traits cannot specify any state, and never access state directly. Trait methods can ac-
cess state indirectly, using required methods that are ultimately satisfied by accessors
(getter and setter methods).

The purpose of traits is to decompose classes into reusable building blocks by pro-
viding first-class representations for the different aspects of the behaviour of a class.
Note that we use the term “aspect” to denote an independent, but not necessarily cross-
cutting, concern. Traits differ from classes in that they do not define any kind of state,
and that they can be composed using mechanisms other than inheritance.



8 Nathanael Scḧarli, St́ephane Ducasse, Oscar Nierstrasz, and Andrew Black

Fig. 3. The traitsTDrawing andTCircle with provided methods in the left column and re-
quired methods in the right column.

Example.In our example, each graphical object can be decomposed into two aspects—
its geometry, and the way that it is drawn on a canvas. In case of a circle, we represent
the geometry with the traitTCircle and the behaviour necessary for drawing the
object with the traitTDrawing .

Figure 3 shows these traits in an extension to UML. For each trait, the left column
lists the provided methods and the right column lists the required methods. The trait
TDrawing provides the methodsdraw , refreshOn: , andrefresh , and it is pa-
rameterized by the required methodsbounds anddrawOn: . The code implementing
this trait is shown below. The existence of the requirements is captured by methods
(shown in italics) with bodyself requirement .

Trait named: #TDrawing uses: {}

draw bounds
ˆself drawOn: World canvas self requirement

refresh drawOn: aCanvas
ˆself refreshOn: World canvas self requirement

refreshOn: aCanvas
aCanvas form

deferUpdatesIn: self bounds
while: [self drawOn: aCanvas]

The traitTCircle represents the geometry of a circle; it contains methods such
as area , bounds , circumference , scaleBy: , =, <, and <=. TCircle re-
quires methodscenter , center: , radius , andradius , which parameterize its
behaviour. The implementation of this trait is shown in Appendix A.

3.3 Composing Classes from Traits

Traits are a completely downwards compatible extension of single inheritance. This
means that trait composition does not subsume single inheritance; trait composition and
inheritance are complementary. Whereas inheritance is used to derive one class from
another, traits are used to achieve structure and reusabilitywithin a class definition. We



Traits: Composable Units of Behaviour 9

Fig. 4. The classCircle is composed from the traitsTCircle andTDrawing . The require-
ment forTDrawing>>bounds is fulfilled by the traitTCircle . All the other requirements
are fulfilled by accessor methods specified by the class.

summarize this relationship with the equation

Class = State + Traits + Glue

This means that a class is built by using a set of traits, adding the necessary state vari-
ables, and implementing theglue methodsthat connect the traits together and serve as
accessors for the variables. In order for a class to becomplete, all the requirements of
the traits must be satisfied,i.e., a method with the appropriate name must be provided.
These methods can be implemented in the class itself, in a direct or indirect superclass,
or by another trait that is used by the class.

Trait composition enjoys theflattening property, which says that the semantics of a
method defined in a trait is identical to the semantics of the same method defined in a
class that uses the trait. Specifically, this means that the keywordsuper has no special
semantics for traits; it simply causes the method lookup to be started in the superclass
of the class thatusesthe trait.

Another property of trait composition is that the composition order is irrelevant,
and hence conflicting trait methods must be explicitly disambiguated (cf. Section 3.5).
Conflicts between methods specified in classes and methods specified by incorporated
traits are resolved using the following two precedence rules:

– Class methods take precedence over trait methods.
– Trait methods take precedence over superclass methods.This follows from the flat-

tening property, which states that trait methods behave as if they were implemented
in the class itself.



10 Nathanael Scḧarli, St́ephane Ducasse, Oscar Nierstrasz, and Andrew Black

Example.As illustrated in Figure 4 and by the class definition hereafter, we create the
classCircle by composing the traitsTCircle andTDrawing . The traitTDrawing
requires the methodsbounds anddrawOn: . The traitTCircle provides a method
bounds which already fulfills one of the requirements. Therefore, the classCircle
has to provide only the methodscenter , center: , radius , andradius: for the
trait TCircle and the methoddrawOn: for the traitTDrawing .

The methodscenter , center: , radius , andradius: are simply accessors
to two instance variables. The methoddrawOn: draws a circle on the canvas that is
passed as the argument. In addition, the class also implements a method for initializing
the two instance variables.

Object subclass: #Circle
instanceVariableNames: ’center radius’
traits: { TCirle . TDrawing }

initialize
center := 0@0.
radius := 50

center center: aPoint
ˆcenter center := aPoint

radius radius: aNumber
ˆradius radius := aNumber

drawOn: aCanvas
aCanvas fillOval: self bounds color: Color black

3.4 Nested Traits

In the same way that classes are composed from traits, traits can be composed from
other traits. Unlike classes, most traits are not complete, which means that they do not
define all the methods that are required by their subtraits. Unsatisfied requirements of
subtraits simply become required methods of the composite trait. Again, the composi-
tion order is not important, and methods defined in the composite trait take precedence
over the methods of its subtraits.

Even in case of deeply nested traits, the flattening property remains valid. The se-
mantics of a method does not depend on whether it is defined in a trait or in entities that
are using this trait (cf. Section 5.1).

Example. The traitTCircle contains two different aspects: namely comparison op-
erators and geometric functions. In order to separate these aspects and improve code
reuse, we therefore redefine this trait as the composition of the traitsTMagnitude
andTGeometry as shown in Figure 5(a). Also the traitTMagnitude is specified as
a nested trait; it uses the traitTEquality , which requires the methodshash and=,
and provides the method∼=. The traitTMagnitude itself requires<, and provides
methods such asmax: , <=, between:and: , and>=. Note thatTMagnitude does
not provide any of the methods required by its subtraitTEquality , which means
that these requirements are just propagated as requirements ofTMagnitude . Finally
as shown below, theTraitTCircle is composed from the traitsTMagnitude and
TGeometry . It defines the required methods=, hash , and< for the traitTMagnitude .



Traits: Composable Units of Behaviour 11

In the following, we show only the definition ofTCircle . The first line of this defini-
tion contains thecomposition clause, which specifies thatTCircle uses the subtraits
TMagnitude andTGeomery.

Trait named: #TCircle uses: { TMagnitude . TGeometry }

= other hash
ˆself radius = other radius ˆself radius hash

and: [self center = other center] and: [self center hash]

< other
ˆself radius < other radius

3.5 Conflict Resolution

A conflict arises if and only if we combine two traits providing identically named meth-
ods that do not originate from the same trait. Because traits cannot specify state, this
explains why the diamond problem does not arise with traits; if thesamemethod is
obtained twice from different traits, there is no conflict (cf. Section 5.2). Based on the
trait composition rules presented in Section 3.3, method conflicts must be explicitly re-
solved by defining a method in the class or in the composite trait. Traits enforce explicit
resolution of conflicts by excluding the conflicting methods and therefore turning them
into required methods.

To grant access to conflicting methods and thereby avoid code duplication, traits
support the concept ofaliases. Aliases allow one to make a trait method available under
another name if the original name is excluded due to a conflict. Aliases are discussed
further in Section 5.1.

In addition to conflict resolution, trait composition also supportsexclusion, which
allows one to avoid a conflict before it occurs. The composition clause allows a pro-
grammer to exclude methods from a trait when it is composed. This suppresses these
methods and turns them into requirements, which can then be fulfilled by the otherwise
conflicting implementations provided by other traits.

Example.To draw colored circles, a circle must contain color behaviour. To make this
behaviour reusable, we specify it in the traitTColor shown in Figure 5(b). This trait
provides the usual color methods such asred , green , saturation , etc.. Because
colors can also be tested for equality,TColor uses the traitTEquality , and imple-
ments the required methods= andhash as shown below.

Trait named: #TColor uses: { TEquality }

hash = other
ˆself rgb hash ˆself rgb = other rgb

When the traitTColor is incorporated into the classCircle , a conflict arises
because the traitsTColor andTCircle provide different implementations for the
methods= andhash as shown in Figure 5(c). Note that the method∼= does not give
rise to a conflict because in bothTCircle andTColor the implementation originates
from the same trait, namelyTEquality .



12 Nathanael Scḧarli, St́ephane Ducasse, Oscar Nierstrasz, and Andrew Black

Fig. 5.Figure (a) shows how a traitTCircle is composed from a traitTGeometry and a nested
trait TMagnitude , which is again composed from the traitTEquality . Note that the provided
services of the nested traits are propagated to the composite trait (e.g., max: , ∼=, andarea ),
and similarly, the unsatisfied requirements of the nested traits (e.g., center andradius: ) are
turned into required methods of the composite trait. In (b), we again use the traitTEquality to
specify the comparison behaviour of the traitTColor . Figure (c) shows how a classCircle is
specified by composing the traitsTCircle , TColor , andTDrawing .



Traits: Composable Units of Behaviour 13

Figure 5(c) shows that the conflicting methods are excluded and thereby turned
into requirements that have to be implemented in the classTCircle to make it com-
plete. In the code shown below, we define the method= so that two colored circles are
equal if and only if they have the same geometrical properties and the same color. To
avoid code duplication, we specify aliasescircleEqual: , circleHash , color-
Equal: , and colorHash for the conflicting methods and use them to define the
semantics of the composite.

Object subclass: #Circle
instanceVariableNames: ’center radius rgb’
traits: { TCircle @ {#circleHash -> #hash. #circleEqual: -> #= } . TDrawing .

TColor @ {#colorHash -> #hash. #colorEqual: -> #= } }

hash = anObject
ˆself circleHash ˆ(self circleEqual: anObject)

bitXor: self colorHash and: [self colorEqual: anObject]

Alternatively, we might decide that equality of colored objects is independent of
the color and only takes the geometrical properties into account. In this case, we could
remove the conflicting methods=, hash , and∼= from TColor . This avoids the con-
flicts and has the effect that the classCircle simply uses the comparison behaviour
provided by the traitTCircle . The corresponding composition clause looks as fol-
lows:

Object subclass: #Circle
instanceVariableNames: ’center radius rgb’
traits: { TCirle . TDrawing - {#=. #hash. # ∼=} . TColor }

4 Formal Traits Model

Space does not allow us to present the formal model of traits in these proceedings.
Instead we summarize the model briefly; interested readers will find full details in a
technical report [SDNB02]. This summary glosses over many details, including fields,
metaclasses, and the lifting of the requires and provides functions from methods to
classes.

The model abstracts away from the details of any particular language, and assumes
only the existence of methods and sets of definitions; each definition binds a name to a
method. We also assume a base language with single inheritance; ifC is a class andD
a set of definitions, then the classD extends C is a subclass ofC in the usual way.

There are five ways of constructing a trait T in the model.
T ::= D (a simple set of definitions)

| D with T (some definitionsD using a nested traitT )
| T1 + T2 (the symmetric composition of two traits)
| T − x (the traitT excluding the definition for namex)
| T [x→y] (the traitT with the addition of an aliasx)

The semantics of a trait is represented as a record,i.e., a finite mapping from names
to methods. Finding the record corresponding to each of these syntactic structures is
straightforward.D with T is defined to mean the record corresponding toT overridden
by the record corresponding toD. T1 + T2 means a record containing all of the names



14 Nathanael Scḧarli, St́ephane Ducasse, Oscar Nierstrasz, and Andrew Black

that are defined only inT1 and all of the names that are defined only inT2. Name
clashes,i.e., names that are defined in bothT1 andT2, annihilate each other and do not
appear in the resulting record.

The aliasing operationT [x→y] is defined to mean the record corresponding toT
with the addition of a new mapping fromx to whatevery maps to inT . If x is already
defined inT , then the two definitions annihilate each other, and the resulting record has
no mapping atx.

The model then definesstructured classesS as a superset of ordinary unstructured
classes. In addition to the ordinary inheritance operationD extends S, a structured
classD with T extends S can be built by combining some local definitionsD, a
trait T and a (possibly structured) superclassS.

The meaning of inheritance is given by representing each class (structured or un-
structured) as a sequence of records. This sequence is an abstraction of the superclass
chain; the first record of the sequence models the methods defined in the class itself, the
next record models the methods defined in its superclass, and so on up to the top of the
inheritance chain. The reason that we keep the whole sequence is to capture the seman-
tics of super ; although the exact meaning ofsuper may vary from one language
to another, we assume that if we model the whole inheritance chain, we will be able to
capture the appropriate semantics.

Given this semantic domain, the meaning ofD extends C is given by prepending
the record corresponding toD to the meaning ofC; the same is true forD extends S.
The meaning ofD with T extends S is also given by prepending asinglerecord
to the meaning ofS. The record that is prepended is the record corresponding toT
overridden by the new definitions inD. The important point to note is that defining
a structured classD with T extends S adds only one element to the sequence of
records forS. This captures the fact that occurrences ofsuper in D and occurrences
in T both refer to methods inS, and thatsuper in D never refers to a method inT .

A consequence of this construction is that the sequence of records that represents
the semantics of a structured classS also represents the semantics of some unstructured
classC; we callC theflatteningof S. This allows the programmer to work with a class
in both the flattened and the structured forms. The model also allows us to prove that+
is associative and commutative,i.e., that trait composition is unordered.

5 Discussion and Evaluation

In this section, we discuss some design decision that significantly influenced the proper-
ties of traits. We focus on reusability and understandability of programs that are written
using traits. Finally, we present an evaluation of traits against the reusability problems
discussed in Section 2.

5.1 Design Decisions

Traits were designed with other reusability models in mind: we tried to combine their
advantages, while avoiding their disadvantages. Here, we discuss the most important
design decisions.



Traits: Composable Units of Behaviour 15

Untangling Reusability and Classes.Although they are inspired by mixins, traits con-
stitute a new kind of conceptual entity that represents a finer-grained unit of reuse than a
class while not being tied to a specific place in the inheritance hierarchy. We believe that
this is essential for improving code reuse and conceptual modelling in object-oriented
programming languages for two reasons. First, traits close the conceptual gulf that lies
between entire classes and single methods; it allows classes to be built by compos-
ing reusable behaviours rather than by implementing a large and unstructured set of
methods. Second, it separates two contradictory roles of classes: instance generators
and reusable method repositories [BHJL86]. As instance generators, classes are typi-
cally organized in hierarchies in order to make their instancescomplete, but units of
reuse should be arbitrarilysmalland their reusability should not be subject to hierarchy
restrictions.

Single Inheritance and the Flattening Property. Instead of replacing single inheri-
tance, we decided to keep this familiar concept and simply extend it with the concept of
trait composition. These two concepts are similar but complementary and work together
nicely.

Single inheritance allows one to reuse all the features (i.e., methods and state vari-
ables) that are available in a class. If a class can only inherit from a single superclass,
inheriting state does not cause complications and a simple keyword (e.g., super ) is
enough to access overridden methods. This form of accessing inherited features is very
convenient, but it also assigns semantics to the place of a method in the inheritance
hierarchy.

Trait composition operates at a finer granularity than inheritance; it is used to mod-
ularize the behaviour definedwithin a class. As such, trait composition is designed to
compose only behaviour and not state. In addition, trait composition enjoys the flatten-
ing property, which means that it does not assign any semantics to the place where a
method is defined.

The flattening property in combination with single inheritance demonstrates that
traits are a logical evolution of the single inheritance paradigm. A system based on
traits not only allows one to write and execute traditional single inheritance code, but
even if there are thousands of deeply nested traits, with appropriate tool support, the
user can stillview and editthe classes inexactlythe same way as if the system were
implemented without using traits at all.

Aliasing. Many multiple inheritance implementations allow one to access overridden
features by explicitly naming the respective superclass in the source code. In C++, this is
done with the scope operator:: , whereas Eiffel uses the keywordPrecursor fol-
lowed by the superclass name enclosed in curly brackets. With traits, we chose method
aliasing over named trait references in method bodies to avoid the following problems.

– Named trait references contradict theflattening property, because they prevent the
creation of a semantically consistent flattened view without adapting these refer-
ences in the method bodies.



16 Nathanael Scḧarli, St́ephane Ducasse, Oscar Nierstrasz, and Andrew Black

– Named trait references would require the trait structure to be hardcoded in all the
methods that use this construct. This means that changing the trait structure or sim-
ply moving methods from one trait to another potentially invalidates many methods.

– Named trait references would require an extension of the syntax of the underlying
single inheritance language.

Method aliasing avoids all of these problems. Specifically, aliasing conforms to the
flattening property because the flattening process can simply introduce a new name for
the aliased method body.

Although the concept of method aliasing has some similarities to method renam-
ing as provided by Eiffel, there are essential differences. Whereas aliasing just estab-
lishes an alternative name without affecting the original one, with renaming the original
method name becomes undefined. As a consequence, method renaming must change all
the references to the old name so that they refer to the new one, whereas aliasing has no
effect on any references. Changing the bodies of methods in this way would violate the
flattening property.

5.2 Evaluation Against the Identified Problems

In Section 2 we identified a set of conceptual and practical reusability problems that
are associated with various forms of inheritance. The design of traits was significantly
influenced by the attempt to solve these problems. In the following, we present a point
by point evaluation of the results.

Conflicting features. Since trait composition supports composing several traits in par-
allel, conflicting features are also an issue. However, the problem is much less se-
rious with traits. Traits cannot define state, so thediamond problemdoes not arise.
Although a class may obtain the same method from the same trait via multiple
paths, these multiple copies do not give rise to a conflict, and will therefore be
unified.

Accessing overridden features.With traits, we decided against approaches based on
naming the superclass in the source code of the methods (as used by Eiffel and
C++) or on linearization (as used by CLOS). Instead, we decided to use a simple
form of method aliasing as described in Section 5.1. This avoids both tangled class
references in the source and code that is hard to understand and fragile with respect
to changes.

Limited compositional power. Like mixins, traits canexplicitly refer to a method im-
plemented by the superclass of the class that uses the trait. So the problem illus-
trated in Figure 1 can be solved by implementing the synchronization methods
read , write , acquireLock , andreleaseLock in a reusable trait. This trait
is then used in bothSyncA and SyncB , which do not need to implement any
methods other than accessors for the lock variable.

Total ordering. Trait composition does not impose total ordering, but it can express
ordering by means of nesting. In addition, trait composition can be combined with
inheritance, which allows a wide variety of partially ordered compositions.



Traits: Composable Units of Behaviour 17

Dispersal of glue code.When traits are combined, the glue code is always located in
the combining entity, reflecting the idea that the superordinate entity is in com-
plete charge of plugging together the components that implement its aspects. This
property nicely separates the glue code from the code that implements the different
aspects. This makes a class easy to understand, even if it is composed from many
different components.

Fragile hierarchies. Since traits are designed to be used in many different classes,
robustness with respect to change has been a leading principle in designing trait
composition. In particular, traits require every method conflict to be resolved ex-
plicitly. The consequence is that resolving conflicts requires some extra work, but
that the behaviour of the composite is what the programmer expects.
In addition, any problem caused by changes to a trait is limited to the direct user
of that trait, whether that be a class or a composite trait. This is because the user is
always in complete control of how the components are plugged together. With mix-
ins this is not so, as was discussed in section 2: introducing a single new method
into a mixin may require the programmer to changemanyother components, or
to introduce new components, at each place where the mixin is used. With traits,
change islocalized: a single change in a component requires at most one com-
pensating change in each direct user of the component in order to reestablish the
original behaviour.

6 Implementation

Traits as described in this paper are implemented in Squeak [IKM+97], an open-source
Smalltalk-80 dialect. Our implementation consists of two parts: an extension of the
Smalltalk-80 language and an extension of the integrated development environment
(IDE).

6.1 Language Extension

To introduce traits, we extended the implementation of a class so that it includes an ad-
ditional field to contain the information in the composition clause. This field defines the
traits used by the class, including any exclusions and aliases. In addition, we introduced
a representation for traits, which are essentially stripped down classes that can define
neither state nor a superclass. When a classCuses a traitT, the method dictionary ofC
is extended with an entry for all the methods inT that are not overridden byC. For an
alias, we simply extend the method dictionary with an entry that associates the alterna-
tive name with the aliased method. Since the compiled methods in traits do not usually
depend on the location where they are used, the bytecode for the method can be shared
between the trait that defines the method and all the classes and traits that use it. How-
ever, methods using the keywordsuper store an explicit reference to the superclass
in their literal table. So we need to copy those methods and change the entry for the
superclass appropriately. Copying could be avoided by modifying the virtual machine
to computesuper when needed.



18 Nathanael Scḧarli, St́ephane Ducasse, Oscar Nierstrasz, and Andrew Black

In Smalltalk, classes are first-class objects; every class is instance of a metaclass
that defines the shape and the behaviour of its singleton instance [GR83]. In our imple-
mentation, we support this concept by introducing the notion of ametatrait; a metatrait
can be associated with every trait. When a trait is used in a class, the associated meta-
trait (if there is one) is automatically used in the metaclass. Note that a trait without a
metatrait can be applied to both classes and metaclasses. To preserve metaclass com-
patibility [Gra89][BSLR98], metatraits are automatically generated for traits that send
methods to the metalevel using the pseudo-messageclass .

Because traits are simple and completely downward compatible with single inher-
itance, implementing traits in a reflective single inheritance language like Squeak is
unproblematic. The fact that traits cannot specify state is a major simplification. We
avoid most of the performance and space problems that occur with multiple inheritance,
because these problems are related to compiling methods without knowing the indices
of the slots in the final layout of the object [DMVS89]. In fact, our implementation
requires no duplication of source code, and byte code is duplicated only if it includes
sends tosuper . A program with traits shows essentially the same performance as
a corresponding single inheritance program where all the methods provided by traits
are implemented directly in the classes using the traits. This is especially remarkable
because our implementation did not require any changes to the Squeak virtual machine.
There may be a small performance penalty resulting from the use of accessor methods,
but such methods are in any case widely used because they improve maintainability.

6.2 Programming Tools

Besides an extension of the language, our implementation also includes an extension of
the programming tools,i.e., the Smalltalk browser. For each class (and each trait), the
browser shows the different traits from which it is composed. The flattening property
allows the browser to flatten this hierarchical structure at any nesting level. In addition,
the browser shows the programmer theprovidedandrequiredmethods, theoverridden
methods, and thegluemethods, which specify how the class meets the requirements of
its component traits. These features help the programmer to work with different views
of the code. On the one hand, the programmer can work with the code in a flattened
view, where a class consists of an unstructured set of methods and it does not matter
whether the class is built from traits and whether a method is defined in a trait or in
the class itself. On the other hand, the programmer can work in a composition view,
where he sees how the responsibilities of the class are decomposed into several traits
and how these traits are glued together in order to achieve the required behaviour. This
view is especially valuable because it allows a user to understand a class by knowing
the involved traits and understanding the glue methods.

As in standard Smalltalk, the browser supports incremental compilation. Whenever
a trait method is added, changed or excluded, all the users of that trait are instanta-
neously updated. The modifications are also analyzed to infer the set of required meth-
ods. If a modification causes a new conflict or an unspecified requirement anywhere in
the system, the affected classes and traits are automatically added to a “to do” list.

Our implementation features several tools that support the programmer in com-
posing traits and generating the necessary glue code. Required methods, for example,



Traits: Composable Units of Behaviour 19

can automatically be mapped to instance variables by generating the necessary accessor
methods. Conflict resolution is also semi-automated by presenting the programmer with
a list of alternative implementations; choosing one of these automatically generates the
composition clause that excludes the others, and thus eliminates the conflict.

7 A Realistic Application of Traits

Fig. 6.This shows the refactored collection hierarchy. Classes with italicized names are abstract;
below the class name we show the traits that are used by the class directly.

As a realistic evaluation of their usability, we used traits to refactor the Smalltalk-80
collection hierarchy as it is implemented in Squeak 3.2. In this Section, we summarize
the results of this work; interested readers are referred to a companion paper that con-
tains more details [BSD02].

The core classes of the Smalltalk-80 collection hierarchy have been improved over
more than 20 years and are often considered a paradigmatic example of object-oriented
programming. Each kind of collection can be characterized by properties such as ex-
plicitly ordered (e.g., Array), implicitly ordered (e.g., SortedCollection ), un-
ordered (e.g., Set ), extensible (e.g., Bag), immutable (e.g., String ), keyed (e.g.,



20 Nathanael Scḧarli, St́ephane Ducasse, Oscar Nierstrasz, and Andrew Black

Dictionary ), element comparison (e.g., using identity or a higher-level comparison
operator),etc.

The problem is that single inheritance is not expressive enough to model such a di-
verse set of related classes that share many different properties in various combinations.
This means that the implementors of the hierarchies are forced to duplicate code or to
move methods higher in the hierarchy and then disable them in the subclasses to which
they do not apply [Coo92].

Traits allowed us to solve these problems by creating traits for the different col-
lection properties and combining them to build the required collection classes. In order
to achieve maximum flexibility, we separated the properties specifying the implementa-
tion of a collection from the properties specifying the interface. This allowed us to freely
combine different interfaces (e.g., “sorted-extensible interface” and “sorted-extensible-
immutable interface”) with any of the suitable implementations (e.g., “linked-list im-
plementation” and “array-based implementation”).

In addition to the traits that were absolutely necessary in order to achieve a sound
hierarchy and avoid code duplication, we structured the code in more fine-grained sub-
traits that allows us to reuse parts of the code outside of the collection hierarchy. As an
example, we introduced traits representing the behaviour “emptiness” (which requires
size and providesisEmpty , notEmpty , ifEmpty: , etc.) and “enumeration” (re-
quiresdo: and providescollect: , select: , detect: , etc.).

Although some of the collection classes are now built as the nested composition of
up to 20 traits, the flattening property combined with the corresponding programming
tools means that this does not impact understandability: it is always possible to work
with the hierarchy as if it were implemented with ordinary single-inheritance.

Figure 6 shows the refactored hierarchy for 13 of the more common collection
classes. Besides the class name, it also shows the traits that the class uses. However,
it does not show that each of these traits has up to 20 subtraits. At the top, there is the
abstract classCollection , which provides a small amount of general behaviour for
all collections. Then we have a layer of abstract classes that provide different combina-
tions of traits representing interface properties. At the bottom, we have concrete classes
that use traits to provide implementations.

In total, these classes use 46 different traits and implement 509 methods, whereof 36
are automatically generated accessor methods. This is just over 5% fewer methods than
in the original implementation. In addition, the code for the trait implementation is 12%
smaller than the original. This is especially remarkable because 10% of the methods in
the original implementation are implemented “too high” in the hierarchy specifically to
enable code sharing. With inheritance, the penalty for this is the repeated need to cancel
inherited behaviour (using methods that cause a runtime error) in subclasses where they
do not make sense. In the trait implementation, there is no need to resort to this tactic.

8 Related Work

In the Section 2 we have already shown how other inheritance schema try to promote
code reuse. Therefore in this section we compare traits only to some existing models
that we did not consider previously.



Traits: Composable Units of Behaviour 21

There are at least two other models that use entities called “traits” as an approach
to share and reuse implementation. One of them is the prototype based language SELF
[US87]. In SELF, there is no notion of class; each object conceptually defines its own
format, behaviour (methods), and inheritance relations. Objects are derived from other
objects by cloning and then modifying them. In addition, SELF also has the notion of
traits objectsthat serve as repositories for sharing behaviour and state among multiple
objects. Traits are used as dictionaries during method lookup and there is no mechanism
for resolving conflicts.

The software for the Xerox Star workstation also used entities calledtraits as an
approach to multiple inheritance [CBLL82]. This approach has more in common with
other multiple inheritance approaches than with the trait model presented in this paper.
Some of the main differences from our model are that the Star traits have a different
semantics regarding inheritance, have different conflict resolution capabilities, carry
state, and allow multiple implementations for a single method.

9 Conclusions and Future Work

This paper introduces traits, a simple compositional model for building and structur-
ing object-oriented programs. Traits are composed using a set of operators—symmetric
combination, exclusion, and aliasing—that are carefully designed so that they allow a
fair amount of composition flexibility without being subject to the problems and limi-
tations that we have identified for mixins and multiple inheritance.

Thanks to the favorable composition properties, traits are an ideal extension for
single inheritance languages. Traits are completely downwards compatible and do not
require modifying or extending the method syntax of the underlying language. Further-
more, the flattening property guarantees optimal understandability of the resulting code,
because it is always possible to both view and edit the code as if it were written using
single-inheritance.

Having the right programming tools has proven to be crucial for giving the program-
mer the maximum benefit from traits. In our Squeak-based implementation, we changed
the browser so that it allows the programmer to switch seamlessly between the different
views and emphasizes the glue methods that define how the traits are connected.

We successfully used traits for refactoring the collection hierarchy, which is a strong
indication for the usability of traits for realistic and non-trivial problems. It also showed
that traits are suitable for modularizing classes that are already built, and that they raise
the level of abstraction when building new classes. Finally, working with the refac-
tored hierarchy impressed us with the power of the flattening property for understanding
classes that are built from multiple and deeply nested traits.

As future work we would like to (1) evaluate the impact of the introduction of vis-
ibility mechanisms on the flattening property, (2) refine the calculus that captures the
formal model, (3) evaluate the possibility of using traits modify the behaviour of single
instances at run-time, (4) develop a type systems for traits and identify the relation-
ships between traits and interfaces, and (5) further explore the application of traits to
refactoring of complex class hierarchies.



22 Nathanael Scḧarli, St́ephane Ducasse, Oscar Nierstrasz, and Andrew Black

Acknowledgements.We would like to thank Gilad Bracha, William Cook, Erik Ernst,
Robert Hirschfeld, Andreas Raab, and Roel Wuyts for their rich interaction and valuable
comments while developing traits and writing this paper.

References

[Ame90] Pierre America. Designing an object-oriented programming language with be-
havioural subtyping. InProc. REX/FOOLS Workshop, Noordwijkerhout, June 1990.
to appear.

[BC90] Gilad Bracha and William Cook. Mixin-based inheritance. InProceedings OOP-
SLA/ECOOP’90, ACM SIGPLAN Notices, pages 303–311, October 1990. Published
as Proceedings OOPSLA/ECOOP’90, ACM SIGPLAN Notices, volume 25, number
10.

[BHJL86] Andrew Black, Norman Hutchinson, Eric Jul, and Henry Levy. Object structure in
the emerald system. InProceedings OOPSLA ’86, ACM SIGPLAN Notices, pages
78–86, November 1986. Published as Proceedings OOPSLA ’86, ACM SIGPLAN
Notices, volume 21, number 11.

[BSD02] Andrew Black, Nathanael Schärli, and St́ephane Ducasse. Applying traits to the
smalltalk collection hierarchy. Technical Report CSE-02-014, OGI School of Sci-
ence & Engineering, Oregon Health & Science University, 2002.

[BSLR98] Noury M. N. Bouraqadi-Saadani, Thomas Ledoux, and Fred Rivard. Safe metaclass
programming. InOOPSLA 1998 Proceedings, pages 84–96, 1998.

[CBLL82] Gael Curry, Larry Baer, Daniel Lipkie, and Bruce Lee. TRAITS: an approach to
multiple inheritance subclassing. InProceedings ACM SIGOA, SIGOA Newsletter,
Philadelphia, June 1982. Published as Proceedings ACM SIGOA, SIGOA Newslet-
ter, volume 3, number 12.

[Coo87] Steve Cook. Oopsla ’87 panel p2: Varieties of inheritance. InOOPSLA ’87 Adden-
dum To The Proceedings, pages 35–40. ACM Press, October 1987.

[Coo92] William R. Cook. Interfaces and specifications for the smalltalk-80 collection
classes. InProceedings OOPSLA ’92, ACM SIGPLAN Notices, pages 1–15, October
1992. Published as Proceedings OOPSLA ’92, ACM SIGPLAN Notices, volume
27, number 10.

[DH87] R. Ducournau and Michel Habib. On some algorithms for multiple inheritance in
object-oriented programming. In J. Bézivin, J-M. Hullot, P. Cointe, and H. Lieber-
man, editors,Proceedings ECOOP’87, volume 276 ofLNCS, pages 243–252, Paris,
France, June 15-17 1987. Springer-Verlag.

[DHHM92] R. Ducournau, M. Habib, M. Huchard, and M.L. Mugnier. Monotonic conflict res-
olution mechanisms for inheritance. InProceedings OOPSLA ’92, ACM SIGPLAN
Notices, pages 16–24, October 1992. Published as Proceedings OOPSLA ’92, ACM
SIGPLAN Notices, volume 27, number 10.

[DMVS89] R. Dixon, T. McKee, M. Vaughan, and Paul Schweizer. A fast method dispatcher
for compiled languages with multiple inheritance. InProceedings OOPSLA ’89,
ACM SIGPLAN Notices, pages 211–214, October 1989. Published as Proceedings
OOPSLA ’89, ACM SIGPLAN Notices, volume 24, number 10.

[DT01] Dominic Duggan and Ching-Ching Techaubol. Modular mixin-based inheritance for
application frameworks. InProceedings OOPSLA 2001, ACM SIGPLAN Notices,
pages 223–240, October 2001.

[FKF98] Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. Classes and mixins.
In Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 171–183. ACM Press, 1998.



Traits: Composable Units of Behaviour 23

[GR83] Adele Goldberg and David Robson.Smalltalk 80: the Language and its Implemen-
tation. Addison Wesley, Reading, Mass., May 1983.

[Gra89] Nicolas Graube. Metaclass compatibility. InProceedings OOPSLA ’89, ACM SIG-
PLAN Notices, pages 305–316, October 1989. Published as Proceedings OOPSLA
’89, ACM SIGPLAN Notices, volume 24, number 10.

[IKM +97] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. Back to the
future: The story of squeak, A practical Smalltalk written in itself. InProceedings
OOPSLA ’97, ACM SIGPLAN Notices, pages 318–326, November 1997.

[Kee89] Sonia E. Keene.Object-Oriented Programming in Common-Lisp. Addison Wesley,
1989.

[LP91] W. LaLonde and John Pugh. Subclassing = subtyping = is-a.Journal of Object-
Oriented Programming, 3(5):57–62, January 1991.

[Mey88] Bertrand Meyer.Object-oriented Software Construction. Prentice-Hall, 1988.
[Mey92] Bertrand Meyer.Eiffel: The Language. Prentice-Hall, 1992.
[Mey97] Bertrand Meyer.Object-Oriented Software Construction. Prentice-Hall, second edi-

tion, 1997.
[MMMP90] Ole Lehrmann Madsen, Boris Magnusson, and Birger Moller-Pedersen. Strong

typing of object-oriented languages revisited. InProceedings OOPSLA/ECOOP’90,
ACM SIGPLAN Notices, pages 140–150, October 1990. Published as Proceedings
OOPSLA/ECOOP’90, ACM SIGPLAN Notices, volume 25, number 10.

[Moo86] David A. Moon. Object-oriented programming with flavors. InProceedings OOP-
SLA ’86, ACM SIGPLAN Notices, pages 1–8, November 1986. Published as Pro-
ceedings OOPSLA ’86, ACM SIGPLAN Notices, volume 21, number 11.

[Sak89] Markku Sakkinen. Disciplined inheritance. In S. Cook, editor,Proceedings
ECOOP’89, pages 39–56, Nottingham, July 10-14 1989. Cambridge University
Press.

[Sak92] Markku Sakkinen. The darker side of C++ revisited.Structured Programming, 1992.
to appear.

[SDNB02] Nathanael Scḧarli, St́ephane Ducasse, Oscar Nierstrasz, and Andrew Black. Traits:
The formal model. Technical Report CSE-02-013, OGI School of Science & Engi-
neering, Oregon Health & Science University, 2002.

[SG99] Peter F. Sweeney and Joseph (Yossi) Gil. Space and time-efficient memory layout
for multiple inheritance. InProceedings of the 1999 ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications, pages 256–
275. ACM Press, 1999.

[Sny86] Alan Snyder. Encapsulation and inheritance in object-oriented programming lan-
guages. InProceedings OOPSLA ’86, ACM SIGPLAN Notices, pages 38–45,
November 1986. Published as Proceedings OOPSLA ’86, ACM SIGPLAN Notices,
volume 21, number 11.

[Sny87] Alan Snyder. Inheritance and the development of encapsulated software systems. In
Research Directions in Object-Oriented Programming, pages 165–188. MIT Press,
1987.

[Ste90] Guy L. Steele.Common Lisp The Language. Digital Press, second edition, 1990.
book.

[Str86] Bjarne Stroustrup.The C++ Programming Language. Addison Wesley, Reading,
Mass., 1986.

[Str94] Bjarne Stroustrup.The Design and Evolution of C++. Addison Wesley, 1994.
[Tai96] Antero Taivalsaari. On the notion of inheritance.ACM Computing Surveys,

28(3):438–479, September 1996.
[US87] David Ungar and Randall B. Smith. Self: The power of simplicity. InProceedings

OOPSLA ’87, ACM SIGPLAN Notices, volume 22, pages 227–242, December 1987.



24 Nathanael Scḧarli, St́ephane Ducasse, Oscar Nierstrasz, and Andrew Black

A TCircle

The implementation of the traitTCircle as discussed in Section 3.2.

Trait named: #TCircle uses: {}

= other ˜= other
ˆself radius = other radius ˆ(self = other) not

and: [self center = other center]
<= other

hash ˆ(self > othet) not
ˆself radius hash and: [self center hash]

> other
< other ˆother < self

ˆself radius < other radius
min: other

scaleBy: factor ˆself < other
self radius: factor * self radius ifTrue: [self]

ifFalse: [other]
max: other

ˆself > other area
ifTrue: [self] ˆself radius * Float pi squared
ifFalse: [other]

circumference
between: min and: max ˆ2 * self radius * Float pi

ˆself >= min and: [self <= max]
diameter

bounds ˆ2 * self radius
ˆRectangle

origin: self center - self radius >= other
corner: self center + self radius ˆ(self < other) not

center center: aPoint
self requirement self requirement

radius radius: aNumber
self requirement self requirement


