
F i n e - G r a i n e d Mobi l i ty in the Emera ld S y s t e m

Eric :lul, Henry Levy, Norman Hutchinson, and Andrew Black*
Department of Computer Science

University of Washington
Seattle, WA 98195

Extended Abstract

Emerald [2,3,4] is a distributed object-based language
and system designed to simplify the construction of dis-
tributed programs. An explicit goal of Emerald is support
for object mobility; objects in Emerald can freely move
within the system to take advantage of distribution and
dynamically changing environments. We say that Emer-
ald has fine-grained mobility because Emerald objects can
be small data objects (such as arrays, records, and inte-
gers) as well as objects with processes. Thus, the unit of
mobility can be much smaller than in process migration
systems which typically move entire address spaces [5,7].
Object mobility in Emerald subsumes both process migra-
tion and data transfer.

Emerald provides mobility support through a small set
of language primitives. Object invocation is location-
independent, that is, it is the responsibility of the Emer-
ald kernel to locate the target of an invocation request.
However, objects can also utilize distribution explicitly;
an Emerald object can locate an object, move an object
to another node, and fix an object at a particular node.

*This work was supported in part by the National Sci-
ence Foundation under Grants No. MCS-8004111 and DCR-
8420945, by Kcbenhavns Universitet (the Uuiversity of Copen-
hagen), Denmark under Grant J.nr. 574-2,2, by a Digital Equip-
ment Corporation External Research Grant, and by an IBM
Graduate Fellowship.

lAuthor mobility: Eric Jul, DIKU, Dept. of Computer
Science, University of Copenhagen, Universitetparken 1, DK-
2100 Copenhagen, Denmark. Norman Hutchinson, Depart-
ment of Computer Science, University of Arizona, Tucson, AZ
85721. Andrew Black, Digital Equipment Corporation, 550
King Street, Littleton, MA 01460.

The Emerald programmer may also wish to specify which
objects move together. For this purpose, the Emerald lan-
guage allows the programmer to attach objects to other
objects. Attachment is transitive: when Emerald moves
object a, any object attached to a will also be moved. For
example, linked structures may be moved as a whole by
attaching the link fields.

In addition to mobility, a principal goal of Emerald was
support for a single object model suitable for program-
ming both small, local data-only objects and active, mo-
bile distributed objects. All Emerald objects are defined
through a single object definition mechanism. The Emer-
ald compiler analyzes object definitions and attempts to
produce efficient implementations commensurate with the
way in which objects are used. For example, an object
that moves around the network will require a very general
remote procedure call implementation; however, an object
that is completely internal to that mobile object can be
implemented using direct memory addressing and inline
code or procedure calls.

We wanted to achieve performance competitive with
standard procedural languages in the local case and stan-
dard remote procedure call systems in the remote case.
These goals are not trivial in a location-independent
object-based environment. To meet them, we relied heav-
ily on an appropriate choice of language semantics, a tight
coupling between the compiler and run-time kernel, and
careful attention to implementation.

As an example of Emerald's local performance, Table 1
shows execution times for several local Emerald operations
executed on a MicroVAX I11. The "resident global invoca-
tion" time is for a global object (i.e., one that can move
around the network) when invoked by another object resi-
dent on the same node. By comparison, other object-based
distributed systems are typically over 100 times slower for
local invocations of their most general objects [6,1].

The Emerald language uses call-by-object-reference pa-
rameter passing semantics for all invocations, local or re-
mote. While call-by-object-reference is the natural seman-
tics for object-based systems, it presents a potential per-
formance problem in a distributed environment. When a

1MicroVAX is a trademark of Digital Equipment
CorporatiorL

105

Emerald Invocation Example Time//~s

primitive integer i +--- i + 23 0.4
primitive real x ~-- x + 23.0 3.4

local localobject.no-op 16.6
resident global globalobject.no-op 19.4

Table 1: Timings of Local Emerald Invocations

Operat ion Type , T ime /ms I

local invocation 0.019
! I

kernel CPU time, remote invocation 3.4
! I

elapsed time, remote invoc 27.9
! I

remote invoc, local reference param 31.0
I I

remote invoc, call-by-move param 33.0
! I

remote invoc, call-by-visit param 37.4
I I

remote invoc, remote reference param 61.8

Table 2: Remote Operat ion Timing

remotely invoked object a t tempts to access its arguments,
those accesses will typically require remote invocations.
Because Emerald objects are mobile, it may be possible
to avoid some of these remote references by moving argu-
ment objects to the site of a remote invocation. To make
argument mobil i ty possible, Emerald provides a parame-
ter passing mode that we call call-by-move. Call-by-move
does not change the semantics, which i~ still call-by-object-
reference, but at invocation time the argument object is
relocated to the dest inat ion site. Following the call the ar-
gument object may either return to Lhe source"of the call
or remain at the destination site (we call these two modes
call-by-visit and call-by-move, respectively).

Table 2 shows the elapsed t ime cost of various remote
Emerald operations. In each remote invocation, the ar-
gument object is invoked exactly once in the body of the
operation. For the simplest remote invocation, the t ime
spent in the Emerald kernel is 3.4 milliseconds. For his-
torical reasons, we currently use a set of network com-
munications routines that provide reliable, flow-controlled
message passing on top of UDP datagrams. These rou-
tines are slow: the time to t ransmit 128 bytes of da ta and
receive a reply is about 24.5 milliseconds. Hence, the total
elapsed time to send the invocation message and receive
the reply is 27.9 milliseconds.

From this table we can compute the benefit of call-by-
move for a simple argument object. For this simple argu-
ment object, the addit ional cost of call-by-move was 2 mil-
liseconds while call-by-visit cost 6.4 milliseconds. These
are computed by subtract ing the time for a remote in-
vocation with an argument reference that is local to the
destination. The call-by-visit t ime includes sending the
invocation message and the argument object, performing
the remote invocation (which then invokes its argument),
and returning the argument object with the reply. Had the
argument been a reference to a remote object (i.e., had the
object not been moved), the incremental cost would have
been 30.8 milliseconds. These measurements are some-

what of a lower bound because the cost of moving an ob-
ject depends on the complexity of the object and the types
of objects i t names.

Emerald currently executes on a small network of Mi-
croVAX IIs and has recently been ported to the SUN 32.
We have concentrated on implementing fine-grained mobil-
i ty in Emerald while minimizing its impact on local perfor-
mance. This has presented significant problems; however,
through the use of language suppor t and a tightly-coupled
compiler and kernel, we believe that our design has been
successful in meeting both its conceptual and performance
goals.

R e f e r e n c e s

[1] Guy T. Almes, Andrew P. Black, Edward D. Lazowsk~,
and Jerre D. Noe. The Eden system: a technical re-
view. IEEE Transactions on Software Engineering,
SE-11(1):43-59, January 1985.

[2] Andrew Black, Norman Hutchinson, Eric Jul, and
Henry Levy. Object s tructure in the Emerald system.
In Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications,
pages 78-86, October 1986.

[3] Andrew Black, Norman Hutchinson, Eric Jul, Henry
Levy, and Larry Carter. Distr ibution and abstract
types in Emerald. IEEE Transactions on Software En-
gineering, January 1987.

[4] Norman C. Hutchinson. Emerald: An Object-Based
Language for Distributed Programming. PhD thesis,
University of Washington, January 1987. Depar tment
of Computer Science technical report 87-01-01.

Michael L. Powell and Barton P. Miller. Process mi-
gration in DEMOS/MP. In Proceedings of the Ninth
A CM Symposium on Operating Systems Principles,
pages 110-119, ACM/SIGOPS, October 1983.

Eugene H. Spafford. Kernel Structures for a Dis-
tributed Operating System. PhD thesis, School of In-
formation and Computer Science, Georgia Inst i tute of
Technology, May 1986. Also Georgia Inst i tute of Tech-
nology Technical Report GIT-ICS-86/16.

Marvin M. Theimer, Keith A. Lantz, and David R.
Cheriton. Preemptable remote execution facilities for
the V-system. In Proceedings of the Tenth ACM Sym-
posium on Operating Systems Principles, pages 2-12,
ACM/SIGOPS, December 1985.

[5]

[6]

[7]

2SUN is a trademark of SUN Microsystems, Inc.

106

