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Extended Abstract 

Emerald [2,3,4] is a distributed object-based language 
and system designed to simplify the construction of dis- 
tributed programs. An explicit goal of Emerald is support 
for object mobility; objects in Emerald can freely move 
within the system to take advantage of distribution and 
dynamically changing environments. We say that Emer- 
ald has fine-grained mobility because Emerald objects can 
be small data objects (such as arrays, records, and inte- 
gers) as well as objects with processes. Thus, the unit  of 
mobility can be much smaller than in process migration 
systems which typically move entire address spaces [5,7]. 
Object mobility in Emerald subsumes both process migra- 
tion and data transfer. 

Emerald provides mobility support through a small set 
of language primitives. Object invocation is location- 
independent, that  is, it is the responsibility of the Emer- 
ald kernel to locate the target of an invocation request. 
However, objects can also utilize distribution explicitly; 
an Emerald object can locate an object, move an object 
to another node, and fix an object at a particular node. 
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The Emerald programmer may also wish to specify which 
objects move together. For this purpose, the Emerald lan- 
guage allows the programmer to attach objects to other 
objects. Attachment is transitive: when Emerald moves 
object a, any object attached to a will also be moved. For 
example, linked structures may be moved as a whole by 
attaching the link fields. 

In addition to mobility, a principal goal of Emerald was 
support for a single object model suitable for program- 
ming both small, local data-only objects and active, mo- 
bile distributed objects. All Emerald objects are defined 
through a single object definition mechanism. The Emer- 
ald compiler analyzes object definitions and attempts to 
produce efficient implementations commensurate with the 
way in which objects are used. For example, an object 
that moves around the network will require a very general 
remote procedure call implementation; however, an object 
that is completely internal to that mobile object can be 
implemented using direct memory addressing and inline 
code or procedure calls. 

We wanted to achieve performance competitive with 
standard procedural languages in the local case and stan- 
dard remote procedure call systems in the remote case. 
These goals are not trivial in a location-independent 
object-based environment. To meet them, we relied heav- 
ily on an appropriate choice of language semantics, a tight 
coupling between the compiler and run-time kernel, and 
careful attention to implementation. 

As an example of Emerald's local performance, Table 1 
shows execution times for several local Emerald operations 
executed on a MicroVAX I11. The "resident global invoca- 
tion" time is for a global object (i.e., one that can move 
around the network) when invoked by another object resi- 
dent on the same node. By comparison, other object-based 
distributed systems are typically over 100 times slower for 
local invocations of their most general objects [6,1]. 

The Emerald language uses call-by-object-reference pa- 
rameter passing semantics for all invocations, local or re- 
mote. While call-by-object-reference is the natural  seman- 
tics for object-based systems, it presents a potential per- 
formance problem in a distributed environment. When a 

1MicroVAX is a trademark of Digital Equipment 
CorporatiorL 
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Emerald Invocation Example Time//~s 

primitive integer i +--- i + 23 0.4 
primitive real x ~-- x + 23.0 3.4 

local localobject.no-op 16.6 
resident global globalobject.no-op 19.4 

Table 1: Timings of Local Emerald Invocations 

Operat ion Type  , T ime /ms  I 

local invocation 0.019 
! I 

kernel CPU time, remote invocation 3.4 
! I 

elapsed time, remote invoc 27.9 
! I 

remote invoc, local reference param 31.0 
I I 

remote invoc, call-by-move param 33.0 
! I 

remote invoc, call-by-visit  param 37.4 
I I 

remote invoc, remote reference param 61.8 

Table 2: Remote Operat ion Timing 

remotely invoked object  a t tempts  to access its arguments, 
those accesses will typically require remote invocations. 
Because Emerald objects are mobile, it  may be possible 
to avoid some of these remote references by moving argu- 
ment objects  to the site of a remote invocation. To make 
argument mobil i ty possible, Emerald provides a parame- 
ter passing mode that  we call call-by-move. Call-by-move 
does not change the semantics, which i~ still call-by-object- 
reference, but  at  invocation time the argument object is 
relocated to the dest inat ion site. Following the call the ar- 
gument object  may either return to Lhe source"of the call 
or remain at  the destination site (we call these two modes 
call-by-visit and call-by-move, respectively). 

Table 2 shows the elapsed t ime cost of various remote 
Emerald operations. In each remote invocation, the ar- 
gument object is invoked exactly once in the body of the 
operation. For the simplest remote invocation, the t ime 
spent in the Emerald kernel is 3.4 milliseconds. For his- 
torical reasons, we currently use a set of network com- 
munications routines that  provide reliable, flow-controlled 
message passing on top of UDP datagrams.  These rou- 
tines are slow: the time to t ransmit  128 bytes of da ta  and 
receive a reply is about  24.5 milliseconds. Hence, the total  
elapsed time to send the invocation message and receive 
the reply is 27.9 milliseconds. 

From this table we can compute the benefit of call-by- 
move for a simple argument  object. For this simple argu- 
ment object, the addit ional  cost of call-by-move was 2 mil- 
liseconds while call-by-visit  cost 6.4 milliseconds. These 
are computed by subtract ing the time for a remote in- 
vocation with an argument  reference that  is local to the 
destination. The call-by-visit  t ime includes sending the 
invocation message and the argument object, performing 
the remote invocation (which then invokes its argument),  
and returning the argument object  with the reply. Had the 
argument been a reference to a remote object  (i.e., had the 
object not been moved), the incremental  cost would have 
been 30.8 milliseconds. These measurements are some- 

what of a lower bound because the cost of moving an ob- 
ject  depends on the complexity of the object  and the types 
of objects i t  names. 

Emerald currently executes on a small network of Mi- 
croVAX IIs and has recently been ported to the SUN 32. 
We have concentrated on implementing fine-grained mobil- 
i ty in Emerald while minimizing its impact  on local perfor- 
mance. This has presented significant problems; however, 
through the use of language suppor t  and a tightly-coupled 
compiler and kernel, we believe that  our design has been 
successful in meeting both its conceptual and performance 
goals. 
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