
Evaluating Programming Languages and Tools in Studies with Human Participants

Track SPLASH 2015 Tutorials

When Wed 28 Oct 2015 10:30 - 12:00 at Edenburg - Tutorial 2

Abstract Programming languages and tools exist to enable software developers to program. How effectively they do so
ultimately depends on the interaction between languages and tools and the developers who use them. As new
language features and tools are designed, a fundamental and inherently empirical question raised is, do they
help programmers work better. Answering such questions requires conducting studies with human participants.
This tutorial will provide a broad overview of methods for evaluating programming languages and tools in
studies with human participants. The tutorial will be aimed at SPLASH attendees that have never before
conducted a human subjects study, helping introduce attendees to the basics of designing and con- ducting
studies and methods for the analysis of data. Elements of a study design will be surveyed, including recruitment
and selection of human participants, informed consent, experimental procedures, demographic measurements,
group assignment, training, the selection and design of tasks, the measurement of common outcome variables,
and study debriefing. Broader elements of the research process will also be surveyed, including finding and
refining research questions for studies, techniques and models for analysing empirical data from human
participants, and finding the right balance between quantitative and qualitative methods.

File attachments Slides (SPLASH15 Experiments Tutorial.pdf) 1.50MiB

Bio Thomas LaToza is an Assistant Professor of Computer Science at George Mason University. He has degrees in
psychology and computer science from the University of Illinois and a PhD in software engineering from
Carnegie Mellon University. His research is in the area of human aspects of software development,
encompassing empirical and design work on environments for programming, software design, and
collaboration. He has been active in bringing human subjects studies to the investigation of software
development activity and the evaluation of software development tools and has conducted over 20 studies with
software developers, including observational studies, surveys, interviews, field deployments, and controlled
experiments. He has served on various program committees and is currently the co-chair of the Sixth Workshop
on the Evaluation and Usability of Programming Languages and Tools.

Session Program
Wed 28 Oct

10:30 - 12:00: Tutorials - Tutorial 2 at Edenburg

10:30 - 12:00
Talk

Evaluating Programming Languages and Tools in Studies with Human Participants
Thomas LaToza

Thomas LaToza
George Mason University

With thanks to Prof Thomas LaToza …
Full slides at http://tinyurl.com/LaTozaTutorial

http://tinyurl.com/LaTozaTutorial

Evaluating Research, and
Studies with Human

Participants

Andrew P. Black
based on material by Thomas LaToza

Motivation
• Evaluate the usability of a feature or tool to its

users

- usually productivity effects

- perhaps security, correctness ...

• Given a context, what is effect of your tool or
technique on its intended audience

3

Issues for Studies with
Human Subjects

• How many participants do I need?

• Is it ok to use students?

• What do I measure? How do I measure it?

• What’s an IRB?

• Should I train participants?

• What tasks should I pick?

4

5

Data on how software engineering community
conducts experiments w/ humans

• Systematic review of 1701 software engineering articles

- All papers published at ICSE, FSE, TSE, TOSEM
2001 - 2011

6

82%
1392

described
tool

63%
1065

empirical
eval

17%
289

0%
25%
50%
75%
100%

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

empirical
eval

w/ humans

% of papers w/ tools w/ empirical evals

0%
20%
40%
60%
80%

100%

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

experience report lab field interview survey

% of human evals by method

Controlled experiment
• Only way to argue causality: change in var x causes change in var y

• Manipulate independent variables
 Creates “conditions” that are being compared
 Can have >1, but number of conditions usually exponential in
 number of independent variables

• Measure dependent variables (a.k.a “measures”)
 Quantitative variable you calculate from collected data
 e.g., time, nr of questions, nr of steps

• Randomly assign participants to condition
 Ensure that participants differ only in condition
 Not different in other confounding variables

• Test hypotheses
 Change in independent variable causes dependent variable to
 change
 e.g., t-test, ANOVA, other statistical techniques

7

Anatomy of controlled
experiment w/ humans

8

Terminology
• “Tool” — any intervention manipulating a subject’s work

environment

- e.g., in software engineering: programming language,
language feature, software development environment feature,
build system tool, API design, documentation technique

• Data — what you collected in study

• Unit of analysis — individual item of data

• Population — all members that exist

• Construct — some property of member

• Measure — approximation of construct computed from data

9

Example — Study of shapes

10

ConstructsPopulation

Measure
Sample
of population

Real world

Study

shape
size
filled / empty
color

is blue

size < 10

(Some) types of validity
• Validity = should you believe a result

• Construct validity
- Does measure correspond to construct, or something

else?

• External validity
- Do results generalize from participants to population?

• Internal validity (experiments only)
- Are the differences between conditions caused only by

experimental manipulation and not other variables?
(confounds)

11

Example: Typed vs. untyped languages

12

Participants 26 undergrads

Setup

Task write a parser

new OO language 16 hr instructions

27 hrs

Conditions type system no type system

RESULTS
Developers with untyped version significantly faster

completing task to same quality level (unit tests).

S. Hanenberg. (2009). What is the impact of static type systems on
programming time? In the PLATEAU workshop, OOPSLA 09.

vs.
found errors at compile time errors detected at runtime

Example: Study validity
• Construct validity

-Does measure correspond to construct or something else?

• External validity
-Do results generalize from participants to population?

• Internal validity (experiments only)
-Are the differences between conditions caused only by
experimental manipulation and not other variables?
(confounds)

• Other reasons you’re skeptical about results?

13

Good (not perfect) study designs
• Goals

 Maximize validity — often requires more
 participants, data collected, measures
 longer tasks
 more realistic conditions

 Minimize cost — often requires
 fewer participants, data collected, measures
 shorter tasks
 less realistic, easier to replicate conditions

• Studies are not proofs: results could always be invalid
 don’t sample all developers, or tasks, or situations
 measures imperfect

• Goal is to find results that are
 interesting 
 relevant to research questions
 valid enough your target audience believes them

14

Overview

15

Deciding who to recruit
• Inclusion criterion: attributes participants must have to be

included in study

• Goal: reflect characteristics of those that researchers believe
would benefit

• Example: Nimmer & Ernst (2002) “Invariant inference for static
checking: An empirical evaluation”
- Support those without experience of similar inference tools
- Chose graduate students
- Developed items to assess

(1) no familiarity with tool, (2) experience with Java
(3) experience writing code

16

Common inclusion criteria
for Software Studies

• Experience w/ a programming language

- Self-estimation of expertise; time

• Experience w/ related technologies

- Important for learning new tool

• Industry experience

- Indicator of skills & knowledge; could also ask directly

• (Natural) language proficiency

17

Poor criteria: Paper authors
• 62% of studies evaluating a

tool involved tool’s authors
using the tool & reporting
personal experiences

• Tool authors far more likely
to use own tool successfully
than those new to tool

• Tool authors more likely to
overlook weaknesses of tool

18

Proportion of evaluations involving humans in
which authors were study participants

What about using students?
• 72% of 113 SE experiments 1993–2002 used students

[Sjoberg 2005]

• 23% reported using students in studies 2001–2011 (many did
not report if, or if not)

• Students can be too inexperienced to be representative of
tools intended users; observer-expectancy effect

• But
- depends on task & necessary expertise
- professional masters students may have industry

experience
- can minimize observer-expectancy effect

19

How many participants?
• More participants ⇒ more statistical power

- higher chance to observe actual differences

- power analysis — given assumptions about
expected effect size and variation, compute
participants number

• Experiments recruited median 36 participants, median
18 per condition

- Some studies smaller

20

Recruiting participants

• Marketing problem: how to attract participants who
meet inclusion criteria

• Questions:

- Where do such participants pay attention?

- What incentives to offer for participation?

21

Sources of participants
• Students

- Class announcement, fliers, emailing lists

- Incentives: small compensation & intrinsic interest

• Software professionals

- Relationships w/ industry researchers

- Studies by interns at companies

- Partnerships or contracts with companies

- In-house university software teams

- Meetup developer groups, public mailing lists, FB groups

- CS Alumni mailing lists, LinkedIn groups
22

Remote participants
• Online labor markets focused on, or including, developers

(e.g., MTurk, oDesk, TopCoder)

• Pros
- Can quickly recruit hundreds or thousands of participants

- Use their own space & tools; work at own time

• Cons
- May misreport levels of experience

- Might leave task temporarily; more extraneous variation

23

Remote participants: MTurk example
• Recruited participants from MTurk across 96 hours

• Used qualification test to screen for programming
expertise
- multiple choice question about program output

• Paid $5 for <= 30 mins

24

Participant numbers:

4776
completed
informed
consent

3699
took

qualification
test

999

qualified

777

completed
1 task

489

completed
all tasks

Overview

25

Informed consent
• Enables participants to decide to participate given a short document

• Key elements
- Names & contact info for you and other experimenters

- Purpose of the study

- Brief (one or two sentence) high-level description of the types of work
participants will be asked to do

- Expected length of the study

- A statement of any possible benefits or compensation

- A statement of any possible risks or discomforts

- Overview of the data you will collect (think-aloud, screencast, survey
questions, etc.)

- Clear statement on confidentiality of data (who will have access?)

26

27

IRB Approval
• US universities have an Institutional Review Board

(IRB) responsible for ensuring human subjects
treated ethically

• Before conducting a study with human subjects:
• Must complete human subjects training (first time only)

• Submit an application to IRB for approval (2–??? week
approval time)

• During a study:

• Must administer “informed consent” describing
procedures of study and any risks to participants

28

Overview

29

Collecting demographic data

• Goal: understand expertise, background, tool
experience, …

• Interviews — potentially more comfortable,
informative
- Before or after tasks

• Surveys — more consistent, can be used to test
against inclusion criteria during recruiting

30

Assigning participants to an
experimental condition

• Random assignment

- distributes random variation in participant skills and
behavior across all conditions

- minimizes chance that observed difference is due to
participant differences

• Used with a between-subjects experiment
- (each participant is subjected to just one condition)

• Alternative designs can reduce number of participants
necessary to recruit

31

Within-subjects design

• All participants use all tools being compared, one at a time, across
several tasks

- e.g., participant uses tool in task 1 but not task 2

• Learning effect — doing first task may increase performance on
second task

• —> Counterbalancing — randomize order of tasks, & on which
task, participants use each tool

- Latin Square design
32

no two rows or
columns the same

Interrupted time-series design

• Measure outcome variable before tool introduced,
after introduced, after removing tool

• Can see possible causal effects of tool

• Enables participants to articulate effects of tool

• Could be “trial run” of new tool in a field
deployment of tool to a company

33

Overview

34

Training participants

• Participants need to know:
- how to use tools in the given environment
- terminology & domain knowledge used in task
- design of programs they will work with during

task

• Can provide background and tutorial materials to
ensure participants have required knowledge.

35

To train or not to train?
• This is a key question. Training changes assumptions

about context to which the results may apply

• Training
- Ensures participants are proficient and focused on

the task

• No training
- Results generalize to new (untrained) users, but risks

study being dominated by learning

• Software studies often choose to provide training
materials for tool

36

Design of training materials
• Goal: teach required concepts quickly & effectively

• Possible approaches

- Background materials

- Video instructions

- Tutorial where participants complete example task w/ tool

- Cheat sheets

• Can also include assessment to ensure learning

• Can be helpful for experimenter to answer participant
questions

37

Overview

38

Tasks
• Goal: design tasks that have coverage of work affected

by tool

• Key tradeoff: realism vs. control

- How are real, messy programming tasks distilled into
brief, accessible, actionable activities?

• More realism ⇒ messier, fewer controls

• More control ⇒ cleaner, less realism

• Tradeoff often takes the form of tradeoff between bigger
tasks vs. smaller tasks

39

Feature coverage

• Of all functionality and features of tool, which will
receive focus in tasks?

• More features ⇒ more to learn, more variation in
performance, higher risk of undue negative results

• Fewer features ⇒ less to learn, less ecological
validity, more likely to observe differences

40

Experimental setting
• Experiments can be conducted in lab or in

developer’s actual workspace

• Experiments most often conducted in lab (86%)

- Enables control over environment

- Can minimize distractions

- But: less realism, as may have different computer,
software, … from participants’ normal setting

41

Task origin
• Found task — task from real project (15%)

- e.g., bug fix task from an OSS project

- More ecologically valid

- May not exist for new tools

- Can be hard to determine what feature usage found
task will lead to

• Synthetic task — designed task (85%)

- Can be easier to tailor for effective feature coverage

- Must compare synthetic task to real tasks

42

Task duration
• Unlimited time to work on a task

- Allow either participant or experimenter to determine
when task is complete

- Hard to find participants willing to work for longer time
periods

• Fixed time limit

- More control over how participants allocate time across
tasks

- Can introduce floor effect in time measures, where no
one can complete task in time

• Typical length of 1–2 hours
43

Measuring outcomes
• Wide range of possible measures

- Task completion, time on task, mistakes

- Failure detection, search effort

- Accuracy, precision, correctness, quality

- Program comprehension, confidence

• Most frequent: success on task, time on task, tool
usefulness

44

Determining when goal is reached

• Experimenter watches participant for success

- Requires consistency, which can be challenging

• Success is automatically measured (e.g., unit tests)

- Requires researcher to identify all goal states in
advance, which can be challenging

• Participants determine they believe they have succeeded

- Most ecologically valid

- Introduces variation, as participants may vary in
confidence they obtain before reporting they are done

45

Defining success to participants

• Need to unambiguously communicate goal to
participants

• When participants themselves determine, may ask
experimenter about what is success

- Experimenter can reiterate instructions from
beginning

• When experimenter determines

- Experimenter should respond “I am unable to
answer that question”

46

Measuring time on task
• Need to define task start, task end, and who determines

when task has finished

• What is start?

- When participant starts reading task — includes
variation in time spent reading

- When participants starts working

• What is end?

- What happens if participant succeeds but does not
realize it?

- What happens if they think they succeeded, but
failed?

47

Measuring usefulness
• Usefulness — does the tool provide functionality that

satisfies a user need or provides a benefit?

- Not “usability” — ease of use for task

• Might ask subject

- Did they find the tool useful?

- Would they consider using it in the future?

• Technology Acceptance Model

- Validated instrument for measuring usefulness
through a questionnaire

48

Overview

49

Debriefing & compensation
• Explain to participant what study investigated
• Explain the correct solutions to tasks
• Instructions about information that should not be

shared with others
- e.g., don’t share tasks with friends who might

participate
• Get speculative feedback about tool

- Can use semi-structured interview to get
perceptions of tool

50

Piloting
Most important step in ensuring useful results!

(1) Run study on small (1–4) number of participants

(2) Fix problems with study design:
 Was the tool tutorial sufficient?
 Did tasks use your tool? Enough?
 Did subjects understand your materials?
 Did you collect the right data?
 Are your measures correct?
(3) Fix usability problems
 Are developers doing the “real” task, or messing with tool?
 Are users confused by terminology in tool?
 Do supported commands match commands users expect?

(4) Repeat 1, 2, and 3 until no more (serious) problems

51

Done!

52

Qualitative data

On the value of qualitative data

• Experiment may provide evidence that A is
“better” than B

• But always generalizability questions about why
and when

• Qualitative data offers possibility of explanation:
why result occurred.

• Can use coding to convert qualitative data to
categorical data, which can be counted or
associated with time to create quantitative data

54

Collecting qualitative data
• Screencasts

- Record screen as participants do tasks
Many video recorders (e.g., SnagIt)

- Offers insight into what participants did
• What was time consuming?

- Permits quantitative analysis of steps & actions
• Can code more fine-grained time data

- Does not provide insight into why developers did
what they did

55

Collecting qualitative data

• Think-aloud

- Ask participants to verbalize what they are
thinking as they work

- Prompt participants when they stop talking for
more than a minute or two

- Offers insight into why participants are doing
what they are doing
• What barriers are preventing progress on task?

56

Analyzing qualitative data
1. open coding: read through the text
 look for interesting things relevant to research questions
 add notes in the margin (or column of spreadsheet)
 add “codes” naming what you saw
 make up codes as you go, not systematic

2. axial coding: how are open codes related to each other?
 look for patterns: causality, ordering, alternatives, groups

3. selective coding: from initial codes, select interesting ones
 which codes relate to interesting findings?
 from initial examples, build definitions of when a code applies
 systematically reanalyze data and apply codes

4. second coder (optional)
 2nd person independently applies codes from definitions
 check for inter-rater reliability: if low, iterate defns, try again

57

Example

REACHER:
Interactive, compact visualization of control flow

59

	

Method		
						12	developers																									15	minutes	to	answer	6	reachability	ques6ons	

Tasks	

					Based	on	developer	ques6ons	in	prior	observa6ons	of	developers.	

					Example:	

					When	a	new	view	is	created	in	jEdit.newView(View),	what	messages,	in			
					what	order,	may	be	sent	on	the	EditBus	(EditBus.send())?	

Evaluation

60

Does	REACHER	enable	developers	to	answer	reachability	
ques6ons	faster,	or	more	successfully?

(order	counterbalanced)

Developers	with	REACHER	
were	5.6	6mes	more	
successful	than	those	
working	with	Eclipse	only.	

61

Task	6me	includes	only	successful	par6cipants.	

(not	enough	successful	to	
compare	6me)	

Results

REACHER helped developers stay oriented

62

When	not	using	REACHER,	par6cipants	oNen	reported	being	lost	and	confused.

Par6cipants	with	REACHER	used	it	to	jump	between	
methods.

“Where	am	I?	I’m	so	lost.”	
“These	call	stacks	are	horrible.”	
“There	was	a	 call	 to	 it	here	 somewhere,	
but	I	don’t	remember	the	path.”	
“I’m	just	too	lost.”

“It	seems	pretty	cool	 if	you	can	navigate	
your	way	around	a	complex	graph.”

“I	like	it	a	lot.	It	seems	like	an	easy	way	to	navigate	the	code.	And	the	view	
maps	to	more	of	how	I	think	of	the	call	hierarchy.”	
“REACHER	was	my	hero.	…	It’s	a	lot	more	fun	to	use	and	look	at.”	
“You	don’t	have	to	think	as	much.”

Par6cipants	reported	that	they	liked	working	with	REACHER.

Conclusions
• Controlled experiments with humans can

demonstrate causal relationship between tool &
productivity effects of tool
- But: results are valid only in specific context

where study conducted
• Key role for more research to understand

representativeness of context

- High value in qualitative understanding of
productivity effects to help bridge this gulf

63

Resources
• Andrew J. Ko, Thomas D. LaToza, and Margaret M. Burnett. (2015)

A practical guide to controlled experiments of software engineering
tools with human participants. Empirical Software Engineering, 20
(1), 110-141.

• Robert Rosenthal & Ralph Rosnow. (2007). Essentials of Behavioral
Research: Methods and Data Analysis. McGraw-Hill.

• Forrest Shull, Janice Singer, Dag I.K. Sjoberg (eds). (2008). Guide to
Advanced Empirical Software Engineering. Springer-Verlag, London.

• D. I. K. Sjoeberg, J. E. Hannay, O. Hansen, et al. (03 September
2005). A survey of controlled experiments in software engineering.
IEEE Transactions on Software Engineering, Vol. 31, No. 9. pp.
733-753.

64

