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Motivation
• Evaluate the usability of a feature or tool to its 

users 

- usually productivity effects 

- perhaps security, correctness ... 

• Given a context, what is effect of your tool or 
technique on its intended audience
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Issues for Studies with 
Human Subjects

• How many participants do I need? 

• Is it ok to use students? 

• What do I measure? How do I measure it? 

• What’s an IRB? 

• Should I train participants? 

• What tasks should I pick?
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Data on how software engineering community 
conducts experiments w/ humans

• Systematic review of 1701 software engineering articles 

- All papers published at ICSE, FSE, TSE, TOSEM 
2001 - 2011
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Controlled experiment
• Only way to argue causality: change in var x causes change in var y 

• Manipulate independent variables 
     Creates “conditions” that are being compared 
     Can have >1, but number of conditions usually exponential in 
          number of independent variables 

• Measure dependent variables (a.k.a “measures”) 
     Quantitative variable you calculate from collected data 
          e.g., time, nr of questions, nr of steps 

• Randomly assign participants to condition 
      Ensure that participants differ only in condition 
      Not different in other confounding variables 

• Test hypotheses 
     Change in independent variable causes dependent variable to 
             change 
     e.g., t-test, ANOVA, other statistical techniques         
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Anatomy of controlled 
experiment w/ humans
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Terminology
• “Tool” — any intervention manipulating a subject’s work 

environment 

- e.g., in software engineering: programming language, 
language feature, software development environment feature, 
build system tool, API design, documentation technique 

• Data — what you collected in study 

• Unit of analysis — individual item of data 

• Population — all members that exist 

• Construct — some property of member 

• Measure — approximation of construct computed from data
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Example — Study of shapes
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(Some) types of validity
• Validity = should you believe a result 

• Construct validity 
- Does measure correspond to construct, or something 

else? 

• External validity 
- Do results generalize from participants to population? 

• Internal validity (experiments only) 
- Are the differences between conditions caused only by 

experimental manipulation and not other variables? 
(confounds)        
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Example: Typed vs. untyped languages
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Participants 26 undergrads

Setup

Task write a parser

new OO language 16 hr instructions

27 hrs

Conditions type system no type system

RESULTS
Developers with untyped version significantly faster 

completing task to same quality level (unit tests).

S. Hanenberg. (2009). What is the impact of static type systems on 
programming time? In the PLATEAU workshop, OOPSLA 09.

vs.
found errors at compile time errors detected at runtime



Example: Study validity
• Construct validity 

-Does measure correspond to construct or something else? 

• External validity 
-Do results generalize from participants to population? 

• Internal validity (experiments only) 
-Are the differences between conditions caused only by 
experimental manipulation and not other variables? 
(confounds) 

• Other reasons you’re skeptical about results?
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Good (not perfect) study designs
• Goals 

       Maximize validity — often requires more 
            participants, data collected, measures 
            longer tasks 
            more realistic conditions 

       Minimize cost — often requires 
            fewer participants, data collected, measures 
            shorter tasks 
            less realistic, easier to replicate conditions 

• Studies are not proofs: results could always be invalid 
       don’t sample all developers, or tasks, or situations 
       measures imperfect 

• Goal is to find results that are  
       interesting 
       relevant to research questions 
       valid enough your target audience believes them
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Overview
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Deciding who to recruit
• Inclusion criterion: attributes participants must have to be 

included in study 

• Goal: reflect characteristics of those that researchers believe 
would benefit  

• Example:  Nimmer & Ernst (2002) “Invariant inference for static 
checking: An empirical evaluation” 
- Support those without experience of similar inference tools 
- Chose graduate students 
- Developed items to assess  

(1) no familiarity with tool,      (2) experience with Java  
(3) experience writing code
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Common inclusion criteria 
for Software Studies

• Experience w/ a programming language 

- Self-estimation of expertise; time 

• Experience w/ related technologies 

- Important for learning new tool 

• Industry experience

- Indicator of skills & knowledge; could also ask directly 

• (Natural) language proficiency
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Poor criteria: Paper authors
• 62% of studies evaluating a 

tool involved tool’s authors 
using the tool & reporting 
personal experiences 

• Tool authors far more likely 
to use own tool successfully 
than those new to tool 

• Tool authors more likely to 
overlook weaknesses of tool
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What about using students?
• 72% of 113 SE experiments 1993–2002 used students  

[Sjoberg 2005] 

• 23% reported using students in studies 2001–2011 (many did 
not report if, or if not) 

• Students can be too inexperienced to be representative of 
tools intended users; observer-expectancy effect 

• But 
- depends on task & necessary expertise 
- professional masters students may have industry 

experience 
- can minimize observer-expectancy effect
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How many participants?
• More participants ⇒ more statistical power 

- higher chance to observe actual differences 

- power analysis — given assumptions about 
expected effect size and variation, compute 
participants number 

• Experiments recruited median 36 participants, median 
18 per condition 

- Some studies smaller
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Recruiting participants

• Marketing problem: how to attract participants who 
meet inclusion criteria 

• Questions: 

- Where do such participants pay attention? 

- What incentives to offer for participation?
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Sources of participants
• Students 

- Class announcement, fliers, emailing lists 

- Incentives: small compensation & intrinsic interest 

• Software professionals 

- Relationships w/ industry researchers 

- Studies by interns at companies 

- Partnerships or contracts with companies 

- In-house university software teams 

- Meetup developer groups, public mailing lists, FB groups 

- CS Alumni mailing lists, LinkedIn groups
22



Remote participants
• Online labor markets focused on, or including, developers 

(e.g., MTurk, oDesk, TopCoder) 

• Pros 
- Can quickly recruit hundreds or thousands of participants 

- Use their own space & tools; work at own time 

• Cons 
- May misreport levels of experience 

- Might leave task temporarily; more extraneous variation
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Remote participants: MTurk example
• Recruited participants from MTurk across 96 hours 

• Used qualification test to screen for programming 
expertise 
- multiple choice question about program output 

• Paid $5 for <= 30 mins
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Overview
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Informed consent
• Enables participants to decide to participate given a short document 

• Key elements 
- Names & contact info for you and other experimenters 

- Purpose of the study 

- Brief (one or two sentence) high-level description of the types of work 
participants will be asked to do 

- Expected length of the study 

- A statement of any possible benefits or compensation 

- A statement of any possible risks or discomforts 

- Overview of the data you will collect (think-aloud, screencast, survey 
questions, etc.) 

- Clear statement on confidentiality of data (who will have access?)

26



27



IRB Approval
• US universities have an Institutional Review Board 

(IRB) responsible for ensuring human subjects 
treated ethically 

• Before conducting a study with human subjects: 
• Must complete human subjects training (first time only) 

• Submit an application to IRB for approval (2–??? week 
approval time) 

• During a study: 

• Must administer “informed consent” describing 
procedures of study and any risks to participants
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Overview
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Collecting demographic data

• Goal: understand expertise, background, tool 
experience, … 

• Interviews — potentially more comfortable, 
informative 
- Before or after tasks 

• Surveys — more consistent, can be used to test 
against inclusion criteria during recruiting
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Assigning participants to an 
experimental condition

• Random assignment 

- distributes random variation in participant skills and 
behavior across all conditions 

- minimizes chance that observed difference is due to 
participant differences 

• Used with a between-subjects experiment 
- (each participant is subjected to just one condition)  

• Alternative designs can reduce number of participants 
necessary to recruit
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Within-subjects design

• All participants use all tools being compared, one at a time, across 
several tasks 

- e.g., participant uses tool in task 1 but not task 2 

• Learning effect — doing first task may increase performance on 
second task 

• —> Counterbalancing — randomize order of tasks, & on which 
task, participants use each tool  

- Latin Square design
32

no two rows or 
columns the same



Interrupted time-series design

• Measure outcome variable before tool introduced, 
after introduced, after removing tool 

• Can see possible causal effects of tool 

• Enables participants to articulate effects of tool   

• Could be “trial run” of new tool in a field 
deployment of tool to a company
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Training participants

• Participants need to know: 
- how to use tools in the given environment 
- terminology & domain knowledge used in task 
- design of programs they will work with during 

task 

• Can provide background and tutorial materials to 
ensure participants have required knowledge.
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To train or not to train?
• This is a key question.  Training changes assumptions 

about context to which the results may apply 

• Training 
- Ensures participants are proficient and focused on 

the task 

• No training 
- Results generalize to new (untrained) users, but risks 

study being dominated by learning 

• Software studies often choose to provide training 
materials for tool
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Design of training materials
• Goal: teach required concepts quickly & effectively 

• Possible approaches 

- Background materials 

- Video instructions 

- Tutorial where participants complete example task w/ tool 

- Cheat sheets 

• Can also include assessment to ensure learning 

• Can be helpful for experimenter to answer participant 
questions

37



Overview
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Tasks
• Goal: design tasks that have coverage of work affected 

by tool 

• Key tradeoff: realism vs. control 

- How are real, messy programming tasks distilled into 
brief, accessible, actionable activities? 

• More realism ⇒ messier, fewer controls 

• More control ⇒ cleaner, less realism 

• Tradeoff often takes the form of tradeoff between bigger 
tasks vs. smaller tasks
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Feature coverage

• Of all functionality and features of tool, which will 
receive focus in tasks? 

• More features ⇒ more to learn, more variation in 
performance, higher risk of undue negative results 

• Fewer features ⇒ less to learn, less ecological 
validity, more likely to observe differences
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Experimental setting
• Experiments can be conducted in lab or in 

developer’s actual workspace 

• Experiments most often conducted in lab (86%) 

- Enables control over environment 

- Can minimize distractions 

- But: less realism, as may have different computer, 
software, … from participants’ normal setting
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Task origin
• Found task — task from real project (15%) 

- e.g., bug fix task from an OSS project 

- More ecologically valid 

- May not exist for new tools 

- Can be hard to determine what feature usage found 
task will lead to 

• Synthetic task — designed task (85%) 

- Can be easier to tailor for effective feature coverage 

- Must compare synthetic task to real tasks
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Task duration
• Unlimited time to work on a task 

- Allow either participant or experimenter to determine 
when task is complete 

- Hard to find participants willing to work for longer time 
periods 

• Fixed time limit 

- More control over how participants allocate time across 
tasks 

- Can introduce floor effect in time measures, where no 
one can complete task in time 

• Typical length of 1–2 hours
43



Measuring outcomes
• Wide range of possible measures 

- Task completion, time on task, mistakes 

- Failure detection, search effort 

- Accuracy, precision, correctness, quality 

- Program comprehension, confidence 

• Most frequent: success on task, time on task, tool 
usefulness
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Determining when goal is reached

• Experimenter watches participant for success 

- Requires consistency, which can be challenging 

• Success is automatically measured (e.g., unit tests) 

- Requires researcher to identify all goal states in 
advance, which can be challenging 

• Participants determine they believe they have succeeded 

- Most ecologically valid 

- Introduces variation, as participants may vary in 
confidence they obtain before reporting they are done
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Defining success to participants

• Need to unambiguously communicate goal to 
participants 

• When participants themselves determine, may ask 
experimenter about what is success 

- Experimenter can reiterate instructions from 
beginning 

• When experimenter determines 

- Experimenter should respond “I am unable to 
answer that question”
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Measuring time on task
• Need to define task start, task end, and who determines 

when task has finished 

• What is start? 

- When participant starts reading task — includes 
variation in time spent reading 

- When participants starts working 

• What is end? 

- What happens if participant succeeds but does not 
realize it? 

- What happens if they think they succeeded, but 
failed?
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Measuring usefulness
• Usefulness — does the tool provide functionality that 

satisfies a user need or provides a benefit? 

- Not “usability” — ease of use for task 

• Might ask subject 

- Did they find the tool useful? 

- Would they consider using it in the future? 

• Technology Acceptance Model 

- Validated instrument for measuring usefulness 
through a questionnaire 
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Debriefing & compensation
• Explain to participant what study investigated 
• Explain the correct solutions to tasks 
• Instructions about information that should not be 

shared with others  
- e.g., don’t share tasks with friends who might 

participate 
• Get speculative feedback about tool 

- Can use semi-structured interview to get 
perceptions of tool
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Piloting
Most important step in ensuring useful results! 

(1) Run study on small (1–4) number of participants 

(2) Fix problems with study design: 
      Was the tool tutorial sufficient? 
      Did tasks use your tool? Enough? 
      Did subjects understand your materials? 
      Did you collect the right data? 
      Are your measures correct? 
(3) Fix usability problems 
      Are developers doing the “real” task, or messing with tool? 
      Are users confused by terminology in tool? 
      Do supported commands match commands users expect? 

(4) Repeat 1, 2, and 3 until no more (serious) problems
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Done!
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Qualitative data



On the value of qualitative data

• Experiment may provide evidence that A is 
“better” than B 

• But always generalizability questions about why 
and when

• Qualitative data offers possibility of explanation: 
why result occurred.  

• Can use coding to convert qualitative data to 
categorical data, which can be counted or 
associated with time to create quantitative data
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Collecting qualitative data
• Screencasts 

- Record screen as participants do tasks 
Many video recorders (e.g., SnagIt) 

- Offers insight into what participants did 
• What was time consuming? 

- Permits quantitative analysis of steps & actions 
• Can code more fine-grained time data 

- Does not provide insight into why developers did 
what they did

55



Collecting qualitative data

• Think-aloud 

- Ask participants to verbalize what they are 
thinking as they work 

- Prompt participants when they stop talking for 
more than a minute or two 

- Offers insight into why participants are doing 
what they are doing 
• What barriers are preventing progress on task?
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Analyzing qualitative data
1. open coding: read through the text 
             look for interesting things relevant to research questions 
             add notes in the margin (or column of spreadsheet) 
             add “codes” naming what you saw 
             make up codes as you go, not systematic 

2. axial coding: how are open codes related to each other? 
            look for patterns: causality, ordering, alternatives, groups 

3. selective coding: from initial codes, select interesting ones 
            which codes relate to interesting findings? 
            from initial examples, build definitions of when a code applies 
            systematically reanalyze data and apply codes 

4. second coder (optional) 
            2nd person independently applies codes from definitions 
            check for inter-rater reliability: if low, iterate defns, try again
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Example



REACHER: 
Interactive, compact visualization of control flow
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Method		
						12	developers																									15	minutes	to	answer	6	reachability	ques6ons	

Tasks	

					Based	on	developer	ques6ons	in	prior	observa6ons	of	developers.	

					Example:	

					When	a	new	view	is	created	in	jEdit.newView(View),	what	messages,	in			
					what	order,	may	be	sent	on	the	EditBus	(EditBus.send())?	

Evaluation

60

Does	REACHER	enable	developers	to	answer	reachability	
ques6ons	faster,	or	more	successfully?

(order	counterbalanced)



Developers	with	REACHER	
were	5.6	6mes	more	
successful	than	those	
working	with	Eclipse	only.	

61

Task	6me	includes	only	successful	par6cipants.	

(not	enough	successful	to	
compare	6me)	

Results



REACHER helped developers stay oriented 
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When	not	using	REACHER,	par6cipants	oNen	reported	being	lost	and	confused.

Par6cipants	with	REACHER	used	it	to	jump	between	
methods.

“Where	am	I?	I’m	so	lost.”	
“These	call	stacks	are	horrible.”	
“There	was	a	 call	 to	 it	here	 somewhere,	
but	I	don’t	remember	the	path.”	
“I’m	just	too	lost.”

“It	seems	pretty	cool	 if	you	can	navigate	
your	way	around	a	complex	graph.”

“I	like	it	a	lot.	It	seems	like	an	easy	way	to	navigate	the	code.	And	the	view	
maps	to	more	of	how	I	think	of	the	call	hierarchy.”	
“REACHER	was	my	hero.	…	It’s	a	lot	more	fun	to	use	and	look	at.”	
“You	don’t	have	to	think	as	much.”

Par6cipants	reported	that	they	liked	working	with	REACHER.



Conclusions
• Controlled experiments with humans can 

demonstrate causal relationship between tool & 
productivity effects of tool 
- But: results are valid only in specific context 

where study conducted 
• Key role for more research to understand 

representativeness of context 

- High value in qualitative understanding of 
productivity effects to help bridge this gulf 
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