
Scholarship Skills

Andrew BlackLecture 19 1

Scholarship Skills

Andrew Black, PSU

Figures, Tables & Graphics

Scholarship Skills

Andrew BlackLecture 19 2

Sources

Displaying Your Findings: A
Practical Guide for Creating
Figures, Posters, and
Presentations  
Adelheid A. M. Nicol and
Penny M. Pexman. American
Psychological Association.
2003

Used at Powell’s and Amazon  
(<$10) Practical,

somewhat
obvious,
guidelines.

Scholarship Skills

Andrew BlackLecture 19 3

The Visual Display of
Quantitative Information
(2nd ed.). Edward Tufte.
Graphics Press, 2001.  
At Powell’s and Amazon  
($30)

Elevating,
beautiful, even
spiritual, one of the
great books of the
20th century — but
can be hard to put
into practice

Scholarship Skills

Andrew BlackLecture 19 4

Visualizations Work

Scholarship Skills

Andrew BlackLecture 19

From Tufte:

5

How do these measurements compare?

Lets’ try some statistics:

Scholarship Skills

Andrew BlackLecture 19 6

Now let’s try some graphs:

Scholarship Skills

Andrew BlackLecture 19

Detect outliers:

7

Scholarship Skills

Andrew BlackLecture 19

A Data-rich graphic:

8

TGV: 1981

Scholarship Skills

Andrew BlackLecture 19

Dupré Segment 122

Explicit examples are more interesting
and informative than vague examples

9

The patient presents
with a symptom, and
the doctor must
decide whether to
order diagnostic tests,
and whether to
prescribe treatment.

Scholarship Skills

Andrew BlackLecture 19

Dupré Segment 122

Explicit examples are more interesting
and informative than vague examples

10

The patient presents with a
history of fainting, and the
physician must help the
patient to decide whether to
undergo arrhythmia
mapping (an invasive
procedure), and whether to
take antiarrhythmic drugs
(which have unpleasant side
effects).

Scholarship Skills

Andrew BlackLecture 19 11

What’s a Figure?

Any kind of graph, chart, plot, drawing,
or photograph…

that is not a table, and is not running text.
code segments can be figures

Three parts to a figure:
1. Graph or graphic
2. Legend
3. Caption

Scholarship Skills

Andrew BlackLecture 19 12

Anatomy of a Figure
from Nicol & Pexman

Scholarship Skills

Andrew BlackLecture 19 13

General Guidelines for Figures

Figure must be relevant to the paper
it should move the story along

Image should be as simple as possible
no chartjunk!

Labels should be concise
Fonts in all figures should be consistent
Avoid color in figures for journal articles,

conference proceedings, etc.
Specify units within the figure
Figures should stand alone

 all information necessary to interpret the figure
should be included in the caption.

Scholarship Skills

Andrew BlackLecture 19 14

Points to Watch
Figures may be reduced to fit the page

Are they still legible? Is the type size still
appropriate?

Sans serif fonts scale better than serif fonts
Similar figures (within same article) have

similar style
All text in same font style, and point sizes don’t

vary by more than 40%.

Scholarship Skills

Andrew BlackLecture 19

Dazzle Camouflage

15

0
10
20
30
40
50
60
70
80
90

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

East
West
North

Scholarship Skills

Andrew BlackLecture 19

Use shading carefully

16

0
10
20
30
40
50
60
70
80
90

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

East
West
North

Scholarship Skills

Andrew BlackLecture 19 17

Prefer Grayscale

Scholarship Skills

Andrew BlackLecture 19 18

Make the figure easy to read

Avoid Bogus use of 3D
Put legend in the image, not next to the image

better: avoid legend by labeling the graph directly
Omit gridlines, or use a pale grey
Omit “walls”

0
10
20
30
40
50
60
70
80
90

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

East
West
North

0
10
20
30
40
50
60
70
80
90

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

East
West
North

Scholarship Skills

Andrew BlackLecture 19 19

1: Bar
Charts

Scholarship Skills

Andrew BlackLecture 19 20

Another
version

Adds numbers  
to the top of
the columns
— better than
gridlines

Scholarship Skills

Andrew BlackLecture 19 21

Adding graphics to a tableIEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. T, MONTH YEAR 8

Category JDT CDT RDT HaRe
analysis problem 0 0 0 0

inaccurate analysis 35 4 2 2
incompatibility 5 1 0 0
compilation errors 27 1 3 0
internal error 24 5 0 36
inconsistent state 15 2 0 0

unsaved 4 1 0 0
deleted 4 0 0 0

misselection 0 0 0 0
selection not understood 30 26 19 33
improper quantity 0 5 0 2

misconfiguration 3 0 0 0
illegal name 6 7 1 15
unconventional name 11 0 0 0
identity configuration 4 0 7 3
unbound configuration 7 2 0 2

unchangeable 3 0 0 0
unchangeable reference 2 0 0 0
unchangeable source 16 0 0 0
unchangeable target 12 0 0 0

unbinding 12 0 0 1
control unbinding 35 2 4 10
data unbinding 18 5 3 4
name unbinding 20 0 0 2
inheritance unbinding 11 0 1 0

clash 6 5 0 24
control clash 17 3 5 9
data clash 16 0 3 3
name clash 38 3 0 2
inheritance clash 9 0 0 0

inherent 0 0 0 0
context 38 0 7 4

own parent 4 0 0 0
structure 17 0 13 9
property 45 3 3 0

vague 37 1 0 22
unknown 6 1 2 21

TABLE 2
Our taxonomy of preconditions (column 1), with counts and bars indicating the number

of error messages in each category for each refactoring tool (columns 2–5).

6.2 Taxonomy Description
Table 2 displays our taxonomy. Categories are indented
when they are a subcategory; for instance, inaccurate
analysis is a kind of analysis problem. Note that the
number of error messages in each taxonomy category is
not indicative of the importance of a particular category.
This is because some general error messages that apply
to several refactorings appear just once, and also because
some tool categories are unpopulated because of the relative
immaturity of the tool.

Due to space constraints, we cannot describe each cat-
egory and how we applied our guidelines to it. Instead,
in Sections 6.2.1 through 6.2.3, we explain three of the
categories, give example error messages, and describe how
the guidelines apply in each category. We also provide
mockups of how Refactoring Annotations can be extended
to precondition violations in the taxonomy. An explanation
of every category listed in Table 2 can be found else-
where [10, p. 155–184].

6.2.1 Precondition Category: Illegal Name
Illegal name occurs when a programmer is choosing a name
for a program element to be created, but that name violates

the rules of the programming language.

Example: Illegal Name Errors
Tool Refactoring Message
JDT Multiple Type name cannot contain a dot (.).
CDT Multiple contains an unidentified mistake.
RDT RENAME Please enter a valid name for the

variable.
HaRe RENAME The new name should be an operator!

The expressiveness of representations of an illegal name
violation can be improved by indicating what character
or character combinations are invalid and, if possible,
what characters are valid. Locatability can be improved
by pointing at which entered character or characters are
invalid; Estimability can be improved by pointing at each
and every invalid character. Figure 6 shows an example of
what such a user interface might look like.

6.2.2 Precondition Category: Inheritance Unbinding

Inheritance unbinding occurs when the refactoring tool tries
to modify some code that contains inheritance relationships,
but doing so would break those relationships.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. T, MONTH YEAR 8

Category JDT CDT RDT HaRe
analysis problem 0 0 0 0

inaccurate analysis 35 4 2 2
incompatibility 5 1 0 0
compilation errors 27 1 3 0
internal error 24 5 0 36
inconsistent state 15 2 0 0

unsaved 4 1 0 0
deleted 4 0 0 0

misselection 0 0 0 0
selection not understood 30 26 19 33
improper quantity 0 5 0 2

misconfiguration 3 0 0 0
illegal name 6 7 1 15
unconventional name 11 0 0 0
identity configuration 4 0 7 3
unbound configuration 7 2 0 2

unchangeable 3 0 0 0
unchangeable reference 2 0 0 0
unchangeable source 16 0 0 0
unchangeable target 12 0 0 0

unbinding 12 0 0 1
control unbinding 35 2 4 10
data unbinding 18 5 3 4
name unbinding 20 0 0 2
inheritance unbinding 11 0 1 0

clash 6 5 0 24
control clash 17 3 5 9
data clash 16 0 3 3
name clash 38 3 0 2
inheritance clash 9 0 0 0

inherent 0 0 0 0
context 38 0 7 4

own parent 4 0 0 0
structure 17 0 13 9
property 45 3 3 0

vague 37 1 0 22
unknown 6 1 2 21

TABLE 2
Our taxonomy of preconditions (column 1), with counts and bars indicating the number

of error messages in each category for each refactoring tool (columns 2–5).

6.2 Taxonomy Description
Table 2 displays our taxonomy. Categories are indented
when they are a subcategory; for instance, inaccurate
analysis is a kind of analysis problem. Note that the
number of error messages in each taxonomy category is
not indicative of the importance of a particular category.
This is because some general error messages that apply
to several refactorings appear just once, and also because
some tool categories are unpopulated because of the relative
immaturity of the tool.

Due to space constraints, we cannot describe each cat-
egory and how we applied our guidelines to it. Instead,
in Sections 6.2.1 through 6.2.3, we explain three of the
categories, give example error messages, and describe how
the guidelines apply in each category. We also provide
mockups of how Refactoring Annotations can be extended
to precondition violations in the taxonomy. An explanation
of every category listed in Table 2 can be found else-
where [10, p. 155–184].

6.2.1 Precondition Category: Illegal Name
Illegal name occurs when a programmer is choosing a name
for a program element to be created, but that name violates

the rules of the programming language.

Example: Illegal Name Errors
Tool Refactoring Message
JDT Multiple Type name cannot contain a dot (.).
CDT Multiple contains an unidentified mistake.
RDT RENAME Please enter a valid name for the

variable.
HaRe RENAME The new name should be an operator!

The expressiveness of representations of an illegal name
violation can be improved by indicating what character
or character combinations are invalid and, if possible,
what characters are valid. Locatability can be improved
by pointing at which entered character or characters are
invalid; Estimability can be improved by pointing at each
and every invalid character. Figure 6 shows an example of
what such a user interface might look like.

6.2.2 Precondition Category: Inheritance Unbinding

Inheritance unbinding occurs when the refactoring tool tries
to modify some code that contains inheritance relationships,
but doing so would break those relationships.

10 CHAPTER 1. REFACTORING THEORY

! !

!"#"$%

&'"(%)*+

&()%),%" -.(*)/01" 23"$0%"

&(%"141"%5
6"70#%7

-#",(584

&(%"141"%5
211.1

6"*,$%.1
91"$017):";

!""#"

$%&'(&)*&+,
-&./0*

12

!%+3*4"*

8('.

5#"&,6"#7"48,!0&8&%*.,*#,-&94)*#"

Figure 1.5: A model of how programmers use conventional refactoring tools. Steps
outlined in black are the focus of this thesis.

a class, can be quite time-consuming to perform manually. They can be

accomplished almost instantly by a refactoring tool.

In short, refactoring tools allow us to program faster and with fewer mistakes —

but only if you choose to use them. Unfortunately, refactoring tools are not

being used as much as they could be (Chapter 2). My goal is to make tools

that programmers will choose to use more often. As a first step towards that

goal, I next describe a model with which to speak more generally about how

programmers use refactoring tools, without having to refer to specific tools or

specific refactorings.

1.5 A Model of How Programmers Use Refactoring Tools

Figure 1.5 shows my model of how programmers use conventional refactor-

ing tools. I started by examining Mealy and colleagues’ 4-step model [45],

Kataoka and colleagues’ 3-step model [35], Fowler’s description of small refac-

torings [23], and Lippert’s description of large refactorings [39]. I expanded

these simpler models into my new model by adding finer-grained steps, and the

possibility of a recursive workflow, based my own observations of programmers

Scholarship Skills

Andrew BlackLecture 19 22

Box and Arrow Diagram

Scholarship Skills

Andrew BlackLecture 19

More than one way to show a time-series:

23

Scholarship Skills

Andrew BlackLecture 19

Some Principles from Tufte

Show data variation, not design variation

24

five different vertical
scales,

two different
horizontal scales

on the left, $10 ~ 0.31 in2

on the right, $10 ~ 4.69 in2

Scholarship Skills

Andrew BlackLecture 19

The
real

story:

25

Business Week,  
April 9, 1979, p99

Scholarship Skills

Andrew BlackLecture 19

What’s wrong with this?

26

Scholarship Skills

Andrew BlackLecture 19

Number of
dimensions in
the graphic
should not
exceed the
number of
dimensions in
the data

• Number of
accounts,
average Lira
amount, and
date

27

Scholarship Skills

Andrew BlackLecture 19

Counter-example (from Playfair):
uses circles to show 1-dimensional population

28

Scholarship Skills

Andrew BlackLecture 19

Don’t show data
out of context

29

Scholarship Skills

Andrew BlackLecture 19

Let’s add some
context! A few
more data
points add
immensely to
the story:

30

Scholarship Skills

Andrew BlackLecture 19

Context is everything!

31

Scholarship Skills

Andrew BlackLecture 19

Tufte on Graphical Excellence

Graphical excellence is a matter of substance,
statistics and design

An excellent graphic communicates complex
ideas with clarity, precision and efficiency

An excellent graphic gives the viewer:
- the greatest number of ideas,
- in the shortest time,
- with the least ink,
- in the smallest space

- Excellent graphics are usually multivariate

- Excellent graphics tell the truth about the
data

32

