
Jeremy Lennert, Heuristic Language Analysis: Techniques and Applications – March 11, 2001 - 1 -

Heuristic Language Analysis:
Techniques and Applications

Jeremy Lennert

March 11, 2001

Abstract
In their 1993 paper, “Statistical Techniques for Language Recognition: An

Introduction and Guide for Cryptanalysts,” Ganesan and Sherman present several
statistical formulae useful for language recognition based on using a finite
stationary Markov as a model to represent language. In my project, I verify the
effectiveness of two of these formulae by examining the results when they are
applied to various text samples of known entropy, and apply them to aid in
automated ciphertext-only cryptanalysis of specific ciphers.

My automated cryptanalysis program functions by generating possible
decryption keys using language heuristics and applying one of the aforementioned
formulae to analyze the resulting decryption. The program continues to generate
possible decryption keys until the formula no longer shows an overall increase in
the likelihood that the resulting text is natural English.

1. Introduction
In February 1993, Ganesan and Sherman [1] presented statistical formulae for

testing four statistical problems; this paper deals with two of these formulae. The first is
a likelihood ratio test for recognizing a single known language and the second is a
uniformly most powerful statistical test for distinguishing a known language from
uniform noise. In this paper, their discriminatory power on text of known entropy is
investigated, and then their application in the automated cryptanalysis of simple ciphers
is explored.

Cryptographic Overview
Ciphers, commonly called “codes,” are methods for disguising a message so that

only the intended recipient can read the message. A certain secret, called a key, is known
to the sender and the intended recipient that allows them to conceal and read the message
using a cipher. Cryptography is the science of creating ciphers, and cryptanalysis is the
science of “breaking” ciphers. Cryptology is both sciences.

A message in its normal, readable state is referred to as a plaintext. When a
cipher is applied to a plaintext, it is said to be encrypted. The result is a ciphertext. By
applying the inverse cipher to the ciphertext, it is decrypted to the original plaintext, and
becomes readable again. The cryptanalysis described in this paper uses ciphertext-only
attacks, which means it is known what the message looks like after it has been encrypted,
but not what the original plaintext was.

Jeremy Lennert, Heuristic Language Analysis: Techniques and Applications – March 11, 2001 - 2 -

2. Statistical Tests
In ciphertext-only cryptanalysis, it is sometimes difficult to know when the

decryption is successful and the original plaintext is obtained, since the original plaintext
is unknown. It is therefore necessary to determine whether a candidate plaintext is
reasonable – for example, if the first line reads “Kienpoi aoieuli fskseoik 12xlkaoi7%,”
the decryption was probably not successful. However, if the first line reads “Attack at
dawn!” then it is likely the correct decryption has been found, because the later looks like
natural English.

The two statistical tests given by Ganesan and Sherman that are being used are
useful for recognizing a known language. The difference between the two is that the first
test generates the absolute probability that the text is the expected language, while the
second assumes that the text is either the expected language or uniform noise (a random
series of letters or, in the case of a computer, bits). Put another way, the first tests
“English” versus “not English,” and the second tests “English” versus “random.” The
two test statistics are given by the following equations:

NOTE: The use of logarithms makes it impossible to compute the summation over i, j where pij = 0.
Because skipping these intervals has the potential to invalidate the results, a very small value (10-4) is
substituted for pij where pij = 0.

In the case of a strong cipher, such as the new Advanced Encryption Standard
(AES), it is impossible to have a partially correct decryption; it is an all-or-nothing
proposition, and the cipher is specially designed so that incorrect decryptions look like
random noise. For this reason, the assumption made by the second test is valid – it will
be either a language or random noise. However, in the case of weak ciphers (those that
are easier to cryptanalyze) this may not be the case, because accuracy may not be as
absolute; it is possible to get only part of a key correct, resulting in some letters or words
correctly decrypted, but others still unreadable. One such cipher is called a substitution
cipher, in which each letter (or group of letters) is mapped to another arbitrary letter (or
group of letters). For this reason, it is necessary to compare the results of both tests on
various texts of known quality to determine their effectiveness at detecting correct
decryptions of weak ciphers.

Both tests rely on knowing the expected frequency of bigrams (pairs of adjacent
characters) in the target language. A fairly large sample of text (approximately 130,000
characters) was collected from the bodies of articles of on-line newspapers and was
analyzed to obtain these bigram frequencies. Afterward, the text sample was duplicated

Test #1 Test #2

Λ2 = (Σ nij ln pij) + N ln m
1 ≤ i, j ≤ m

Λ1 = Σ nij ln ()
1 ≤ i, j ≤ m

pij

pij
^

m = size of alphabet (26 for English, 256 for ASCII)

nij = number of occurrences of bigram ij

pij = expected probability of occurrence of bigram ij

pij = actual rate of occurrence of bigram ij^

m = size of alphabet (26 for English, 256 for ASCII)

nij = number of occurrences of bigram ij

pij = expected probability of occurrence of bigram ij

N = total number of overlapping bigrams

(N = length of message - 1)

Jeremy Lennert, Heuristic Language Analysis: Techniques and Applications – March 11, 2001 - 3 -

five times, and in each of the five copies a random selection of characters were arbitrarily
replaced with 0-2 random characters (approximately one of every fifteen letters in the
first copy, one of every twelve in the second, one of every nine in the third, one of every
seven in the fourth, and one of every five in the fifth).

Both tests were then used to evaluate first the original sample, and then each of
the five copies. This tests the effect of partial decryptions, random noise, and missing
data on their results. The following data was obtained:

Original Sample – Λ1 = 0 Λ2 = -14934.8

Copy #1 (1/15 altered) – Λ1 = 10050.9 Λ2 = -56608.4 (+379.0%)

Copy #2 (1/12 altered) – Λ1 = 11333.2 (+12.8%) Λ2 = -65113.5 (+15.0%)

Copy #3 (1/9 altered) – Λ1 = 14817.6 (+30.7%) Λ2 = -80781.8 (+24.1%)

Copy #4 (1/7 altered) – Λ1 = 18009.2 (+21.5%) Λ2 = -95978.3 (+18.8%)

Copy #5 (1/5 altered) – Λ1 = 22494.7 (+24.9%) Λ2 = -122426 (+27.6%)

As expected, both tests scored the increasingly corrupt texts increasingly poorly.
For the first test, lower scores indicate a higher probability that the sample corresponds to
the known language; for the second test, higher scores indicate the same probability.

Because both tests produced equivalent results, the second test was used for
cryptanalysis, because it requires less time to calculate (since the expected frequencies
are known in advance, their natural logarithms can also be calculated in advance; the
actual rate of occurrence is not known until run-time).

3. Cryptanalysis
The introduction of computers to the field of cryptology (during and after World

War II) revolutionized the field, primarily because it became feasible to “brute force” a
cipher by decrypting with every possible key until the correct decryption was found
(provided there are few enough possible keys). This has rendered virtually all ciphers
that are usable without computers obsolete. With the aid of computers, cryptanalysis of
many traditional ciphers can be done in minutes or seconds, rather than days.

In this project, a computer program was developed using one of Ganesan and
Sherman’s statistical formulae (see above) to automatically cryptanalyze certain ciphers.
Three simple ciphers are dealt with here: shift, eight-bit exclusive or (XOR), and general
substitution.

Program Structure
There are two major pieces to this automated decryption program: a

cryptanalyzing piece, which generates candidate keys, and a checker piece, which uses
one of Ganesan and Sherman’s formulae to evaluate those guesses.

The cryptanalyzing piece is further divided into algorithms for cryptanalyzing
different ciphers. When one of these algorithms is activated, it is given a time limit to
find the best key it can. It will continue generating candidate keys until the time limit is
up or it has exhausted its search space. Afterwards, another algorithm may be called if no
key found using the first cipher looks promising to the checker.

Keys are stored internally as a special data type, and each key knows how to use
itself to decrypt a message.

Jeremy Lennert, Heuristic Language Analysis: Techniques and Applications – March 11, 2001 - 4 -

Once the program is done, the checker reports the key with the best score so far,
and this is used to decrypt the original ciphertext. The resulting plaintext and the key are
reported to the user, along with the Λ2 score.

Shift Cipher
The shift is among the oldest known ciphers. It works by “adding” a number to

every letter in the plaintext to encrypt it; that is, by moving each letter forward through
the alphabet by a certain number of letters. If the end of the alphabet is reached, we start
again at “A.”

The most famous example of this cipher is the Caesar Cipher, which uses three as
its key. To encrypt with the Caesar Cipher, each letter is rolled forward three letters
through the alphabet.

Encryption by Caesar Cipher

One of the major problems with the shift cipher is that because there are only 26
letters in the English alphabet, there are only 26 keys for the shift cipher (and one of them
puts each letter back to itself, so the ciphertext is the same as the plaintext). This is trivial
to brute force, even without a computer.

Computers, rather than using a 26-letter alphabet, actually use a 256-letter
alphabet called ASCII. This improves security a bit, but it is still trivial to brute force,
particularly because in computers, a space bar is treated like a letter when encrypting.
Because the space character is so common (nearly 20% of the letters in natural English),
whatever key causes the most common letter to decrypt to a space is virtually guaranteed
to be the correct key.

It is still worthwhile, however, to use the statistical test to verify that this
decryption is accurate, because in an unusual message with many long words, space
might not be the most common character. This computer program decrypts the shift
cipher by listing all the letters in the ciphertext in descending order of frequency, and
then testing keys that map each of those letters, in sequence, to the letter expected to
occur most frequently. Usually the first guess is correct, so this algorithm is generally
run with a very short time limit to avoid wasting time.

Cryptanalyst

Checker

Candidate Key

Λ2

Shift Analyst

XOR Analyst

Substitution Analyst

plaintext: THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG
ciphertext: WKH TXLFN EURZQ IRA MXPSV RYHU WKH ODCB GRJ

Jeremy Lennert, Heuristic Language Analysis: Techniques and Applications – March 11, 2001 - 5 -

Eight-Bit XOR Cipher
The eight-bit XOR is very similar to the shift cipher, and sometimes used on

computers. XOR, often indicated by a “J” symbol, is a logical operator such that “a J b”
means “a or b but not both.” For this cipher, a bitwise xor is used, which means each bit
in a number is xor-ed to produce a new number. If the binary number 1010 were to be
XOR-ed with the binary number 1100, the result would be 0110 (the first bit of each
number is XOR-ed, then the second, and so on). An eight-bit XOR is used because
computer letters are eight bits long. In this cipher, a certain string of eight bits is chosen
at random, and XOR-ed with each letter of the plaintext to produce the ciphertext.

Any computer program designed to use (or
cryptanalyze for) a shift cipher can be changed to do so
for an eight-bit XOR very easily, since the only
difference is the mathematical operation (J instead of +),
and this program cryptanalyzes for eight-bit XOR
ciphers in exactly the same way as shift ciphers.

General Monoalphabetic Substitution Cipher
In a general substitution cipher, each letter (or

group of letters) is mapped to an another arbitrary letter
(or group of letters). To decrypt, the mapping is
reversed. In a monoalphabetic substitution, the
mappings only involve single letters. This is probably
the most well-known class of ciphers. One possible key
for a substitution cipher is at the right.

Encryption with General Substitution Cipher

This particular key has a few non-optimal
characteristics; for example, the letter “W” is mapped to
itself. Still, the message would be very difficult to
decrypt without the key.

For standard English, there are a total of 26! ≅
4.0 x 1026 possible keys, and for computer ASCII, there
are 256! ≅ 8.6 x 10506 possible keys, far too many for a
brute force search. However, substitution ciphers are
susceptible to heuristic attack because letters in the
ciphertext occur with the same frequency as their
counterparts in the plaintext.

This automated decryption program attacks the
substitution cipher by starting with a randomly-chosen
key, applying Ganesan and Sherman’s statistical test,
and then considering every possible exchange of two
letters in the key and the change it would have on the

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG
PBT KXUDA MLJWV ZJR IXYSC JQTL PBT EHFG OJN

PLAINTEXT CIPHERTEXT

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

H

M

D

O

T

Z

N

B

U

I

A

E

Y

V

J

S

K

L

C

P

X

Q

W

R

G

F

General Substitution Key

Jeremy Lennert, Heuristic Language Analysis: Techniques and Applications – March 11, 2001 - 6 -

result of the statistical test. Whichever change would most increase the resulting score is
adopted as part of the key, and the process is repeated. This continues until no character
swap has a beneficial effect on the score.

Although this attack is highly effective, it still does not reliably decrypt
uncommon characters, such as capital letters, numbers, and rare punctuation marks. The
resulting decryption is generally still legible to humans.

However, this attack is still very costly in computing time. Running on a
computer with a 650 MHz processor, finding a good decryption by this method still takes
approximately twelve hours.

Previous Attempts at Decryption
Hunter and McKenzie [2 – 1983] used a relaxation algorithm to try to break a

simple substitution cipher. This algorithm operates by scanning every trigram (series of
three consecutive letters) in the ciphertext, and evaluating the probability that the middle
ciphertext letter decrypts to a certain plaintext letter based on the existing probabilities of
the adjacent letters. The algorithm repeats until all probabilities are evaluated at 100%.

It was determined that this technique’s degree of success is determined in large
part by the accuracy of the trigram data for describing the correct decryption. With
precisely matching trigram frequency data, the relaxation algorithm was able to find a
perfect decryption within the first few iterations; with less accurate data, no perfect
decryptions were found, even after many iterations.

Carroll and Martin [3 – 1986] developed an expert system to cryptanalyze
substitution ciphers. This algorithm evaluated probabilities of particular decryptions of
individual letters using letter frequency, and additional refinement based on “illegal”
bigrams (series of two consecutive letters), single-letter words, word beginnings, and
word endings, and also using bigrams and trigrams considered “common.” The program
functioned fairly well without intervention, but was designed to utilize human input
during the decryption process.

Michael Lucks [4 – 1998] created a computer program that utilized a constraint
satisfaction algorithm to decrypt substitution ciphers. The algorithm guessed decryptions
for entire words based on repeated letters using an on-line dictionary. The program was
able to find a perfect decryption with no intervention 60% of the time, and in many other
instances was able to achieve a correct decryption with very little human intervention.
However, the required on-line dictionary is very large, so this approach requires fairly
powerful hardware.

4. Conclusions
Two statistical tests presented by Ganesan and Sherman were successfully tested

and applied. Tests suggest that they are approximately functionally equivalent in
detecting entropy in a text of known language.

The automated cryptanalysis of three ciphers (shift, eight-bit XOR, and
substitution) was largely successful utilizing one of these statistical tests. The shift and
XOR ciphers were essentially trivial to decrypt, while the general monoalphabetic
substitution cipher took approximately one half-day to decrypt, and the decryption was
readable but imperfect.

Jeremy Lennert, Heuristic Language Analysis: Techniques and Applications – March 11, 2001 - 7 -

References

[1] Ganesan, Ravi; and Alan T. Sherman, “Statistical Techniques for Language
Recognition: An Introduction and Guide for Cryptanalysts,” (February 1993)

[2] Hunter, D.G. N.; and A.R. McKenzie, “Experiments with Relaxation Algorithms for
Breaking Simple Substitution Ciphers,” Computer Journal vol. 26 no. 1 (1983)

[3] Carroll, John M.; and Steve Martin, “The Automated Cryptanalysis of Substitution
Ciphers,” Croptologia vol. 10 no. 4 (Octoboer 1986)

[4] Lucks, Michael, “A Constraint Satisfaction Algorithm for the Automated Decryption
of Simple Substitution Ciphers,” (1998)

