
�����������	��
���
����������	��
�������� ���

������� ��!#"%$'&)(�*+!,��-�-�./�

Brian Sheppard, Hasbro

If I had to identify one factor that enabled
recent advances in game AI, it would be that
programmers have a large arsenal of methods
to adapt to their needs. An example is in order,
so I’ll describe Maven, my Scrabble AI.

The most important skill in Scrabble is
the ability to find high-scoring plays. So
Maven includes an exhaustive move genera-
tor, which produces each legal move, along
with a score and a list of the tiles remaining
on the rack. Thus, Maven achieves this criti-
cal skill using full-width search.

A note about word lists is in order.
Nowadays, I can get a computerized word
list from the National Scrabble Association
(NSA). But this is a recent advance. The
development of Maven included several
man-months of data entry. I will describe
the process, because every game AI project
involves similar drudge work.

I bought a copy of the Official Scrabble
Players Dictionary (OSPD) from my local
bookstore and started typing the words. I
couldn’t bear to type every single word, so I
invented a “little language” of the form “v
assert -or -ors,” which I postprocessed into
“ASSERT ASSERTED ASSERTING ASSERTS ASSERTOR

ASSERTORS.” This trick cut the typing in half.
Then came a verification stage, where I

statistically profiled the word list to deter-
mine its error rate. My initial data entry
omitted 2% of the words and misspelled
1%. There ensued a proofreading chore to
correct these errors. I then validated key
lists of words such as the two-letter words,
JQXZ words, and so forth, against printed
lists from the NSA. This step ensured that
any remaining errors were unlikely to mat-
ter, because they would occur among low
frequency words. Eight errors remained
(out of 95,000 words), which I found sev-
eral years later when I compared my list
against the list of another person who had
undertaken the same task.

Then I decided to add the “long words”
to my list, because the OSPD only con-
tains main entries up to eight letters long.
This process involved scanning Webster’s
10th Collegiate Dictionary, proofreading,
profiling, cross-checking, and so on. It was
a huge task, but very typical of game AI
development.

021�354 6�3�7�8 9;:�<=6�:�>+7�8 9;:'?

To evaluate a position properly you have

to model the factors that are important to the
domain. Maven’s development is interesting
because there wasn’t a well-developed posi-
tional model of Scrabble at the time. At
least, there was none that I could find. Of
course, experts used certain precepts in
choosing plays, but I didn’t know any expert
players, and I didn’t have access to any of
their writings. I had to model the domain
“from first principles.” I might have been
lucky in this regard, because almost every
precept held by experts prior to the advent of
Maven has been proven false. Since model-
ing is a messy task that nearly every game
AI developer has to do sometime, I will
walk you through the steps I followed.

I reasoned that a move changes three
things: the score, the tiles held by the
player, and the position. So, in gross terms,
I have the equation Evaluation = Score +
Rack + Position. This is a good start be-
cause my move generator already computes

the score and the tiles left on the rack (the
rack leave). I was confident that I could
build an evaluator for rack leaves, because I
had a trick up my sleeve. But what should I
do about this annoying Position term? Did I
have to develop a complicated (and slow)
pattern-matching algorithm for evaluating
the myriad possible changes in position that
could occur as a result of a move?

Upon reflection, I decided that the Posi-
tion term was usually very close to 0, so I
could ignore it (with one exception). The
reason is that the board is a resource that
affects both players, so any openings for
high scores tend to cancel out. The oppo-
nent’s advantage is that he moves first, so
a hot spot is more likely to benefit him.
Maybe you should penalize hot spots by a
small amount, but maybe not. You have to
consider that the opponent is a weaker
player than Maven, so hot spots dispro-
portionately benefit Maven. The only

Michael Buro is a scientist at the NEC Research Institute. He wrote Logis-
tello, the world champion-class Othello program. He earned a diploma in
computer science from the Technical University of Aachen and a PhD in
machine learning in games from the University of Paderborn, Germany. He
is a member of the AAAI and the ICCA. Contact him at NEC Research Inst.,
4 Independence Way, Princeton, NJ 08540; mic@research.nj.nec.com;
www.neci.nj.nec.com/homepages/mic/mic.html.

Richard E. Korf is a professor of computer science at the University of
California, Los Angeles. He received his BS from MIT, and his MS and
PhD from Carnegie-Mellon University, all in computer science. His
research is in the areas of problem solving, planning, and heuristic search
in artificial intelligence. He received an NSF Presidential Young Investiga-
tor Award and is a fellow of the AAAI. Contact him at the Computer Sci-
ence Dept., UCLA, Los Angeles, CA 90095; korf@cs.ucla.edu; www.cs.
ucla.edu/~korf.

Michael Littman is an assistant professor of computer science at Duke
University. His main interests are in machine learning, examining algo-
rithms for decision-making under uncertainty, and statistical natural-lan-
guage processing. He received his PhD from Brown University, and his
master’s and bachelor’s degrees from Yale University. His crossword work
was chosen for the best paper award at AAAI 99. Contact him at Box
90129, Duke Univ., Durham, NC 27708-0129; mlittman@cs.duke.edu;
www.cs.duke.edu/mlittman/.

Brian Sheppard is director of technology at Hasbro Interactive. His
research interests include heuristic search and multiplayer network games.
He received a BA in mathematics from Harvard College. He is the author
of the Scrabble program Maven, one of the first programs to achieve cham-
pionship caliber in any game. Contact him at Hasbro Interactive, 50 Dun-
ham Rd., Beverly, MA 01915; bsheppard@hasbro.com.

Jonathan Schaeffer is a professor in the Department of Computing Sci-
ence at the University of Alberta. His research interests include heuristic
search and parallel-computing environments. He received a BSc from the
University of Toronto and an M.Math and a PhD from the University of
Waterloo. He is a member of the IEEE, ACM, AAAI, and ICCA. Contact
him at the Dept. of Computing Science, Univ. of Alberta, Edmonton,
Alberta, Canada T6G 2H1; jonathan@cs.ualberta.ca; www.cs.ualberta.
ca/~jonathan.



exception is that direct access to triple-
word squares is a factor that should be
evaluated, because such a spot is high
scoring, easy to use, and unlikely to be
left around for the next turn. Still, calcula-
tion showed that direct access to triple-
word square is only worth a few points
(usually under three).

As for Rack evaluation, I whipped out
my trick: I would use self-play to generate
games and “feed back” the impact of hold-
ing specific tiles into the evaluation func-
tion. This method worked well in Scrabble.
In fact, the evaluation function improved
from zero initial knowledge to beyond the
level of the human champions of the day,
while using only a single day of training.

Self-play combined with feedback is a
fundamental method employed in most
competitive programs. It works in other
nondeterministic games, and in determinis-
tic games, too, if combined with tricks that
ensure exploration.

But self-play can only take you so far.
Self-play brings a program into greater
internal consistency, but if a fundamental
computational process is missing, you
won’t discover it through self-play. Actual
comparison against human experts is
required to diagnose such deficiencies.

The most direct form of comparison is
competition. Competition measures skill
using the same standards that humans use.
You can also participate in post-mortem
discussions that provide guidance about
where to invest additional effort.

Maven’s competitive games showed that
Maven was championship caliber. They
showed that I could stop worrying about
things that I always believed were unimpor-
tant, but experts told me were huge. For
example, was it important that Maven didn’t
vary its play as a function of the score? Was
it important to consider the skill of the oppo-
nent? Was it important to block or open the
board? Well, maybe it was important, but it
was insignificant compared to Maven’s skill
in scoring points and keeping good tiles.

Other forms of comparison are indirect.

For example, I compared Maven’s moves
against moves made by experts and against
annotations written by experts. I published
annotations “written” by Maven, to elicit
feedback from experts. All of these things
helped somehow, if only to provide reas-
surance to the author.

�����������
	
�
�
�

I also learned about the importance of
the endgame, which is the phase of the
game where there are no tiles in the bag,
and so the game becomes deterministic.
Maven made serious endgame errors by
failing to block a good spot for the oppo-
nent or failing to leave itself a way to play
off all of its tiles.

Achieving good endgame play required
that I scrap Maven’s whole approach, be-
cause it is impossible to build a static eval-
uator that evaluates an endgame position
using only one ply of lookahead. Clearly,
the searching techniques of perfect-infor-
mation games needed to be brought to bear,
but the leading candidate (full-width alpha-
beta) had serious shortcomings for this
application.

For one thing, alpha-beta requires almost
best-first move ordering for good search
efficiency, whereas my move generator
produces moves in order of rows of the
board. The prospect of ordering moves
after generating them was unattractive,
because there are an average of 200 moves
at the start of an endgame, and there could
be many, many more if the side-to-move
held two blanks. Also, move generation
was comparatively slow (about 1 second on
the hardware of the day), which limited us
to about 120 nodes per search. Obviously,
you can’t search a tree whose branching
factor is 200 at the root if you have only
120 nodes to work with. As if that weren’t
enough, there are vitally important
endgames where the one side is “stuck with
the Q” and cannot play out. In such cases,
the best strategy may be to play out “one
tile at a time.” Such endgames can last 14
ply, with several hundred legal moves per
ply, and the highest-scoring moves are
almost always bad!

What was needed was a search algo-
rithm that was naturally full-width, vari-
able-depth, and appropriately selective
(that is, able to distribute 120 nodes of
search so as to explore a potentially huge
space). Fortunately, I have read nearly
every paper about search algorithms ever

written, so Berliner’s B* algorithm was
familiar to me. The technique of applying
B* is very interesting and novel, but alas,
this is not the right forum for describing
it, as it is highly domain-specific. To con-
tinue our topic, every game programmer
needs to be familiar with the literature,
because there are many general-purpose
methods available. The programmer must
also accurately judge the applicability of
each method to his domain. Finally, gen-
eral methods usually require domain-
specific adaptation to reach their full
potential.

��� � ��� ����� � ����� �������
�
���
�

Finally, is developing one novel tech-
nique too much to ask of a game program-
mer? Actually, most successful game pro-
grammers have contributed a novel
method. It seems that one cannot conquer a
new game simply by applying previously
known techniques. So I tentatively put for-
ward that Maven was the first to use the
technique of statistical lookahead for play-
ing games.

Statistical lookahead is now recognized
as a general method, having been applied
(and independently discovered) by
pioneers in games such as backgammon,
bridge, and poker. The technique might be
new to readers, so I will take a moment to
describe it.

The idea is to evaluate moves by “play-
ing them out” at high speed. The move with
the highest average outcome is selected.
During the process, you can gain speed by
pruning moves that have proven to be infe-
rior. This technique has many domain-spe-
cific details, such as the question of which
alternatives are considered, how the game is
played out, how to prune moves, how to
model opponent’s behavior, and so forth.
Virtually any domain with randomness
(such as backgammon) or hidden informa-
tion (bridge) or both (Scrabble and poker)
can benefit from statistical lookahead. I
think this technique will produce a treasure-
trove of research results (and practical
results) because of its adaptability.

So, successful game AI results from
combining many general methods. Maven
would not be what it is without full-width
search, evaluation functions, self-play,
feedback, competition, indirect compar-
isons, knowledge engineering, perfect-
information search techniques, and statisti-
cal lookahead. Plus a lot of luck.

��� � ����� � !�"#��$%$&� '��(!�"�)+*,)-"#��./)

Coming Next
Issue

0 132�465%798�:;5<8%8%2 =95%>3?A@#BCBD>/2 E

FHG 2
I�JK132�L�MNBOIPJK13Q >3=9RSQ =

T @NU BOVWLX2�79MN2�BDM F LX2 =9R3BO73=9R

Y�Q =9MNLXQ[Z�2 LXBC5%2 B


