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Abstract

This article surveys three techniques for enhancing heuristic game-tree search pi-
oneered in the author's Othello program Logistello, which dominated the com-
puter Othello scene for several years and won against the human World-champion
6-0 in 1997. First, a generalized linear evaluation model (GLEM) is described that
combines conjunctions of Boolean features linearly. This approach allows an auto-
matic, data driven exploration of the feature space. Combined with e�cient least
squares weight �tting, GLEM greatly eases the programmer's task of �nding signif-
icant features and assigning weights to them. Second, the selective search heuristic
ProbCut and its enhancements are discussed. Based on evaluation correlations
ProbCut can prune probably irrelevant sub-trees with a prescribed con�dence.
Tournament results indicate a considerable playing strength improvement compared
to full-width �-� search. Third, an opening book framework is presented that en-
ables programs to improve upon previous play and to explore new opening lines by
constructing and searching a game-tree based on evaluations of played variations.
These general methods represent the state-of-the-art in computer Othello program-
ming and begin to attract researchers in related �elds.

Key words: Selective Game-Tree Search, Evaluation Function, Feature Construction,

Opening Book Learning, GLEM, ProbCut, Logistello

\I consider the most important trend was that computers got considerably
faster in these last 50 years. In this process, we found that many things for
which we had at best anthropomorphic solutions, which in many cases failed to
capture the real gist of a human's method, could be done by more brute-forcish
methods that merely enumerated until a satisfactory solution was found. If this
is heresy, so be it." { Hans Berliner on AI trends [4]

1 Introduction

The achievements of AI research over the past decades have been tremendous
and a front runner in this area | right from the start in the 1950s | has been
computer games research. Driven by the desire to build machines capable of
beating the best humans at chess, remarkable discoveries and technological ad-
vances have paved the way to Deep Blue's narrow victory over Garry Kasparov
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in 1997. While an old AI dream had become true, the means to its accomplish-
ment had not been envisioned by the AI pioneers who thought that beating the
chess World-champion would require human-like reasoning abilities. Instead,
after the discovery of �-� search and the success of Chess 4.5 in the 1970s, it
became clear that the future of computer chess lies in full-width { or so called
brute-force { searching on fast hardware. Steady hardware improvements in
conjunction with an e�cient parallelization of �-� search �nally led to IBM's
Deep Blue, a 64-node SMP machine equipped with 512 special purpose chess
chips, which are capable of searching 200 million chess positions a second.
Kasparov, on the other hand, searches 1-2 nodes a second and still is regarded
the better chess player by many. The main AI lesson learned from this event
is that in some domains human creativity, intuition, and reasoning ability can
be compensated for or even be surpassed by brute-force search requiring only
simple evaluation functions. Unfortunately, this insight does not help much
when it comes to solving much harder decision problems than chess for which
full-width search is infeasible or simple heuristics do not work. Clearly, there
is no hope of �nding a practical general purpose problem solver because ba-
sic decision problems already belong to PSPACE or EXPTIME, or are even
undecidable. Therefore, AI research is focusing on real world problems that
humans routinely solve but even the fastest parallel machines currently can
not handle.

Three months after Garry Kasparov lost 2.5{3.5 against Deep Blue, a sim-
ilar event was organized at the NEC Research Institute in Princeton. This
time, the then human Othello World-champion Takeshi Murakami played six
long-timed games against Logistello { a program running on an ordinary
PC { and lost 0{6, without getting the program into trouble a single time.
While Logistello can be regarded a classic two-person game program, all
of its move decision components are automatically tuned by machine learn-
ing techniques. This sets it apart from other programs that mostly rely on
manual tuning and, after TD-Gammon reaching master level [20], marks the
second breakthrough of machine learning applied to games. In this article the
evaluation, search, and opening book learning techniques pioneered in Logis-
tello are surveyed. We �rst describe a novel evaluation function model and
its application to Othello. The resulting evaluation function is pattern based,
accurate, and very fast, and outperforms all other approaches tried so far. All
of its more than a million parameters have been �tted by linear regression
applied to a large training set. We then move on discussing ProbCut { a do-
main independent selective search heuristic based on evaluation correlations
that considerably improves �-� search. The parameters of the underlying lin-
ear model have been estimated by linear regression as well. In the last part
we present an opening book framework that allows programs to learn from
past games in order to avoid losing games the same way and to explore new
openings automatically.
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2 Evaluation Function Learning

Many AI systems use evaluation functions for guiding search tasks. In the con-
text of strategy games they usually map game positions into the real numbers
for estimating the winning chance for the player to move. Decades of research
has shown how hard a problem evaluation function construction is, even when
focusing only on particular applications. To simplify the construction task, the
notion of evaluation features emerged. This notion assumes that there exist
reasonable approximations of the perfect evaluation function in the form of
combinations of a few distinct numerical properties of the state - called fea-
tures. Given this, evaluation functions can be constructed in two phases by
selecting features and combining them. Selecting features is one of the most
important and di�cult subtasks in the construction of game playing programs.
It requires both domain-speci�c knowledge and programming skills because of
the well-known tradeo� between speed and knowledge in look-ahead search. A
couple of years ago the authors of the best programs still picked not only fea-
tures but also their weights in course of a tedious optimization process. This is
somewhat surprising, because already in the 1950s Samuel proposed a way for
automatically tuning weights [19] similar to TD-learning. Least squares �tting
a large number of parameters in a (linear) model is well understood and a com-
putationally feasible problem. However, our understanding of how to generate
features for building fast and accurate evaluation functions is limited. What
makes the latter problem much harder than least squares parameter �tting, is
the much larger search space and the lack of nice analytic properties that can
guide the search algorithm to �nd (local) extrema quickly. The standard ap-
proach to attacking this hard combinatorial problem is to generate functions
with respect to a particular model and to keep the best one encountered so
far. A prominent example is Genetic Programming (GP). GP is very general
and has produced quite a number of good solutions to small sized problems
[11]. However, because the methods used for generating o�spring make little
use of available domain knowledge, GP currently does not scale well to larger
problem sizes. Another disadvantage of GP is its lack of e�cient numerical
parameter optimization. Alternative techniques, such as adapting the topol-
ogy and edge weights of feed forward networks (e.g. meiosis networks [12],
node splitting [22]), Morph [14], or ELF [21], are promising but face similar
problems and have not yet led to high performance applications.

2.1 GLEM

In what follows we discuss GLEM { a generalized linear evaluation model
that e�ciently combines GP-like automatic feature space exploration with
fast numerical parameter tuning. Basically, GLEM evaluation functions can
be regarded as two level feed forward networks with binary inputs: one level
that and-combines inputs and one node that applies a squashing function to
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the sum of weighted results:

e(p) = g(
nX

i=1

wi � ci(p));

where each con�guration ci is a conjunction of given Boolean (so called atomic)
features, each wi 2 IR is a weight, and g : IR ! IR is an increasing and
di�erentiable link function. In this context Boolean values are treated as 0 or
1. The weights are subject to the usual least-squares optimization. That is,
given a set of con�gurations c1; : : : ; cn, a link function g, and a sequence of
scored training instances ((pi; ri) j i = 1 : : :N), the weights are chosen such
that the total squared error

E(w) :=
NX

i=1

(ri � ew(pi))
2

is minimized. This simple model has several desirable properties:

� Atomic features are the building blocks of more sophisticated ones. This
allows the automated discovery of new important features by systematic
combination.

� There is no need for tuning parameters of analytic functions (e.g. neural
networks) to approximate simple non-linear relations. GLEM models non-
linear e�ects quite naturally by Boolean combinations.

� Combining features linearly keeps the evaluation time overhead low. Actu-
ally, not even multiplications with weights are necessary because ci(p) is
either 0 or 1. Moreover, the simple form of the evaluation function allows a
fast approximation of optimal weights, even in large systems.

� In order to deal with saturation e�ects an increasing non-linear link function,
such as g(x) = 1=(1+ exp(�x)), can be used without decreasing the search
speed. Because g is monotone it su�ces to compare g's arguments (g(x1) >
g(x2) () x1 > x2).

Before applying GLEM several practical and theoretical issues have to be re-
solved, including how to generate a (potentially large) set of labelled training
examples, how to select atomic features, how to generate relevant con�gura-
tions from data, and how to �t a large number of parameters. Practical answers
to those and other important questions are given in [8]. In this context we only
mention two of the most important techniques proposed: pre-selecting con�g-
urations depending on their training set match count to �ght over-�tting and
combining con�gurations to patterns to greatly speed-up weight �tting and
evaluation. Patterns play a central role in the application of GLEM reported
in the next subsection.

GLEM allows program authors to concentrate on the part of evaluation func-
tion construction, where humans excel: the discovery of fundamental features
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by reasoning about the problem. GLEM simpli�es this task because the exact
feature formulation is no longer needed. The system is able to approximate
complex features by combining atomic fragments. In this way it is possible for
the programmer to speculate about feature building blocks and to leave the
details of creating features and assigning weights to them to the system.

2.2 Application to Othello

The presented general framework for the construction of evaluation functions
has been inspired by the work on our Othello program Logistello. Besides
the progress in selective search and automated opening book construction {
which is reported later { the application of GLEM has greatly improved the
playing strength of this program. Logistello is able to beat the best human
Othello players handily, even when running only on ordinary hardware [7].

Othello is a popular Japanese board game, played by two players on an 8x8-
board using 64 two-colored discs. Moves consist of placing one disc on an
empty square and turning all bracketed opponent's discs over. Fig. 5 shows an
example. The game ends when neither player has a legal move, in which case
the player with the most discs on the board has won.

The most important positional features in Othello are disc stability, mobility,
and parity. In particular:

� Stable discs can not be 
ipped by the opponent. Therefore, they directly
contribute to the �nal score. The most prominent stable discs are occupied
corners, which can be used as anchors for creating more stable discs.

� Having fewer move options than the opponent is dangerous, because it in-
creases the chance of losing a corner in the near future.

� Making the last move in an Othello game is advantageous, since it increases
one's own disc count while decreasing the number of opponent's discs. Parity
generalizes this observation by considering last move opportunities for every
empty board region.
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In [18] and [13] table-based evaluation schemes were introduced, in which val-
ues of all edge con�gurations were precomputed by (probabilistic) mini-max
algorithms and stored in a table for a quick evaluation of the edge struc-
ture. GLEM generalizes this technique by allowing con�gurations of arbitrary
shape and replacing the ad-hoc weight assignment by a least squares �t. Lo-
gistello's current pattern set is shown in Figure 2. Important positional
features of Othello can be quickly approximated by those patterns, which are
built upon the raw board representation: horizontal, vertical, and diagonal
lines cover mobility and the remaining patterns deal with corner- and edge-
tactics and parity issues. In the GLEM context patterns are de�ned as com-
plete con�guration sets spanned by discrete features. E.g., the integer valued
features \contents of square a1", ... , \contents of square a8" de�ne a pattern
which covers all 38 = 6561 disc con�gurations along the western edge of an
Othello position. Using patterns greatly increases the speed of weight �tting
and evaluation at the expense of evaluation accuracy, because the number of
con�gurations to be evaluated equals the number of patterns. This allows for
a very e�cient table-based evaluation (Figure 3) and still o�ers an expressive-
ness matched only by large neural networks. It should be noted that patterns
only de�ne supersets of the con�gurations actually used. The �nal decision to
add speci�c pattern con�gurations to the model depends on statistical con-
siderations such as the con�guration's training set match count (to counter
over-�tting) and correlation with the game outcome. The given pattern set is
the result of many experiments which involved evaluation accuracy and speed
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Fig. 2. Logistello's pattern set. Patterns that can be obtained by rotating and
mirroring the board have been omitted. Each diamond represents a discrete feature
f with range f0; 1; 2g. f(p) is de�ned by the particular square contents (i.e. white
disc 7! 0, empty 7! 1, black disc 7! 2).
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considerations. Ongoing research is dealing with automatic pattern generation.
A detailed discussion of these and related issues can be found in [8].

Logistello's evaluation function distinguishes 13 game stages, depending
on the number of discs on the board. In addition to the patterns shown in
Figure 2 a simple parity (pattern) feature is used which deals with the last
move advantage globally by considering the number of empty squares modulo
2. Logistello's evaluation function has the following form:

f(p) = (

[fd4;s:1 + ::: + fd4;s:4] + [fd5;s:1 + :::+ fd5;s:4]+

[fd6;s:1 + ::: + fd6;s:4] + [fd7;s:1 + :::+ fd7;s:4]+

[fd8;s:1 + fd8;s:2] + [fhv2;s:1 + :::+ fhv2;s:4]+

[fhv3;s:1 + :::+ fhv3;s:4] + [fhv4;s:1 + :::+ fhv4;s:4]+

[fedge+2X;s:1 + ::: + fedge+2X;s:4]+

[f2�5;s:1 + ::: + f2�5;s:8]+

[f3�3;s:1 + ::: + f3�3;s:4] + fparity;s)(p);

where s = stage(p) and fx;s:i evaluates the i-th occurrence of pattern x on
boards at game stage s (e.g. f3x3;s:1 + ::: + f3x3;s:4 determines the evaluation
for the whole corner structure by adding up table values for each of the four

.
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Fig. 3. Fast table-based pattern evaluation.
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corners, Figure 3). Several million training positions labelled with either the
true mini-max value or an approximation of it were generated from self-played
games to �t approximately 1:2 million weights. This �gure takes weight sharing
among symmetric con�gurations into account. Equipped with this evaluation
function and running on a PentiumPro/200 Linux PC, on which it achieves
a search speed of 160k nodes/second, Logistello beat the human Othello
World-champion 6{0 in August 1997.

Over the years, Logistello's evaluation function changed considerably: from
a classic form { featuring only a handfull manually weighted features, over a
version that estimated con�guration values using the naive Bayes approach
and weighted whole patterns by logistic regression [5], to its current form
utilizing approximately 100,000 binary features in conjunction with over 1.2
million automatically tuned parameters. In each step the evaluation accuracy
and speed was increased signi�cantly. Table 1 shows experimental evidence
for the considerable accuracy gain obtained when moving from weight assign-
ment based on naive Bayes combined with logistic regression to �tting a large
sparse linear regression system. The strength increase is comparable to that
of two additional plies of full-width search or, equivalently, to a speed-up fac-
tor of about ten, which is otherwise only achievable by parallelization. For
the construction of the GLEM based evaluation function the same patterns
and training examples were used and even the previously utilized mobility
features were omitted. The signi�cant playing strength increase is therefore
surprising. However, the crucial di�erence between the new and the previous
evaluation model is that values of pattern con�gurations in GLEM are no
longer estimated independently. The previous approach neglected correlations
among con�guration values and seemed to compensate for this in part by as-
signing considerable weights to mobility approximations which already could
have been modeled by means of line patterns alone. GLEM, on the other hand,
takes feature correlations into account.

Observing that short Boolean combinations of simple binary features can ap-
proximate important Othello concepts combined with the \mechanical" anal-

Table 1
Results of several 140 game tournaments between �xed depth versions of Logis-
tello using di�erent evaluation functions and depths. Given are the rounded win-
ning percentages of the player using the previous evaluation function searching at
depths d; d + 1; and d+ 2 against the GLEM version looking d plies ahead.

d 1 2 3 4 5 6 7 8 9

+0 34 32 32 35 34 31 26 26 32

+1 59 56 46 57 50 41 44 40 38

+2 83 75 70 62 61 59 48 51 54

8



ysis of millions of training positions has produced an expert program capable
of beating any human player. Interestingly, the game knowledge encoded in
the set of over a million con�guration weights goes far beyond the mobility
features we intended the system to approximate in the �rst place.

This result encourages the application of GLEM to other games and decision
problems in other domains. Attractive candidates are chess and Go because
both games are very popular and well analyzed. And yet, for chess, hardware
roughly equivalent to 2,000 ordinary PCs is currently needed to compete with
the human World-champion. For Go, the status is even worse because full-
width search is infeasible due to the large branching factor. Because a good
evaluation function is not known either, amateurs can still beat the best Go
programs handily. The key to better chess and Go programs lies in improved
evaluation functions. A starting point could be the analysis of known features
with regard to their approximation by simple Boolean functions as proposed
by GLEM.

3 Selective Search Based on Evaluation Correlation

Human players can �nd good moves without searching the game-tree in its
full width. Using their experience, they can prune unpromising variations in
advance. The resulting game-trees are narrow and might be rather deep. By
contrast, the original mini-max algorithm searches the entire game-tree up to
a certain depth and even its e�cient improvement { the �-� algorithm { may
only prune backwards because its purpose is to compute the correct mini-
max value. In what follows, the forward pruning heuristic ProbCut [6] is
discussed which aims at focusing the look-ahead search to relevant variations
and thus makes more e�cient use of the allocated time. Several approaches
to selective search have been studied in the past. Besides selective quiescence-
search techniques, such as the null-move heuristic [3] which is quite e�ective in
non-zugzwang games, other algorithms have been proposed ([15] [16] [17] [2])
that search the game tree in best-�rst manner, but use an amount of mem-
ory roughly on the order of number of nodes searched. Currently, this is not
practical for programs with fast evaluation functions running on conventional
hardware with limited memory. ProbCut needs no additional memory and
its application is not limited to quiescence search. Moreover, it is e�ective not
only in tactical positions where one move is clearly superior to all others, such
as the \singular extensions" introduced in [1].

3.1 ProbCut

The selective search heuristic ProbCut permits pruning of subtrees that are
unlikely to a�ect the mini-max value and uses the time saved for analysis of

9
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s

(�; �)

vs

1::s

d

b) Using several cut pairs
d

vd

a) Forward cut scenario

c) Iterative checks

Fig. 4. a) ProbCut uses vs to decide whether vd lies outside (�; �) with a prescribed
likelihood. b) & c) ProbCut enhancements.

probably more relevant variations. This approach capitalizes on the fact that
values returned by mini-max searches of di�erent depths are highly correlated,
provided that a reasonably good evaluation function and, if necessary, a quies-
cence search is used. In this case, a shallow search result vs is a good predictor
for the deep mini-max value vd. Based on this estimation, we can determine
whether the deep mini-max value lies outside the current �-� window with
a prescribed likelihood. If so, the position need not be searched more deeply
because the deep search result will unlikely change the root's mini-max value.
Otherwise, the deep search is performed yielding the true value. Here, a shal-
low search has been invested, but relative to the deep search the e�ort involved
is negligible, due to the exponential tree growth (Figure 4a).

A natural way to express the relationship between search results of di�erent
depth is a linear model of the form vd = a � vs + b + e where a; b are real
constants and e is a normally distributed error variable having mean 0 and
variance �2. Once all model parameters are estimated by linear regression
applied to a large number of training pairs (vd(pi); vs(pi)), ProbCut can test
the cut conditions vd � � and vd � � e�ciently during game-tree search:
after computing the shallow search result vs, the search is terminated in the
current position i� a �vs+ b, which is an unbiased estimator for vd, lies outside
of [�� t � �; � + t � �]. Here, t is an adjustable con�dence parameter that can
be optimized by means of tournaments.

In the �rst ProbCut implementation used in Logistello (outlined in Fig-
ure 5), s=4 and d=8 were chosen and t=1.5 was empirically found to be the
best cut threshold. For this parameter constellation the winning percentage of
the ProbCut-enhanced version of Logistello playing against the full-width
version was 74% in a 70-game tournament.
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const float t = 1.5; // confidence level
const int s = 4; // depth of shallow search
const int h = 8; // check height
const float a = ...; // regression slope
const float b = ...; // regression bias
const float sigma = ...; // regression standard deviation

int AlphaBeta(int height, int alpha, int beta)
{
if (height == 0) return eval(pos);

// ProbCut heuristic:

if (height == h) {
int bound;

// v_h >= beta likely? yes => cutoff

bound = round((+t * sigma + beta - b) / a);
if (AlphaBeta(s, bound-1, bound) >= bound) return beta;

// v_h <= alpha likely? yes => cutoff

bound = round((-t * sigma + alpha - b) / a);
if (AlphaBeta(s, bound, bound+1) <= bound) return alpha;

}

... remainder: do/undo moves and call AlphaBeta recursively
}

Fig. 5. C implementation of the ProbCut heuristic

3.2 Multi-ProbCut and EndCut

Although ProbCut already marks a big and game independent improvement
over full-width �-� search, it can easily be re�ned in several ways: Multi-

ProbCut (MPC, [10]) allows for pruning at di�erent search heights, uses
game-stage dependent cut thresholds, and conducts shallow check searches
using iterative deepening. The latter improvement detects extreme positions
much earlier. Incorporated in Logistello, MPC featuring up to (s = 5; d =
17) cuts and two cut thresholds (for the opening and middle game) beats
regular (s = 4; d = 8) ProbCut about 72% in a 140 game tournament.
At equal search times MPC looks 5 to 7 plies further ahead in selected lines
compared with full-width �-� search and achieves a winning percentage of
about 80%. Both program versions are equally strong if the MPC time gets
reduced by a factor of 25.

The ProbCut approach also applies to Othello endgames in which computers
usually play perfectly due to exhaustive searches of the remaining game-tree.
Solving a position for win/draw/loss or maximizing the score earlier than the
opponent is a big advantage. Thus, authors of good programs spend consider-
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able time on optimizing their endgame search. The tricks of the trade include
avoiding last move disc 
ips (just counting them su�ces), using a bit-board
representation for fast move generation, and sorting moves using the middle-
game evaluation to increase the number of �-� cut-o�s. Recently, signi�cant
endgame speed improvements have been reported by Gunnar Andersson, who
is using a mixture of fastest-�rst and best-�rst search in his strong program
Zebra, and by Jan C. de Graaf whose clever if-less endgame code at least
doubles the search speed on Intel processors. The fastest endgame searchers
running on ordinary PCs are currently able to solve for win/draw/loss in a
matter of minutes when there are around 26 moves left in the game. At this
game stage programs decide to switch from middle-game to endgame search
taking into account the remaining time and simple measures of the position's
search complexity. When starting the exact endgame search early, it often
happens that the search runs out of time before completion in which case
it may miss a winning move. In order to bridge the gap between heuristic
middle-game and perfect endgame search with regard to both search time
and accuracy, good programs use selective endgame searches based on the
ProbCut idea. In its simplest form, the so called EndCut procedure per-
forms shallow middle-game searches when reaching positions with a speci�c
number of discs. Depending on the search result it then decides whether the
true mini-max endgame result of the subtree beneath the node will fall out-
side the current search window with a prescribed likelihood. If so, the subtree
gets pruned and the search proceeds with more relevant paths. Embedded in
an iterative framework, which increases the con�dence level stepwise, End-
Cut allows a smooth transition from heuristic middle-game to exact endgame
search that is able to �nd best moves in a limited time more often than the
classic approach.

In summary, for Othello and the chosen evaluation function a search based
on ProbCut signi�cantly outperforms full-width �-� search. MPC's amazing
performance demonstrates that the �-� algorithm wastes most of its time by
analyzing irrelevant variations. MPC, on the other hand, detects potential
bad moves early and postpones their further investigation. In this way, it
concentrates on probably relevant lines of play without overlooking crucial
tactical variations near the root position. It remains to be shown whether
MPC can be successfully applied to other games. Because it coexists with
most of the �-� enhancements currently used in chess programs, MPC might
improve these programs, too.

4 Opening Book Construction

In spite of many evaluation and search improvements, programs still show
weaknesses in the opening phase stemming from a lack of strategic planning.
To mitigate this problem, programs utilize opening books in which move se-
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quences or positions together with moves are stored. Their automatic genera-
tion was of little interest in the past, because move sequences could be taken
from the literature, suited to one's own requirements { such as the striving for
tactical complications { and manually updated if necessary. Today, however,
many game-playing programs are attached to servers, playing against human
players and other programs 24 hours a day. In order to prevent repeated losses
it therefore has become necessary for programs to update their opening books
automatically without human intervention.

In multi-gamematches players are facing simple but e�ective playing strategies
that cannot be met by the well-known game-tree search techniques alone.
Perhaps the most obvious and simple one is the following: \If you have won a
game, try it the same way next time." A player with no learning mechanism
and no move randomization follows this strategy, but is also a victim of it,
because he does not deviate and therefore can lose games twice in the same
way. To avoid this, the player must �nd reasonable move alternatives. He
can do so passively by copying opponent's moves when colors are reversed.
This elegant method lets the opponent show you your own errors, so you
can play the opponent's winning moves next time by yourself. In this way,
even an otherwise stronger opponent can be compromised, because { roughly
speaking { eventually he is playing against himself. Thus, copying moves makes
it necessary to come up with good move alternatives actively. To do so, a player
must understand his winning chances after deviations from known lines.

These basic requirements of a skilled match strategy lead directly to an al-
gorithm for guiding opening book play based on mini-max search [9]. The
procedure builds a game-tree from played variations { starting with the initial
game position { and labels the leaves depending on the particular game out-
comes. Moreover, in each interior node the algorithm evaluates all moves not
played so far and adds the edge and node corresponding to the heuristically
best move together with its evaluation to the tree. Given such a tree, it is
easy to guide the opening book play { that avoids losing the same way and
explores new variations { by propagating leaf evaluations to the root using
the mini-max algorithm and extending lines by expanding mini-max leaves.

All good Othello programs now use variations of this opening book algorithm.
Surprises in tournament games caused by blindly following non-evaluated
opening lines are a thing of the past, programs connected to the Othello server
(telnet:external.nj.nec.com:5000) are improving their books autonomously, and
extensive parallel book extension by self-play has revealed 
aws in some com-
monly played openings.
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5 Outlook

The application of the described machine learning approaches for tuning the
core components of programs for two-person perfect information games has
spawned a new generation of Othello programs much stronger than before.
After four years of successful tournament play and beating the human World-
champion, Logistello ended its career with a straight 22-win victory in its
last computer Othello tournament in October 1997.

Although the techniques utilized by game programs and human players are
still quite di�erent, the proposed methods for improving evaluation, search,
and post-mortem game analysis aim at closing the gap:

� cognitive research shows that good human chess and Go players have access
to a large number of patterns associated with plans on how to proceed in the
game. GLEM allows to generate pattern con�gurations from data and ap-
proximates winning plans by assigning (optimal) weights to con�gurations,
which are then used by a crude planning algorithm { �-� search. As the
GLEM approach is quite general it will be interesting to see how it performs
in other applications.

� good human players are conducting a highly selective look-ahead search in
which they only rarely miss decisive variations. On the other hand, the orig-
inal mini-max algorithms waste most of their time by analyzing irrelevant
lines. In the presence of good evaluation functions, selective �-� searches
based on ProbCut can approximate the very focussed human search be-
havior. However, programs still have to search much more nodes in order
to come up with decisions of comparable quality. Future research on better
evaluation schemes, selective search, and planning will bene�t from machine
learning advances and certainly result in a decreased search e�ort.
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