
From Simple Features to

Sophisticated Evaluation Functions

Michael Buro

NEC Research Institute
4 Independence Way

Princeton NJ 08540, USA

Abstract. This paper discusses a practical framework for the semi{
automatic construction of evaluation functions for games. Based on a
structured evaluation function representation, a procedure for explor-
ing the feature space is presented that is able to discover new features
in a computational feasible way. Besides the theoretical aspects, related
practical issues such as the generation of training positions, feature se-
lection, and weight �tting in large linear systems are discussed. Finally,
we present experimental results for Othello, which demonstrate the po-
tential of the described approach.

Keywords: automatic feature construction, GLEM, Othello

1 Introduction

Many AI systems use evaluation functions for guiding search tasks. In the con-
text of strategy games they usually map game positions into the real numbers for
estimating the winning chance for the player to move. Decades of research has
shown how hard a problem evaluation function construction is, even when focus-
ing on particular games. In order to simplify the construction task, the notion
of evaluation features was introduced. The underlying assumption is that there
exist reasonable approximations of the perfect evaluation function in the form
of combinations of a few distinct numerical properties of the position | called
features. Given this, evaluation functions can be constructed in two phases by
1) selecting features and 2) combining them.

Selecting features is one of the most important and di�cult sub{tasks in
the construction of a game playing program. It requires both domain speci�c
knowledge and programming skills because of the well known tradeo� between
speed and knowledge in game{tree search. A couple of years ago, the authors
of the best game playing programs still picked not only features but also their
weights in course of a tedious optimization process. This is somewhat surprising,
since already in [7] Samuel proposed ways for automatically tuning weights.
While selecting features is di�cult for a machine, �tting even a large number of
weights given a set of training positions is not. Research focused on the latter
topic produced TD{Gammon, a world{class backgammon{program [8, 9], and
contributed to Deep Blue's victory over Kasparov in 1997 [4].

In this article we go a step further towards the ultimate goal of automatic
evaluation function construction. First, a generalized linear evaluation model
is presented. It restricts evaluation features to boolean combinations of given
atomic functions. The model parameters can be tailored such that an automatic
feature space exploration becomes feasible. The following sections cover all as-
pects of evaluation function construction | from generating training positions
over feature selection to weight estimation | with respect to the new model
and emphasis on e�cient implementation. Finally, we show how the presented
techniques can be applied to the game of Othello and discuss the new approach
with regard to related work.

2 Evaluation Model

We �rst give a de�nition of the evaluation model we are proposing and discuss
its properties. In what follows, P denotes the set of all legal game positions1,
and IR the set of real numbers. Let A be a �nite set of integer valued | so
called atomic | features and RA := f (f(�) = k) j f 2 A; k is an integerg
the set of relations over A that compare feature values with integer constants.
Con�gurations are conjunctions of relations in RA. For a position p 2 P and a
con�guration c = r1 ^ : : : ^ rl we de�ne

val(c(p)) :=

�
1; if r1(p) ^ : : : ^ rl(p) = true
0; otherwise

:

A con�guration c is called active in a position p, i� c(p) = true.
With this notation we can now de�ne the Generalized Linear Evaluation

Model | GLEM(P ; A; g) for short. Evaluation functions in this model have the
following form:

e(p) = g
� nX
i=1

wi � val(ci(p))
�
; (1)

where c1; :::; cn are con�gurations over RA, w1; :::; wn 2 IR are weights, and
g : IR! IR is an increasing and di�erentiable link function.

The weights are subject to the usual least{squares optimization. That is,
given a set of con�gurations c1; : : : ; cn, a link function g, and a sequence of
scored training positions

�
(pi; ri) j i = 1 : : :N

�
, the weights are chosen such that

the total squared error

E(w) :=
NX
i=1

(ri � ew(pi))
2:

is minimized. This model has several desirable properties:

1 W.l.o.g. it is assumed that game positions in P are normalized in such a way that a
�xed player is to move.

{ Atomic features are the building blocks of more sophisticated ones. This,
in principle, allows the automated discovery of new important features by
systematic combination.

{ If necessary, complex features can be added to A. Thus, \atomic" is not
necessarily a synonym for \simple".

{ When evaluating a position, features are combined linearly. This keeps the
time overhead low. Actually, not even a multiplication with the weight is
necessary since val(ci(p)) is either 0 or 1.

{ Non{linear e�ects can be approximated by using con�gurations that consist
of several relations.

{ In order to deal with saturation an increasing non{linear link function, such
as g(x) = 1=(1 + exp(�x)), can be used without increasing the run time
during minimax search. There is no need to compute g, because g(x1) >
g(x2) () x1 > x2.

{ The simple linear core of the evaluation function allows an e�cient approxi-
mation of optimal weights, even for large systems. In the application reported
later, more than a million weights were �tted to a training set consisting of
eleven million scored positions in a reasonable period of time.

At this point GLEM should be moved into the right perspective: in the stated
form it is neither a new revolutionary evaluation approach, nor does it ease the
task of automatic evaluation function exploration. This is because the model is
built upon well known linear evaluation functions and does not impose a severe
restriction on the structure of functions it includes. E.g., for any atomic feature
set A, which is capable of distinguishing any two di�erent positions (including
game history if the game result depends on it) via conjunctions over RA, GLEM
covers all evaluation functions over P . A trivial example for such a complete
atomic feature set for board games without position repetition is

A =

�
fs j

fs(p) = contents of square s in position p;
s is a square

�
;

where the contents of a square is considered to be an integer value.
However, GLEM allows one to de�ne a hierarchy of submodels in a natural

way, which re
ects di�erent levels of computational complexity and the expres-
sive power of the covered evaluation functions. By restricting the size of A, the
number of con�gurations, or their structure, an automated search for new fea-
tures becomes feasible. In the application discussed later, evaluation functions
based on GLEM outperformed the best known functions so far. In this respect,
GLEM breaks new ground.

Good evaluation functions accurately estimate the winning chances in posi-
tions visited during game{tree search and are optimized for speed. Therefore, the
following topics have to be borne in mind when using scored training positions
for tuning con�guration weights:

{ The training positions have to be representative of the positions that will be
evaluated later in actual game{tree search.

{ Training positions must be scored accurately.
{ The selected con�gurations and their combination must have the expressive
power to explain the data reasonably well while avoiding over{�tting. Given
the
at evaluation function representation in GLEM, meeting this condition
may require a large number of con�gurations. Their automatic construction
is therefore of great interest.

{ Evaluation speed is important.
{ While computing weights is an o�{line process, its memory and time con-
sumption should still be subject to optimization. The reason is that in the
feature selection phase usually many evaluation function versions have to be
compared. Moreover, without optimization the current solver might not be
able to handle the number of features one would like to use.

In the following sections these topics are discussed in detail in the context of
GLEM.

3 Training Positions

A theory of how to generate good training sets in the context of evaluation
function tuning has not been developed yet. In this section practical ideas are
discussed which may become the seed for further investigations.

Training positions can be generated and scored in several ways. If the con-
sidered game has a long tradition and is quite popular, many games may be
available in electronic format. The simplest scoring procedure assigns the �nal
game result (depending on the side to move) to all positions occurring in a
game. Obviously, this ad hoc procedure has limitations, since it does not ensure
accurate scoring. Selecting games between good players alleviates this problem.
But this approach leads to high{quality games, in which hardly any catastro-
phe takes place, such as losing material in chess or a corner in Othello without
compensation. The reason for this is obvious: good players know the important
evaluation features and keep them mostly balanced in their games. What we
(and machines) can learn from such games are the �ner points of play, which
make the di�erence between good and the best players. However, an evaluation
function must also be aware of the most important features. Thus, our training
set should also contain games in which at one point a player makes a serious
mistake that is rigorously exploited by the opponent. In summary, a reason-
able strategy for generating training positions from a game database is to select
games played by at least one good player and to score game positions according
to the �nal game result. This procedure is e�cient and its output can serve as
the basis for tuning the �rst evaluation function version.

Besides the still present potential mis{scoring problem, the question arises,
whether the so generated training set is representative to positions encountered
in game{tree search. This question is of importance, since the weight �t for a
linear evaluation function is in
uenced by the correlation among features in the
training set. The answer obviously depends on the type of game{tree search
we are conducting: in a highly selective search evaluated positions are in the

vicinity of principal variations, whereas in brute{force searches many ridiculous
positions are evaluated, which one would never encounter in actual games. It
seems natural to let the search algorithm generate the training positions by it-
self. For instance, starting searches with positions from played games, a random
subset of evaluated positions can be saved in a �le and serve as the training
set after scoring. In this way, the generated positions are surely a representative
sample of the positions encountered in game{tree searches. It remains to assign
accurate scores to the positions. This task can be accomplished again by game{
tree searches, which normally return more reliable results than the evaluation
function itself. In particular, in many games endgame positions can be evaluated
perfectly | or at least more accurately than middle{game or opening positions
| in a reasonable amount of time. In this case, a game{stage dependent evalu-
ation function can be improved iteratively by �rst tuning the endgame weights.
Thereafter, training positions from the previous game stage are evaluated by a
game{tree search, which utilizes the just tuned evaluation function, and so on.
The next step would be to generate even positions and those with a narrow
advantage for one side. Similar to considering games between good players men-
tioned above, these positions are useful for tuning weights of minor features or
revealing possible tradeo�s between major features (e.g. material vs. king safety
in chess or corner possession vs. mobility in Othello).

If training positions are selected randomly during minimax{based searches,
one soon discovers that the winning chance in such positions is biased towards
the player to move. This phenomenon is easy to explain, given the fact that
in typical positions the majority of searched moves lose. Its undesirable e�ect
on �tted weights is an arti�cial bonus for the player to move. This, in turn,
leads to unstable evaluations, which compromise comparing evaluations backed{
up from depths of odd di�erence during selective search. Because the proposed
generation procedure labels positions with search results, a simple cure for this
problem is to add the principal variation successor positions to the training set
after labelling them with the negated search result.

4 Selecting Con�gurations

GLEM proposes a new perspective on how to look at evaluation features. In the
classical approach a couple of complex features are combined linearly. Weights
were mostly hand{tuned. Later, the study of neural networks opened up a prac-
tical way of combining features non{linearly. Application of the well known gra-
dient descent procedure (in this context called \back{propagation") makes it
possible to automatically tune a large number of network parameters. A promi-
nent and very successful example is Tesauro's backgammon network which, in
its strongest version, makes use of hand{crafted features in addition to a raw
board representation. GLEM uses a di�erent approach. Instead of modelling
non{linear e�ects by applying parameterized analytical functions to features,
GLEM handles non{linearities directly by assigning values to boolean feature
combinations, called con�gurations. In this way, distinct cases can be handled

naturally, without the detour over non{linear analytical functions. The design of
neural networks corresponds to con�guration selection in GLEM, which is the
topic of this section. After stating basic requirements for the atomic features,
we will present an algorithm for generating con�gurations by analyzing training
positions, and discuss several optimizations.

4.1 Atomic Features

Atomic features are the building blocks for con�gurations. As the scope of auto-
matic con�guration selection is limited by its time and space complexity, choos-
ing the right abstraction level for atomic features is crucial. In Othello, con�gu-
rations based upon the raw board representation are su�cient for building good
evaluation functions | as we shall see later. The reason is that many relevant
features in this game can be expressed by local board con�gurations of small
cardinality. Other games may require a greater abstraction level. For instance,
the relation \piece A attacks piece B" in chess has a long description length
when using raw board representation languages. Since many important features,
such as forks and pins, are based on those attack features, they certainly should
be included in the atomic feature set. In general, candidates for atomic features
are common parts of relevant features, that | combined in novel ways | may
lead to new important features. Obviously, this selection task is beyond current
program abilities.

Not all atomic features have to be useful for building other features. Limita-
tions of the con�guration generator may suggest the inclusion of complex features
that can not be expressed or well approximated by restricted combinations of
other members of the atomic feature set.

Moreover, GLEM generalizes the classical use of features | w � f(p) | be-
cause (w � k) in

w � f(p) =
X
k

(w � k) � val(f(p) = k):

specializes the weight of val(f(p) = k). This generalization is only meaningful if
f has a small range. In case one likes to incorporate a feature f having a large
range, GLEM can be easily extended by allowing summation terms of the form
w � f(p).

4.2 Generating Con�gurations

In a balanced evaluation function design the number of features can be increased
up to a point where either 1) adding additional knowledge is compensated for by
a decreased evaluation speed or 2) over{�tting becomes a problem. Since con�g-
urations can be computed quickly, once the atomic features have been evaluated,
GLEM encourages to use many con�gurations rather than a few complex fea-
tures. Our chief concern is therefore over{�tting.

We will �rst present an algorithm for generating a con�guration set that
does not su�er from over{�tting. Thereafter, we will discuss how to deal with a

possibly unacceptably long run time for the con�guration generator, for weight
�tting, or for the con�guration value look{up during game{tree search.

Con�gurations have to cover positions that occur in game{tree search while
avoiding over{�tting when optimizing weights. Both requirements can be met by
using a large set of training positions | generated as described in the previous
section | and selecting con�gurations that match a su�ciently large number of
these positions. Fig. 1 shows a straight forward algorithm for this task. Given a
set of atomic features A, training positions E, and a minimal match count n, it
computes all valid con�gurations over A that occur in at least n positions in E.
Beginning with all valid con�gurations of length one, the algorithm iteratively
builds larger con�gurations by specializing previously generated con�gurations,
until the matches count drops below n. The algorithm certainly halts, since the
set of valid con�gurations is �nite. Its correctness can be shown by induction
using the fact, that for k > 1, valid con�gurations of length k have valid sub-
con�gurations of length k � 1.

The run time of the algorithm is O(jCj � jRAj
2 � jEj), where C is the com-

puted set of valid con�gurations and E the set of training examples. The most
time{consuming part is computing the match counts in the inner loop. Since
in the beginning the number of checked con�gurations grows exponentially in

Function GenConf

Input: atomic feature set A, training position set E, minimal match count n

Output: con�gurations over A that are active in at least n positions of E

R := fff(�) = kg j f 2 A; k 2 range(f); #match(ff(�) = kg; E) � ng
C := R ; collects all valid con�gurations
N := R ; set of con�gurations created in previous iteration

while N 6= ; do
M := ; ; set of valid con�gurations in current iteration

(*) foreach c 2 N; d 2 R do

e := c [fdg ; specialize con�guration c
if #match(e;E) � n then

M :=M [feg ; append if valid
endif

endfor

N :=M ; next con�gurations to specialize
C := C [N ; add valid con�gurations

endwhile

return C

Fig. 1. Pseudo code for generating the set of con�gurations that occur in at least n
training positions. The function iteratively specializes con�gurations, which are imple-
mented as sets of relations, until the number of matching positions (#match(e;E))
drops below n.

each iteration, it is crucial to optimize the match computations, especially if
the number of positions is large. The following optimizations speed up a naive
implementation considerably:

{ Due to the commutativity of ^, valid con�gurations of length k may have
several valid subcon�gurations of length k � 1. This observation suggests
that we should check whether a given specialization has been tested before
in the current iteration, in order to avoid repeated match computations. An
even better solution is to generate specializations in an ordered fashion by
de�ning a total order over R and replacing line (*) by

foreach c 2 N; d 2 R with d > max
d02c

d0 do

It is not hard to show that after applying this time{saving modi�cation the
algorithm still generates all valid con�gurations.

{ A naive algorithm for deciding #match(e; E) � n evaluates the relations
in e for every member of E. The computation time of this algorithm can
be reduced by preprocessing and parallelizing computations. The idea is to
compute, for each r 2 R, a sequence of bits (bi)

#E
i=1 de�ned by bi := val(r(pi)),

where pi 2 E is the i{th training position. After this preprocessing step,
the actual features and positions are no longer needed. The match count
computation reduces to and{combining the bit sequences of the involved
relations and counting set bits in the result sequence. Modern CPUs allow

Function MatchHeuristic

Input: con�guration e, chunk size s, random partition E1; :::; Em of

position set E as described in the text, con�dence level t > 0
Output: true, if #match(e;E) � n is likely; false, otherwise

q := n=#E ; match count fraction aimed for
d := 0 ; number of elements checked
u := 0 ; current match count
for i := 1 to m� 1 do

u := u+#match(e;Ei) ; update counts
d := d+ s

if u � dq + t
p
dq(1� q) then

return true ; #match(e;E) � n is likely
endif

if u < dq � t
p
dq(1� q) then

return false ; #match(e;E) < n is likely
endif

endfor

return u+#match(e;Em) � n

Fig. 2. A fast procedure for testing the hypothesis #match(e;E) � n

a very e�cient implementation of the and{part by handling 32 or even 64
bits in parallel. Iterating x := x ^ (x � 1), which clears the rightmost one
in the binary representation of x, allows us to count set bits quickly. In this
application table{based techniques for counting bits are inferior because the
number of set bits is decreasing rapidly due to specialization.

{ Replacing the condition #match(e; E) � n by a sequential statistical test
procedure speeds up the computation further. This optimization can be mo-
tivated by an intuitive example: if among the �rst 100 randomly selected
bits of 1000 there is only a single one, it is very unlikely that the total num-
ber of ones exceeds 500. More formally, we propose the following heuristic
function, which quickly checks whether #match(e; E) � n holds with a pre-
scribed likelihood. In a preprocessing step, E is randomly partitioned into
chunks E1; :::; Em of size s (Em might have less elements). For a given con-
�guration e, the function then iteratively computes the match counts for
increasing subsets beginning with E1. If the match count fraction at one
point signi�cantly di�ers from the one we aim for, the function returns the
likely truth value of #match(e; E) � n early. The pseudo code implemen-
tation shown in Fig. 2 makes use of the fact that the expected number of
ones in a sequence of d randomly generated bits is dq, if Probf1g = q, while
its standard deviation is

p
dq(1� q). The behaviour of this function is con-

trolled by con�dence level t. For large values of t, hardly any break condition
will be met | the function will be slow, and almost always return the correct
result. If t is small, the function is quick, but it also returns unreliable results.
Experiments can tell how to choose t depending on the speed/reliability one
likes to achieve.

4.3 Finding Active Con�gurations

During weight �tting and position evaluation the set of active con�gurations
has to be computed quickly for a large number of positions. For this purpose,
we represent the set of all con�gurations over RA by a DAG G. Nodes in G
correspond to con�gurations, and arcs mark direct specializations. A detailed
example is shown in Fig. 3a. The just described selection algorithm computes all
con�gurations that occur at least n{times in a set of training positions. This set
of valid con�gurations induces a sub{DAG G0 of G. Given a position, all active
con�gurations can be found by a depth{�rst search in G0 starting at its root.
During search, all visited con�gurations are marked and their active status is
determined. The search stops in nodes that have been visited before or have been
found inactive. This algorithm quickly �nds all active con�gurations. However,
the only relevant active con�gurations for evaluation purposes are those without
active specializations, because generalizations are redundant. It is easy to extend
the described algorithm accordingly by restricting its output to leaves of the
active con�guration sub{DAG. Fig. 4 illustrates the entire procedure.

2]f

r

r

r

r

2,1

2,2

r1,0

1,1

2,0

r^

r1,0 r2,1^

r1,1 r2,1^

r1,1 r2,2^

2,0r

r^ 2,0r1,1

1,0

r1,0 r^ 2,2

r

r

r

r

2,1

2,2

r1,0

1,1

2,0

r^

r1,0 r2,1^

r1,1 r2,1^

r1,1 r2,2^

2,0r

r^ 2,0r1,1

1,0

r1,0 r^ 2,2

true

a)

f1

f1]

0

1

2

3

4

5

0

1

0

1

2

table indices

f2]

 pattern[

 pattern[

 pattern[,

b)

Fig. 3. a) Con�guration DAG for two features f1; f2 with range(f1) = f0; 1g and
range(f2) = f0; 1; 2g. ri;k denotes the relation fi(�) = k. b) Con�gurations belonging
to patterns over f1 and f2.

c) most specific active
 configurations

a) configuration sub-DAG G’

1

2

3

4

6 7

9

11 12

17

5 8 14 16

 left-to-right DFS numbers

15

13

10

b) active configurations and

Fig. 4. Finding the most speci�c active con�gurations by depth{�rst search in the
con�guration DAG

4.4 Reducing Complexity: Patterns

So far, our focus has been on e�cient ways for generating con�gurations and
computing active con�gurations. Despite the optimization e�orts, GenConf may
still not be able to generate all valid con�gurations due to time or space limi-
tations. Furthermore, a large number of generated con�gurations might prevent
an e�cient position evaluation, because too many con�gurations are active, or
the con�guration data needs too much memory.

One solution to these problems is to increase the minimal match count n,
until the number of generated con�gurations is manageable. This approach, how-
ever, narrows the evaluation function's view by focusing it on the most common
phenomena. A compromise is to generate all valid con�gurations choosing n high
enough to avoid over{�tting, and to reduce their number afterwards by looking

at their statistical signi�cance with regard to winning chance prediction.2 An-
other option for reducing the number of con�gurations is to limit their size or to
choose subsets of the atomic feature set as the base for generating con�gurations.

Finally, considering sets of mutual exclusive con�gurations helps to reduce
the number of active con�gurations in order to speed up the evaluation consid-
erably. Let G be the complete con�guration DAG for ff1; :::; fmg � A (Fig. 3a),
and let rmin and rmax denote the minimum/maximum range cardinality of
the features. Then the number of nodes in G is bounded by (1 + rmin)

m and
(1 + rmax)

m, and for any position the number of active con�gurations is 2m. 3

Thus, in case of complete con�guration DAGs the DFS algorithm presented in
the last subsection seems to waste time by searching a large number of nodes
before it eventually returns the single active con�guration we are interested
in. This observation motivates looking for a more e�cient data structure. For
ff1; :::; fmg � A we collect all possible most speci�c con�gurations in a set called
pattern[f1; :::; fm], i.e.

pattern[f1; :::; fm] := fr1;l1 ^ ::: ^ rm;lm j ri;li = (fi(�) = li); li 2 range(fi)g

Con�gurations in pattern[f1; :::; fm] correspond to leaves of the complete con-
�guration DAG (Fig. 3b). Data related to these con�gurations can therefore be
stored in a table addressed by feature values. For instance, in Fig. 3b the table
index for pattern[f1; f2] with regard to position p is simply 3 � f1(p) + f2(p).
Checking whether a pattern con�guration is valid only requires incrementing a
match counter stored in a table whenever a con�guration is active, and com-
paring the result with the minimal match count. Detecting whether a pattern
con�guration is active during weight �tting or positional evaluation is a matter
of a fast index computation and one table access. Incremental updates of only
those indices which are in
uenced by moves speeds up game{tree search further.
In summary, the
at table is the data structure of choice for storing information
regarding small and medium sized complete con�guration sets. The fast access
encourages to restrict con�guration sets to patterns.

Large patterns require a more memory e�cient representation. In order to
avoid over{�tting, we are still only interested in con�gurations that match several
training positions. Consequently, large patterns are sparse. Fig. 5 outlines a very
fast and | to our knowledge | novel technique for accessing sparse data which
trades memory for speed. It is based on representing valid con�gurations as
index tuples (i1; i2). For a given position and pattern, i1 and i2 are computed
by splitting the pattern's feature set into two parts and performing the index
calculations described above separately for each subset. Both indices are then
used for accessing a hash{table, in which data regarding con�guration (i1; i2)

2 The general problem of deciding the relevance of variables in a multivariate regression
model in advance is hard. Nevertheless, simple statistics like the feature's correlation
with the training position scores can serve as a reasonable �rst approximation.

3 These numbers can be derived by adding lower/upper bounds for the number of
nodes/active con�gurations for each depth and applying the identity

Pm

i=0

�
m

i

�
xi =

(1 + x)m.

i1i

i

1

2

1

offset table

hash-table

offset(i) 1data(i ,i)2

Fig. 5. Fast sparse data access. Data regarding a con�guration represented by two
indices i1 and i2 can be accessed quickly in two steps.

is stored. First, an o�set is looked{up in a table using index i1. Then, this
o�set, incremented by i2, is used to access the hash{table. For the algorithm
to be correct, 1) unique hash{table entries have to be assigned to valid index
tuples, and 2) invalid index tuples must be detected. The �rst condition can be
met by choosing suitable o�sets and a su�ciently large hash{table. In practice,
the following greedy algorithm for constructing collision{free hash{tables has
produced reasonable results: beginning with the most frequent i1{values, o�sets
are assigned to them in �rst{�t manner. That is, whenever a collision occurs
when attempting to occupy the hash{table entry o�set(i1) + i2, all i1 entries
claimed so far are erased and o�set(i1) is incremented before restarting. The
hash{table size must be greater than the sum of the maximal o�set and maximal
possible value of i2, in order to avoid accesses beyond table end. A simple way
for meeting condition 2) is to add the lock i1 to hash entries for all valid tuples
(i1; i2) and to reject tuples (i1; i2), for which the lock stored in the accessed hash
entry does not match i1. Locks of unused hash entries must be initialized with
a value di�erent from any possible i1 (e.g. �1). Finally, o�sets for all i1, which
are not the �rst component of any valid index tuple, can be safely set to 0, since
all locks in the hash{table are di�erent from those i1 values.

Patterns may outperform con�guration sets constructed by GenConf due to
a much faster generation and evaluation of con�gurations. However, patterns
su�er from their limited scope because patterns may miss essential generaliza-
tions. This observation suggests building a hierarchy of patterns in order to
quickly cover both general and speci�c position aspects. Since this approach

also increases the evaluation time, experiments have to tell, which is the better
strategy for a given application.

5 Weight Fitting

The previous sections discussed the generation of scored training positions and
the selection of con�gurations. In order to conclude the evaluation function con-
struction, we must show how to assign weights to con�gurations.

If the number of weights is large or non{linear models are used, direct weight
computation is no longer feasible. Instead, iterative methods have to be used
for weight �tting, which are usually based on variations of the gradient decent
procedure. In each step, this procedure updates the current weight vector in
direction of the negated gradient of the error function. If features are highly
correlated, this simple algorithm is known to converge slowly. Faster conjugate
gradient algorithms have been developed [6], that do not su�er from this problem.
However, because the basic algorithm works su�ciently well in practice and
is easier to implement, its application will be discussed in more detail in the
remainder of this section.

5.1 Basic Considerations

In games, the purpose of evaluation functions is to estimate the winning chance
for the player to move. This goal can be accomplished literally by constructing
functions that map positions into [0; 1]. Alternatively, the game may provide
a numerical scoring of terminal positions re
ecting the win size. In this case,
a reasonable evaluation objective is to estimate the �nal game score. In either
case, experiments should be conducted to �nd a suitable link function g. The
most commonly used candidates are the identity function and sigmoid functions
of the form g(x) = 2C=(1+exp(�x))�C. For instance, for modeling the winning
chance an S{shaped link function g : IR ! [0; 1] can be used in order to deal
with saturation. In this regard, g(x) = 1=(1 + exp(�x)) is of special interest,
because the weight �tting process bene�ts from a quickly computable derivative
of g, which in this case is g(x)(1� g(x)). A straight forward scoring scheme for
terminal positions in this model assigns 0.9 to won positions, 0.5 to draws, and
0.1 to lost positions for the player to move. It is important to realize that an
optimal weight vector may not exist if the extreme values 1.0 and 0.0 are chosen.

Given a sequence of scored training positions ((pi; ri))
N
i=1 the objective is to

�nd a weight vector w0 which minimizes the error function

E(w) =
1

N

NX
k=1

�k(w)
2;

where

�k(w) := rk � g
� nX
i=1

wihi;k

�
and hi;k := val(ci(pk)):

Starting with an initial guess w(0), in each step the basic gradient descent pro-
cedure updates the weight vector according to

�
(t) = �� � (gradwE)(w(t)) 4

w
(t+1) = w

(t) + �
(t):

� > 0 is the step size and gradwE is the vector consisting of E's partial deriva-
tives @E

@wi
. This update scheme changes the weights in direction of the error

function's steepest descent and is widely used for training arti�cial neural net-
works.

In this application, the partial derivatives have a simple form due to GLEM's

at evaluation structure:

@E

@wi

(w) = �
2

N

NX
k=1

g0
� nX
i=1

wihi;k

�
�k(w)hi;k : (2)

If g is the identity function, this expression reduces to

@E

@wi

(w) = �
2

N

NX
k=1

�k(w)hi;k:

Thus, steepest descent updates for all weights can be computed e�ciently in a
single pass through the training data. It is worth noting, that the computation
of (2) can be arranged in such a way that its run time depends on the number
of hi;k di�erent from 0, rather than on N . Especially when using patterns, the
savings thus achieved are signi�cant.

Since the con�guration match count may vary by large factors, the described
update step changes weights at very di�erent speeds. This is undesirable, because
at one point the iteration process has to be stopped, and by then, weights of
rare but important con�gurations might not have reached a proper level yet. A
simple way to deal with this problem is to normalize the updates by dividing
the sum by the number of hi;k 6= 0 instead of N .

5.2 Position Type Dependent Weights

The evaluation of con�gurations may depend on the game stage or, more gen-
erally, on the particular type of the position. For instance, centralizing the king
in chess openings is considered suicide, whereas his activation is crucial in many
endgames. It may therefore be worthwhile to partition the training set accord-
ing to position type, and to select con�gurations and �t weights separately for
each set. In order to avoid big evaluation jumps when crossing type boundaries,
which can cause undesired artifacts in game{tree search, it is helpful to de�ne �ne
grained position types and to smooth evaluations across adjacent types. Fitting

4 adding � � �(t�1) | known as \momentum" | can improve the convergence in case
of correlated features.

weights for many position types, however, requires a large number of training
positions, provided the minimal match count is maintained in order to elimi-
nate over{�tting. Globally lowering the match count is therefore not an option.
Instead, a more local view can help to reduce the number of needed positions.
One suggestion when �tting weights for a particular position type, is to con-
sider the training positions from adjacent types as well. This method increases
the number of positions for any single position type and weights are smoothed
automatically. The second option is to �t position type dependent weights in
a more
exible manner. For this purpose, valid con�gurations are generated by
considering all training positions. The weight �tting process then decides, how
to compute the con�guration weights separately for each type of position. For
any type, for which the particular con�guration match count is su�ciently high
(say � 20), it is safe to �t the according weight as described in the previous
subsection. If the count is small (say � 4), over{�tting is likely and the con�gu-
ration should be treated as if there is no information available, i.e. the weight is
set to 0. Cases in between can be handled by merging adjacent position types,
until the total match number allows a robust weight �t. Here, the alternatives
are to have only a single weight for all involved types or, if there are enough
positions available, to �t a parameterized weight model. An example for such a
model is w(k) = a � k + b; k0 � k � k1, which states a linear relationship be-
tween the weight and the position type k | coded as an integer | in [k0; :::; k1].
Of course, this kind of model is only meaningful for position types that can be
totally ordered, such as opening, middle{game, and endgame. Incorporating the
update of parameters a and b in the gradient descent procedure is not hard.

This technique allows a
exible and robust �tting of position type dependent
weights. After generating training positions and selecting con�gurations, this
concludes the evaluation function construction.

6 Application: Othello

The presented general framework for the construction of evaluation functions
has been inspired by the work on our Othello program Logistello. Besides the
progress in selective search and automated opening book construction, the ap-
plication of the techniques discussed has contributed to the considerable playing
strength of this program. Logistello is able to beat the best human Othello
players handily, even when running only on ordinary hardware [2]. The details
of Logistello's evaluation function already have been discussed in [1]. We will
therefore only give a short overview and concentrate on its recent improvement,
which is based on the sparse pattern approach presented above.

Othello is a popular Japanese board game, played by two players on an 8x8{
board using 64 two{colored discs. Moves consist of placing one disc on an empty
square and turning all bracketed opponent's discs over. Fig. 5 shows an example.
The game ends when neither player has a legal move, in which case the player
with the most discs on the board has won.

8

7

6

5

4

3

2

1
a b c d e f g h

�

�
�

� f
fv
v

Starting position
(Black to move)

8

7

6

5

4

3

2

1
a b c d e f g h

vff
vvff v
vfvfvv
vvvvfv
ffvfvv
fff v
fff

�
�
�
�
�
�

�

�

White to move

8

7

6

5

4

3

2

1
a b c d e f g h

vff
vfff v
ffvfvv

ffffffv
ffvfvv
fff v
fff

� � �
� �

� �
�

�
�
� �
�

Position after move b5

Fig. 6. Example positions. Legal moves are marked with a dot.

The most important concepts in Othello are disc stability, mobility, and par-
ity. In particular:

{ Stable discs can not be
ipped by the opponent. Therefore, they directly
contribute to the �nal score. The most prominent stable discs are occupied
corners, which can be used as anchors for creating more stable discs.

{ Having fewer move options than the opponent is dangerous, because it in-
creases the chance of losing a corner in the near future.

{ Making the last move in an Othello game is advantageous, since it increases
one's own disc count while decreasing the number of opponent's discs. Parity
generalizes this observation by considering last move opportunities for every
empty board region.

In [1] it has been shown, that all of these features can be quickly approximated
by pattern con�gurations built upon a raw board representation. The chosen
patterns are shown in Fig. 7. Horizontal, vertical, and diagonal lines of length
� 4 are included for covering mobility. The remaining patterns deal with the im-
portant corner regions and edges. The evaluation function distinguishes 13 game
stages, depending on the number of discs on the board. Applying the techniques
described in the previous sections, about eleven million scored training positions
were generated to �t approximately 1:5 million weights. This �gure takes weight
sharing among symmetrical con�gurations into account. Starting with w(0) = 0,
the weight �tting procedure took a Pentium II/333 CPU about 30 hours to
reach an acceptable accuracy level after 250 iterations. Equipped with an eval-
uation function very similar to that we have just described, Logistello beat
the human Othello World{champion 6{0 in August 1997 [2]. After four years of
successful tournament play, Logistello ended its career in October 1997 with
a straight 22{win victory in its last computer Othello tournament.

Recently, the incorporation of larger patterns has improved the evaluation
performance. In the current implementation, con�guration weights are repre-
sented as 16 bit integers. Storing weights for 10{square patterns in 13
at tables
thus requires 310 � 2 � 13 � 1:5 million bytes. Using the same approach for storing
weights for much larger patterns is therefore out of the question. The �rst ex-
periments with several sparse data access schemes based on binary search were

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

��������
��������

��������

��������
� �

�����
�����

���
���
���

Fig. 7. Logistello's previous pattern set. Patterns that can be obtained by rotating
and mirroring the board have been omitted. Each diamond represents an atomic feature
f with range f0; 1; 2g. f(p) is de�ned by the particular square contents (e.g. white disc
7! 0, empty 7! 1, black disc 7! 2).

A
��������
��������

B
��������
��

�
�
�
�
�
�

C
��������

��������

Fig. 8. Large patterns tested. For each of these patterns the simpli�ed pattern version
of GenConf generated about 88,000 valid con�gurations (#E � 11 million, n = 75).
All con�guration sets �t in hash{tables with about 310 thousand entries.

disappointing. Increasing the program's knowledge by adding the patterns shown
in Fig. 8 could not compensate for a slowdown of about 45%. Only after utilizing
the fast hash{table access scheme and adding just one of the three features, the
program achieved its best performance so far. Table 1 summarizes the results of
all tournaments that have been played to evaluate each version. All games were
played by brute{force versions of Logistello running on Pentium II/333 PCs.
On this hardware Logistello achieves a middle{game speed of approximately
270K nodes/sec when the patterns shown in Fig. 7 are used. This speed enables
the program to look 12{14 ply ahead in the opening and middle part of ten
minutes games.

The patterns presented in Fig. 8 were chosen based on both game and evalu-
ation speed considerations. Human players frequently make use of their abilities
to evaluate large disc formations which are not covered by the basic patterns.
Of special interest are edge interactions and 2� 8{corner con�gurations. On the
other hand, it is preferable to add patterns for which the index computation can
make use of already determined indices. The chosen 16{square patterns meet this
preference. Nevertheless, the results show, that the combined knowledge coded

Table 1. Tournament results. Logistello using the basic patterns played 434{game
tournaments against several versions that | in addition | employed the large pat-
terns shown in Fig. 8. The results indicate that speed matters. The strongest versions
are those that only use either pattern A or B. They beat the previous version signi�-
cantly, although they are 11% slower. When playing at equal strength the best version
only needs to search about 2/3 of the nodes | as the results of the time{handicap
tournaments indicate.

opponent time/game #nodes opponent results winning
(minutes) (fraction) wins draws losses percentage

A 10-10 0:89 213 58 163 55.8
B 10-10 0:89 211 60 163 55.5
AB 10-10 0:83 203 60 171 53.7
ABC 10-10 0:8 211 49 174 54.3

A 6-10 0:51 172 59 203 46.4
A 7-10 0:62 183 55 196 48.5
A 8-10 0:71 195 63 176 52.2

in the new patterns does not compensate for the speed drop. This �nding indi-
cates that a signi�cant improvement of a sequential program may not be possible
by adding further patterns based on the raw board representation. However, a
more e�ective atomic features might exist which in combination outperform the
current evaluation function.

7 Summary and Discussion

In this paper a practical framework for the semi{automatic construction of eval-
uation functions has been presented. Based on a generalized linear evaluation
model | called GLEM | e�cient procedures have been developed for generat-
ing training positions, exploring the feature space, and �tting feature weights.
Rather than combining a few features by using complicated non{linear functions,
we propose to construct evaluation functions by combining many | possibly
more than hundred thousand | features, which are boolean combinations of
atomic relations. This approach allows us to model non{linear e�ects directly,
without the detour over analytic functions, and opens up practical ways for gen-
erating features automatically. GLEM allows the program author to concentrate
on the part of evaluation function construction, where humans excel: the dis-
covery of fundamental positional features by reasoning about the game. GLEM
simpli�es this task because the exact feature formulation is no longer needed.
The system is able to approximate complex features by combining atomic frag-
ments. In this way, it is now possible for the programmer to speculate about
feature building blocks and to leave the creation of actually used features as well
as assigning weights to them to the system. One example for this strategy has
been presented in this paper: the observation that con�gurations can approxi-
mate important Othello concepts combined with the \mechanical" analysis of

millions of training positions has produced an expert program capable of beating
any human player. An interesting fact is that the game knowledge encoded by
the set of over a million con�guration weights goes far beyond the features we
intended the system to approximate in the �rst place [1]. This result encourages
the application of GLEM to other games or even to search or decision problems
in other domains. Attractive candidates are chess and Go since both games are
very popular and well analyzed. And yet, for chess, hardware roughly equivalent
to four thousand ordinary PCs is currently needed5 to compete with the human
World{champion. For Go the status is even worse because brute{force search is
not feasible due to the large branching factor. Since a good evaluation function
is not known either amateurs are still able to beat the best Go programs. It is
our opinion that the key to better chess and Go programs lies in improved eval-
uation functions. A starting point is the analysis of known features with regard
to their approximation by weighted con�gurations as proposed by GLEM.

The automatic construction of features has been studied by several authors.
Utgo� [10] proposes a general evaluation function learner, called ELF, which
combines the processes of constructing boolean feature combinations and weight
�tting. This approach has been shown to be e�ective in small arti�cial problems,
but could not convince in its application to checkers. The main problem of
ELF is its low speed. Taking into account the large number of features needed
for an adequate evaluation in complex domains, and the resulting considerable
e�ort for optimizing weights, it seems hopeless to combine feature construction
and weight �tting. Other approaches for constructing features or adapting the
combination function while �tting weights (e.g.Morph [5], meiosis networks [3],
node splitting [11]), face similar complexity problems. Our solution is to separate
these tasks in order to speed{up the process and to give many opportunities for
optimization.

References

1. M. Buro. Experiments with Multi{Probcut and a new high{quality evaluation
function for Othello. Workshop on Game{Tree Search, NEC Research Institute,
1997.

2. M. Buro. The Othello match of the year: Takeshi Murakami vs. Logistello. ICCA
Journal, 20(3):189{193, 1997.

3. S.J. Hanson. Meiosis networks. Advances in Neural Information Processing Sys-

tems, pages 553{541, 1990.
4. F. Hsu, S. Anantharaman, M.S. Campbell, and A. Nowatzyk. Deep Thought. In

T.A. Marsland and J. Schae�er, editors, Computer, Chess, and Cognition, pages
55{78. Springer Verlag, 1990.

5. R.A. Levinson and R. Snyder. Adaptive pattern{oriented chess. In L. Birnbaum
and G. Collins, editors, Proceedings of the 8th International Workshop on Machine

Learning, pages 85{89, 1991.

5 Deep Blue searched around 200 million nodes per second in the 1997 match with
Kasparov. Assuming a speed{up of four gained by using special purpose evaluation
hardware and a speed of 200K nodes/sec of a state{of{the{art PC chess program
leads to the given speed factor estimate.

6. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical

Recipes, 2nd edition. Cambridge University Press, 1992.
7. A.L. Samuel. Some studies in machine learning using the game of checkers. IBM

Journal of Research and Development, 3(3):211{229, 1959.
8. G. Tesauro. TD{Gammon, a self{teaching backgammon program, reaches master{

level play. Neural Computation, 6(2):215{219, 1994.
9. G. Tesauro. Temporal di�erence learning and TD{Gammon. Communications of

the ACM, 38(3):58{68, 1995.
10. P.E. Utgo�. Constructive function approximation. Technical Report 97{4, Univ. of

Mass., 1997.
11. M. Wynne-Jones. Node splitting: A constructive algorithm for feed{forward neural

networks. Neural Computing and Applications, 1(1):17{22, 1993.

