Introduction To NP-Completeness

Guest Lecture for CS 350

Bart Massey <bart@cs.pdx.edu> PSU CS Department February 19, 2001

Overview

- Computational Complexity
- NP-Completeness
- Applications

Order Analysis and Computational Complexity

- Motivation: estimate problem difficulty
- Two approximations: Consider only
 - growth rate of difficulty with instance size
 - polynomial part of growth rate
- Both approximations questionable
 - cryptography: difficulty of fixed-size instances
 - linear-time register allocation: huge constants

Two Theses

Polytime Thesis: Any realistic $O(n^k)$ problem is $O(n^3)$ problem

Church-Turing Thesis: The same problems are $O(n^k)$ problems on any computer (QP? Open)

Problem Descriptions

Need uniform notation for

- Distinguishing problem from class
- Distinguishing instance from problem
- Formulating size of instance

Problem Description Notation [Garey-Johnson]

Key Elements:

• Name: Identifies problem

• Instance: Lists all data comprising problem instance

Question: Formulates yes/no "decision" question

Example:

EVEN SET

INSTANCE: A set S of integers.

QUESTION: Are all integers in S even?

Instance Size

Size of instance is minimum number of bits needed to represent instance.

What is size of EVEN SET instance?

What about EVEN ELEMENT?

Problems And Classes

Problem p is in class $\mathcal C$ when exists $\mathcal C$ algorithm for solving p instances.

p is hard for $\mathcal C$ when $\mathcal C$ algorithm for p also solves all instances in $\mathcal C$.

p is complete for $\mathcal C$ when p is in $\mathcal C$ and $\mathcal C$ hard.

The Class NP

Decision problem is in P if can answer yes/no in polytime.

Consider class of problems that can *check* yes answer in polytime.

- Same? No one knows
- Call this class NP

Nondeterministic Polynomial

Why NP? Because

- If you *guess* an answer (nondeterminism)
- You can check it in polytime
- E.g. SAT, graph coloring, bin packing

$$P \stackrel{?}{=} NP$$

- Most think $P \neq NP$
- After many years
 - no proof
 - no algorithm
- Assume $P \neq NP$ for this lecture

Decision vs. Optimization Problems

- Many problems call for value, not decision
- Optimization problems call for best value
- Trick
 - Make optimization target part of instance
 - Binary search

From Optimization To Decision

MAXIMAL BOUNDED SUBSET CONSTRUCTION

INSTANCE: Set A of positive integers, bound B

QUESTION: What is the largest subset A' of A such that

$$s = \sum_{e \in A'} e \le B$$

MAXIMAL BOUNDED SUBSET

INSTANCE: Set A of positive integers, bound B, target K.

QUESTION: Is there a subset A' of A such that

$$s = \sum_{e \in A'} e \le B$$

and $s \geq K$?

Coclasses and Coproblems

- Note: NP decision problem is P check for 'yes' answer
- P check for 'no' answer?
 - These are co-NP problems
 - E.g. UNSAT, No-Coloring, No-Packing
 - Believed harder than NP
 - But $NP \stackrel{?}{=} co NP$ open
 - Note P = co P, so P = NP would imply NP = co NP

NP Complete

A problem is NP Complete if it is

- In NP: easy to check, but important
- Hard for NP: how to tell?

Many-One Reductions

If you have an NP-hard problem p, another problem q is NP-hard if

- \bullet Each p instance transformable to q instance in polytime
- ullet q instance yes exactly when p instance yes

If q is polytime solvable and $p \leq_m q$ (p is reducible to q)

- p is polytime solvable
- All NPC problems polytime solvable

Many-One Reduction: Integer Knapsack

SUBSET SUM

INSTANCE: Set A of positive integers, target K.

QUESTION: Is there a subset A' of A such that

$$\sum_{e \in A'} e = K$$

- SUBSET SUM is NPC
- Can reduce SUBSET SUM to MBS
- Therefore MBS is NPC

SAT Is NP Complete

Can prove problems NP hard (thus NPC) by many-one reduction

But need base case

- CLR: CIRCUIT-SAT is NP-hard by definition
- Cook's Theorem: SAT is NP-hard by definition

Proof Idea: Construct circuit (resp. formula) for "Nondeterministic Turing Machine." Show any NP-hard problem polytime-solvable by NTM

P, NP, and Beyond

Consider P, NP, co-NP. Can define more complex classes (w/co-classes): EXP, PSPACE, oracle classes. Little known: mainly $P \subset EXP$

Reminder: Why We Care

Big excursion into theory. Why?

- Should do one of
 - Give P algorithm for your problem
 - Prove your problem NPC
 - Prove your problem above NP

Techniques For NP Hardness Proof

- ullet Restriction: q contains NP-hard p as special case
 - e.g. MBS restricts to SUBSET SUM
- local replacement
- Component design
- Direct proof (never)

Instance Generalization

- Often given single instance: constant time!
- Still interested in instance "hardness"
- Generalize instance and find problem class
 - No "right" generalization
 - Answers wrong question
 - Still very useful

LOGS BOX STACKING

Given instance with

- 14 logs of given length
- 3-D box of given length

formulate

LOGS BOX STACKING

INSTANCE: n logs of length $l_1 \dots l_n$ and unit width and height, 3-dimensional box with sides d_1 , d_2 , d_3 and $\prod_i d_i = \sum_j l_j$ and

$$\exists q \in \mathcal{R} . \forall i . l_i | q$$

QUESTION: Is there a packing of the logs into the box?

Restriction To 1D

LOGS BOX STACKING

INSTANCE: Set L of n logs of integer length $l_1 \dots l_n$ and unit width, 2-dimensional box with sides 2 and d such that $2d = \sum_j l_j$.

QUESTION: Is there a packing of the logs into the box?

Proving LOGS BOX STACKING NPC

Two things to prove

- LOGS BOX STACKING in NP? Yes
- LOGS BOX STACKING NP-hard? Yes, by reduction from PARTITION [G&J SP12]

PARTITION

INSTANCE: Finite set A, a size $s(a) \in \mathbb{Z}^+$ for each $a \in A$.

QUESTION: Is there a subset $A' \subseteq A$ such that

$$\sum_{a \in A'} s(a) = \sum_{a \in A - A'} s(a)$$

NP Hardness Proof For LOGS BOX STACKING

Consider PARTITION instance with A. Make LOGS BOX STACK-ING instance with $2 \times \sum A/2$ box and logs from A.

