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Overview
e Computational Complexity
e NP-Completeness

e Applications



Order Analysis and Computational Complexity
e Motivation: estimate problem difficulty

e T wo approximations: Consider only
— growth rate of difficulty with instance size
— polynomial part of growth rate
e Both approximations questionable
— cryptography: difficulty of fixed-size instances

— linear-time register allocation: huge constants



Two Theses

Polytime Thesis: Any realistic O(n*) problem is O(n3) problem

Church-Turing Thesis: The same problems are O(n*) problems
on any computer (QP? Open)



Problem Descriptions

Need uniform notation for
e Distinguishing problem from class
e Distinguishing instance from problem

e Formulating size of instance



Problem Description Notation [Garey-Johnson]

Key Elements:
e Name: Identifies problem
e Instance: Lists all data comprising problem instance
e Question: Formulates yes/no ‘decision” question

Example:

EVEN SET
INSTANCE: A set S of integers.

QUESTION: Are all integers in S even?



Instance Size

Size of instance is minimum number of bits needed to represent
instance.

What is size of EVEN SET instance?

What about EVEN ELEMENT?



Problems And Classes

Problem p is in class C when exists C algorithm for solving p
instances.

p is hard for C when C algorithm for p also solves all instances in
C.

p is complete for C when p is in C and C hard.



The Class NP

Decision problem is in P if can answer yes/no in polytime.

Consider class of problems that can check yes answer in polytime.
e Same”?” No one knows

e Call this class NP



Nondeterministic Polynomial

Why NP? Because
e If you guess an answer (nondeterminism)

e YOu can check it in polytime

E.g. SAT, graph coloring, bin packing



e Most think P = NP

e After many years
— no proof

— no algorithm

e Assume P #= NP for this lecture
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Decision vs. Optimization Problems
e Many problems call for value, not decision
e Optimization problems call for best value

e [rick
— Make optimization target part of instance

— Binary search
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From Optimization To Decision
MAXIMAL BOUNDED SUBSET CONSTRUCTION
INSTANCE: Set A of positive integers, bound B
QUESTION: What is the largest subset A’ of A such that

§ = ZeSB
ec A

MAXIMAL BOUNDED SUBSET

INSTANCE: Set A of positive integers, bound B, target K.

QUESTION: Is there a subset A’ of A such that

s = ZeSB
ec A’

and s > K7
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Coclasses and Coproblems

e Note: NP decision problem is P check for ‘yes’ answer

e P check for ‘no’ answer?
— These are co-NP problems

E.g. UNSAT, No-Coloring, No-Packing

Believed harder than NP

But NP = co— NP open

Note P =co— P, so P = NP would imply NP =co— NP
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NP Complete

A problem is NP Complete if it is
e In NP: easy to check, but important

e Hard for NP: how to tell?
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Many-One Reductions

If you have an NP-hard problem p, another problem q is NP-hard
if

e Each p instance transformable to ¢ instance in polytime
e ¢ instance yes exactly when p instance yes

If g is polytime solvable and p <, ¢ (p is reducible to q)
e p is polytime solvable

e All NPC problems polytime solvable
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Many-One Reduction: Integer Knapsack

SUBSET SUM
INSTANCE: Set A of positive integers, target K.

QUESTION: Is there a subset A’ of A such that

ZeZK

ec A
e SUBSET SUM is NPC

e Can reduce SUBSET SUM to MBS

e [ herefore MBS is NPC
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SAT Is NP Complete
Can prove problems NP hard (thus NPC) by many-one reduction

But need base case
o CLR: CIRCUIT-SAT is NP-hard by definition

e Cook’'s Theorem: SAT is NP-hard by definition
Proof Idea: Construct circuit (resp. formula) for “Nondetermin-

istic Turing Machine.” Show any NP-hard problem polytime-
solvable by NTM
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P, NP, and Beyond

Consider P, NP, co-NP. Can define more complex classes (w/
co-classes): EXP, PSPACE, oracle classes. Little known: mainly
PCEXP
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Reminder: Why We Care

Big excursion into theory. Why?

e Should do one of
— Give P algorithm for your problem

— Prove your problem NPC

— Prove your problem above NP
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Techniques For NP Hardness Proof

Restriction: g contains NP-hard p as special case
— e.g. MBS restricts to SUBSET SUM

local replacement
Component design

Direct proof (never)
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Instance Generalization
e Often given single instance: constant time!
e Still interested in instance “hardness”

e Generalize instance and find problem class
— No “right” generalization
— Answers wrong question

— Still very useful
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LOGS BOX STACKING

Given instance with

e 14 logs of given length

e 3-D box of given length

formulate

LOGS BOX STACKING

INSTANCE: n logs of length [7...l, and unit width and height,
3-dimensional box with sides dy, dp, d3 and [[;d; = _;1; and

dg € R . Vi. lq

QUESTION: 1Is there a packing of the logs into the box?
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Restriction To 1D

LOGS BOX STACKING

INSTANCE: Set L of n logs of integer length [1...l;, and unit
width, 2-dimensional box with sides 2 and d such that 2d =3 _; ;.

QUESTION: Is there a packing of the logs into the box?
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Proving LOGS BOX STACKING NPC

Two things to prove
o LOGS BOX STACKING in NP7 Yes

o LOGS BOX STACKING NP-hard? Yes, by reduction from
PARTITION [G&J SP12]

PARTITION
INSTANCE: Finite set A, a size s(a) € Z1 for each a € A.

QUESTION: Is there a subset A’ C A such that

> s(a)= >  s(a)

ac A’ acA—A'
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NP Hardness Proof For LOGS BOX STACKING

Consider PARTITION instance with A. Make LOGS BOX STACK-
ING instance with 2 x >~ A/2 box and logs from A.

- (sum A)/2 >
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