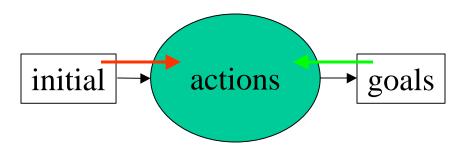

Directions In Planning Understanding the Flow of Time In Planning


Bart Massey May 13, 1999

Planning

- Given
 - an initial situation
 - a goal situation
- Find a way to achieve goal from initial

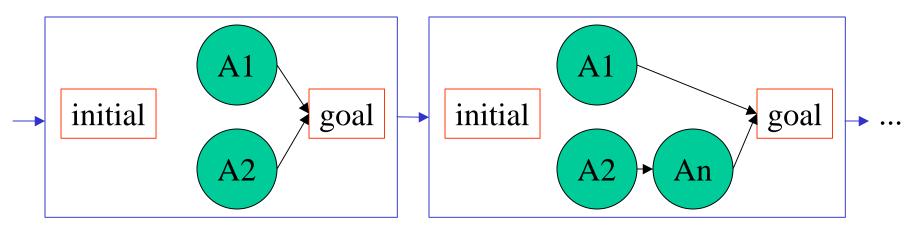
Forward or Backward?

- Forward: consider actions which can come first, actions which can follow...
- Backward: consider actions which can come last, actions which can precede...
- Why are these different? Does it matter?

Message

- Planning is fundamentally time symmetric
- Many problems are not
- Many planners are not
- What we can do
 - Can reverse problems
 - Can detect planner direction

Propositional STRIPS Planning


- Situations are Boolean state vectors
- Operators/actions
 - Are atomic, deterministic
 - Have preconditions, effects
- Plan: a sequence of actions

Standard Planning Algorithms

• State-Space Search: chain forward via states

initial
$$\rightarrow$$
 A1 \rightarrow next \rightarrow A2 \rightarrow ... \rightarrow An \rightarrow goal

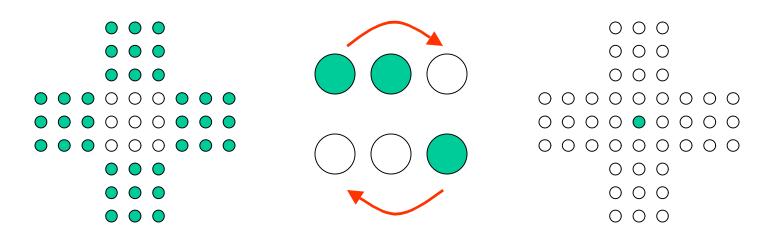
 Partial-Order Causal Link: chain backward via plans

Newer Planning Algorithms

- Graphplan: forward chaining to prune search space, then backward search
- SATplan: transform planning problem to SAT problem, solve, transform soln back
- Blackbox: SATplan with planning problem constructed using plan graph

Sources Of Planning Directionality

- If (Prop. STRIPS) planning is directionally biased, where could the biases come from?
 - real world (physics)
 - biased encodings
 - underlying bias in Prop. STRIPS formalism
- Biases in planning interact with biases in planners

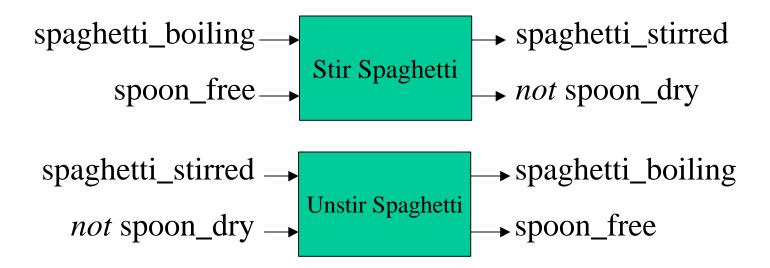

Time's Arrow

• Physical bias: action of "unsalting" water unlikely to succeed

- Prop. STRIPS doesn't appear to capture this
- Information theoretic "entropy"
 - not the same as physical entropy
 - doesn't occur in STRIPS

The Mind's Eye

- Perceptual bias leading to biased encodings
 - surely happens
 - poorly understood
 - either direction



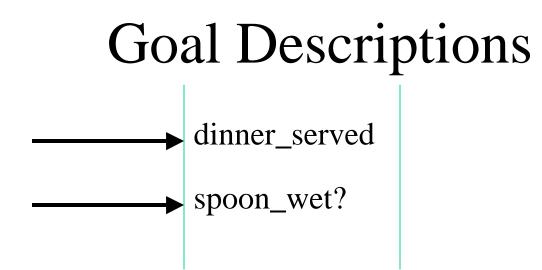
The Electronic Brain

- The underlying STRIPS formalism may be directionally biased
 - goal descriptions
 - irreversible actions
- Widespread belief in community
 - most argue that backward search is better
- Not true

Reversing STRIPS

- STRIPS appears time-symmetric
 - preconditions look like effects
 - turn planning algorithm around
 - turn problem around (!) [actions, init/goal]

Irreversible Actions


Some STRIPS actions appear irreversible
Change fluent not mentioned in preconditions

• Naïve problem reversal does not work

Compiling Out Irreversibility

- Solution: transform actions to allow richer effect descriptions
 - without changing solution space
 - without exploding complexity
- Introduce explicit Don't Care effects

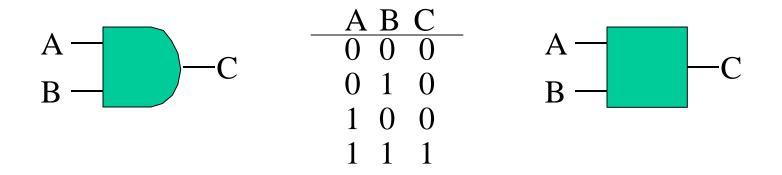

- Some elements of goal description irrelevant
- Instead, just require relevant elements (DC)
- Repair asymmetry by allowing initial descriptions (DK)

Planner Direction

- Older planners directionally biased
- But
 - formalism is unbiased
 - problem bias can vary
- Argues for nondirectional planner
- Direction of newer planners?

Determining Planner Direction

- Idea: construct problems that are
 - provably easy in one direction
 - provably hard in the other
- Can get direction from planner performance without examining planning algorithm



One-Way Functions

- Building block for one-way problems
- Functions that are
 - easy to compute
 - difficult to invert
- Provably exist, but no known construction
- Cryptographic functions OK approximation
- Can build crypto/one-way circuits as well

From Circuits To Plans

- Idea: transform each gate in one-way circuit into operators of planning problem
- Transformation via truth table (DNF)

Caveat: The "Easy Direction"

- (1999) planners are not very powerful
- Get lost on
 - large problems
 - deep problems (long solutions)
- Mostly do not propagate
- Crypto one-way functions too hard
 - develop tractable function with OK one-wayness

Using Directional Problems

- To detect planner directionality
 - Feed planner increasing size one-way problems
 - easy forward
 - easy backward
 - Measure planner performance
 - solution found?
 - time/nodes to solution
 - Answers: backward, forward, both, bad

Testbed Structure

Directionality of UCPOP

Directionality of ASP

Directionality of O-Plan

Directionality of Graphplan

Directionality of Blackbox/Relsat

New Planners Are Bidirectional

Composing One-Way Problems

- One-way problems can be composed
 - outside-in problems (meet in middle)
 - middle-out problems (islands)
- Raises tractability questions

The Flow Of Time In Planning

- Planning is fundamentally time symmetric
- Many problems are not
- Many planners are not
- What we can do
 - Can reverse problems
 - Can detect planner direction

DC/DK Conditions/Effects

Complexity Results

Proving Compilation Correctness

Proving Reversal Correctness