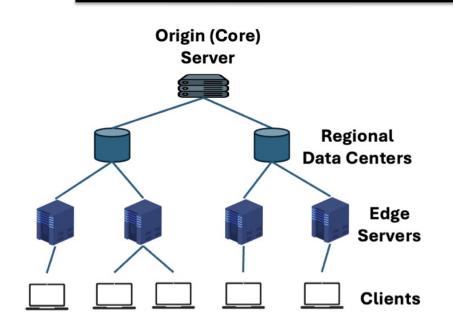
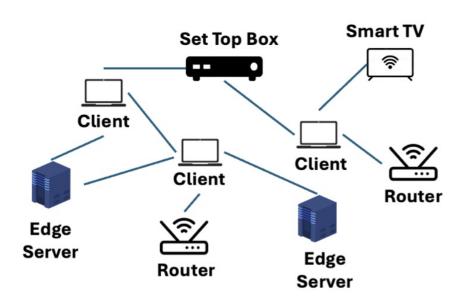


Multipath Parallel Reverse Segment Download (MPRD) for Peer-to-Peer Content Delivery

Suresh Srinivasan and **Ehsan Aryafar**Computer Science Department, Portland State University, Portland, OR, USA

July 21st, 2025
IEEE ICDCS Conference, Glasgow, UK


Background: CDN and PCDN



CDN (Content Delivery Network)

- Hierarchical architecture with original, regional, and edge servers
- Deliver content quickly and reliably
- High cost to deploy and maintain

Background: CDN and PCDN

CDN (Content Delivery Network)

- Hierarchical architecture with original, regional, and edge servers
- Deliver content quickly and reliably
- High cost to deploy and maintain

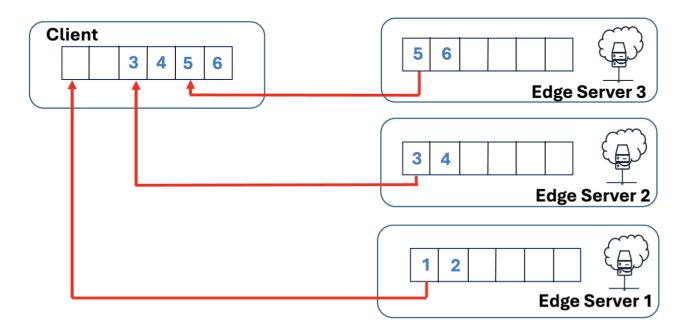
PCDN (Peer-to-Peer CDN)

- Use edge devices (smart TVs, routers) to store and send data
- Use to augment or replace CDNs
- Storage and connectivity issues

- P2P File sharing (late 1990s)
 - End devices can also help store and send, not just consume
 - Napster (1999) and BitTorrent (2001)

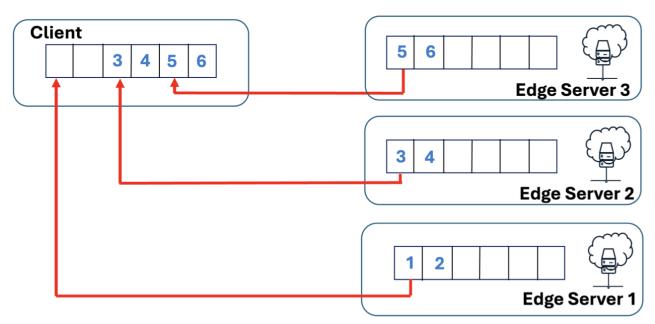
- P2P File sharing (late 1990s)
 - End devices can also help store and send, not just consume
 - Napster (1999) and BitTorrent (2001)
- First gen P2P to support video streaming and content (2005-2012)
 - PPLive / PPStream (China): P2P live streaming for TV
 - Octoshape: P2P streaming for broadcasters like CNN

- P2P File sharing (late 1990s)
 - End devices can also help store and send, not just consume
 - Napster (1999) and BitTorrent (2001)
- First gen P2P to support video streaming and content (2005-2012)
 - PPLive / PPStream (China): P2P live streaming for TV
 - Octoshape: P2P streaming for broadcasters like CNN
- Second generation P2P CDN (2012-2018)
 - WebRTC (real-time browser-based P2P) opened new doors
 - Netflix and others experimented for on-demand video


- P2P File sharing (late 1990s)
 - End devices can also help store and send, not just consume
 - Napster (1999) and BitTorrent (2001)
- First gen P2P to support video streaming and content (2005-2012)
 - PPLive / PPStream (China): P2P live streaming for TV
 - Octoshape: P2P streaming for broadcasters like CNN
- Second generation P2P CDN (2012-2018)
 - WebRTC (real-time browser-based P2P) opened new doors
 - Netflix and others experimented for on-demand video
- Recent renewed interest in P2P CDN
 - ByteDance using PCDNs to replace CDNs (short videos)
 - USENIX ATC 2024 and P-Scheduler INFOCOM 2024

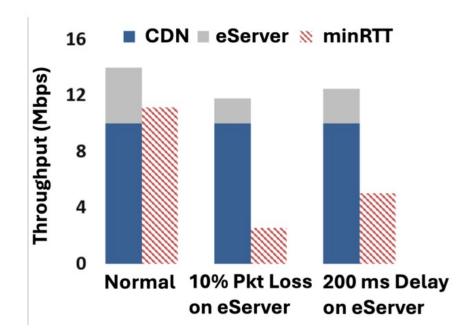
PCDN Architecture

How to handle device unreliability in PCDNs?

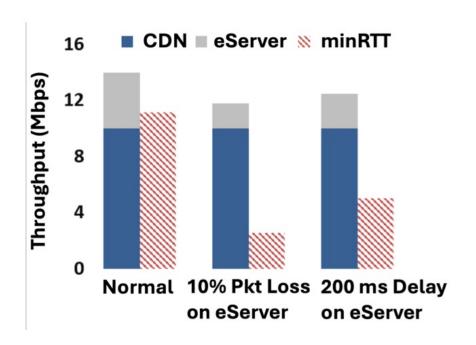

PCDN Architecture

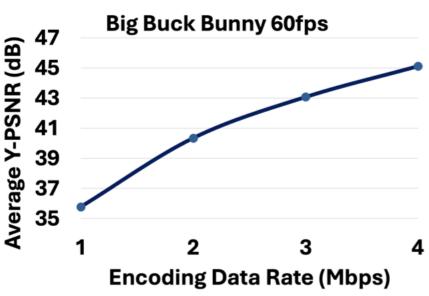
- How to handle device unreliability in PCDNs?
 - Use multiple servers in parallel to stream data to each user

PCDN Architecture

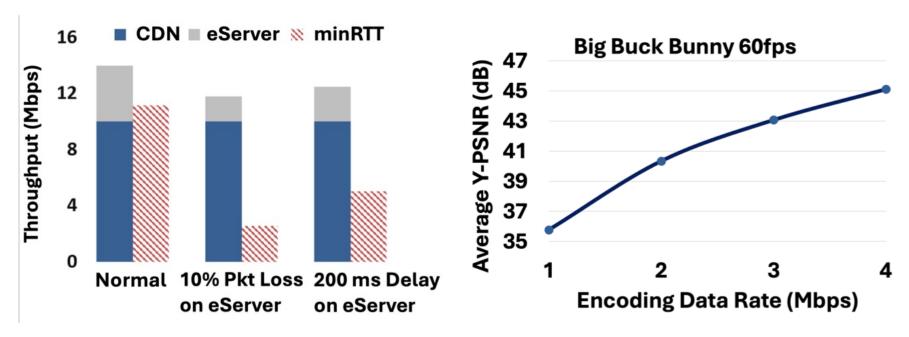

- How to handle device unreliability in PCDNs?
 - Use multiple servers in parallel to stream data to each user

 However, Head-of-Line Blocking (HoL) and Out-Of-Order (OOO) delivery can significantly drop throughput


Simple Quantification of HoL Blocking Impact


- Setup: CDN and edge server (eServer) instantiated on a single
 Linux machine, client connected to both on another Linux machine
- minRTT: Multi-Path TCP Scheduler updated for PCDN

Simple Quantification of HoL Blocking Impact


- Setup: CDN and edge server (eServer) instantiated on a single
 Linux machine, client connected to both on another Linux machine
- minRTT: Multi-Path TCP Scheduler updated for PCDN

Simple Quantification of HoL Blocking Impact

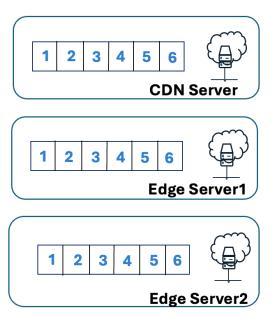
- Setup: CDN and edge server (eServer) instantiated on a single
 Linux machine, client connected to both on another Linux machine
- minRTT: Multi-Path TCP Scheduler updated for PCDN

We introduce a multi-path transport solution to address this issue in PCDNs

Outline

- Background and Motivation
- MPRD Architecture
- Hardware and Software Implementation
- Performance Evaluation
 - Through Aggregation (Data Rate)
 - Video Delivery (Stalls and PSNR)

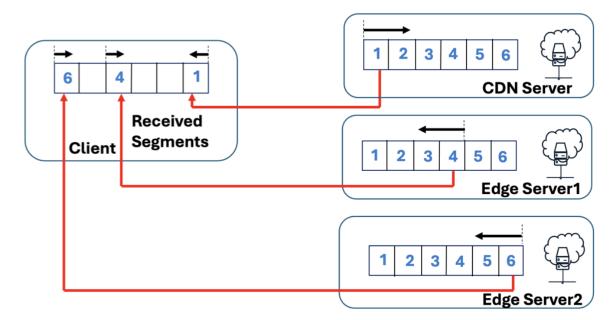
MPRD: Multipath Parallel Reverse Segment Download


MPRD Architecture

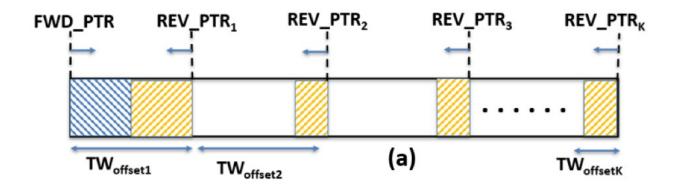
Does not explicitly use a scheduler or assign packets to paths

MPRD: Multipath Parallel Reverse Segment Download

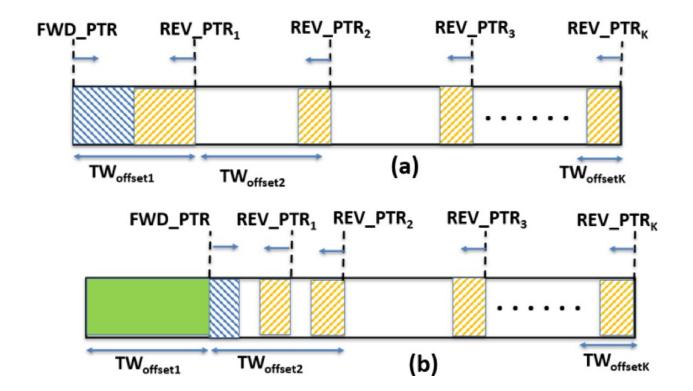
MPRD Architecture


- Does not explicitly use a scheduler or assign packets to paths
- Assume content (e.g., video) broken into fixed segments
- All servers have a horizontal queue loaded with the same segment

MPRD: Multipath Parallel Reverse Segment Download


MPRD Architecture

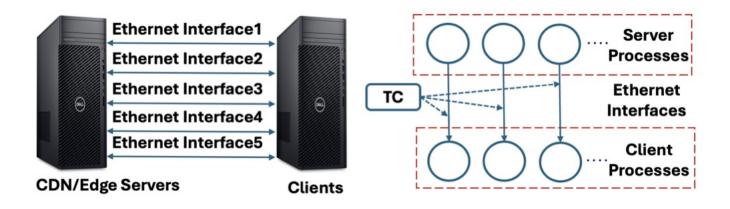
- Does not explicitly use a scheduler or assign packets to paths
- Assume content (e.g., video) broken into fixed segments
- All servers have a horizontal queue loaded with the same segment
- Multiple single path TCP with different starting points and directions


MPRD Detailed Architecture

Assume K+1 servers, most reliable server assigned to forward direction

MPRD Detailed Architecture

- Assume K+1 servers, most reliable server assigned to forward direction
- Once two pointers start to overlap, they get reassigned
- Duplicated received packets are dropped at the transport layer



MPRD Properties

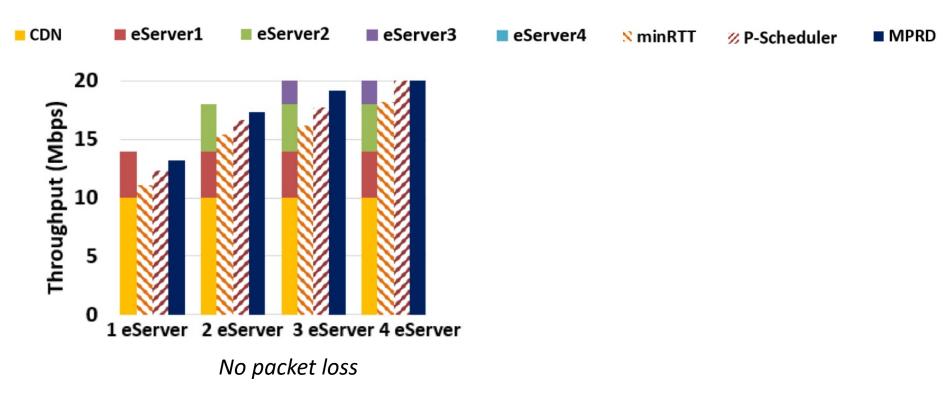
- Avoids HoL blocking issue
 - If one path is blocked, another path would take over
- Supports both coupled and uncoupled congestion control
 - Current default is uncoupled congestion control
- Total throughput is close to summation of individual path/server throughput values in isolation
 - Can slightly increase the number of redundant packet transmissions

Hardware Implementation

- Servers and clients initiated on two separate machines
- Up to five paths between servers and clients
- Linux TC controls path bandwidth, delay, and packet loss

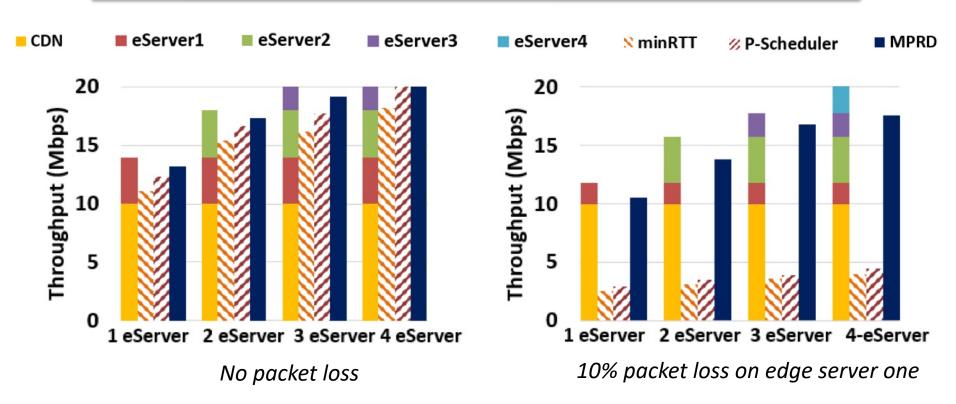
Software Implementation

- Generic software for PCDNs using C++ in Linux environment
- Each client process establishes a bidirectional socket connection with the server
 - One socket for downloading the requested content
 - One handles metadata communication such as the content (e.g., video), ID, start sequence number offset, ...


Software Implementation

- Generic software for PCDNs using C++ in Linux environment
- Each client process establishes a bidirectional socket connection with the server
 - One socket for downloading the requested content
 - One handles metadata communication such as the content (e.g., video), ID, start sequence number offset, ...
- Three protocols and schedulers implemented
 - minRTT: Default MPTCP scheduler in Linux extended to PCDN
 - P-Scheduler (Infocom 2024, ByteDance)
 - P-scheduler estimates path quality using a congestioncontrol-decoupled algorithm and distributes data by a proposed path-pick-packet method
 - MPRD

Performance Evaluation: Throughput Measurement Setup


- Scenario: Hybrid PCDN+CDN Architecture
 - One or more edge servers augment CDN
 - CDN server has highest data rate to clients
 - Rates from I Mbps to I0 Mbps
- The rates were selected to mimic a scenario with lower download speeds. We also experimented with higher speeds in the paper.

Performance Evaluation: Throughput Aggregation

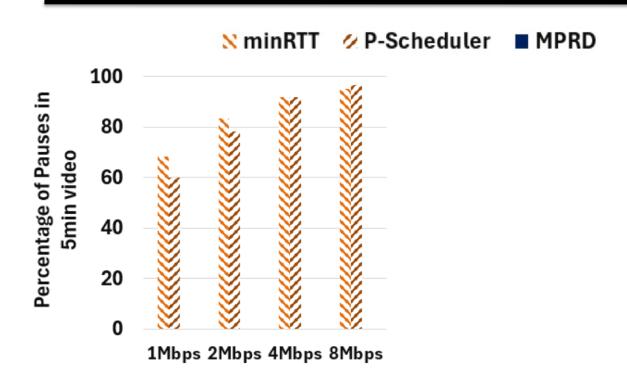
 Without packet loss, minRTT achieves 80%, P-Scheduler 85%, and MPRD 87-90% of summation of individual throughput values

Performance Evaluation: Throughput Aggregation

- Without packet loss, minRTT achieves 80%, P-Scheduler 85%, and MPRD 87-90% of summation of individual throughput values
- With 10% packet loss, minRTT and P-Scheduler collapse, whereas
 MPRD maintain 70-85% of summation of individual throughput values

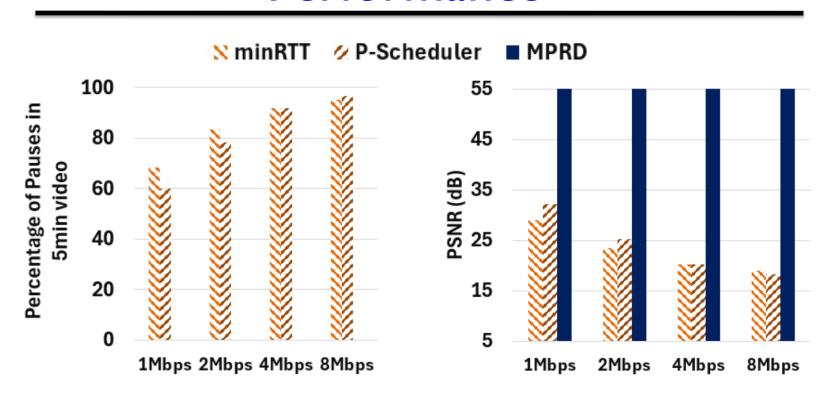
Performance Evaluation: Video Preparation Setup

- One CDN server with 10 Mbps rate and one edge server with 4 Mbps rate and 10% packet loss rate
- We used a 5-minute clip from the short film Big Buck Bunny


Performance Evaluation: Video Preparation Setup

- One CDN server with 10 Mbps rate and one edge server with 4 Mbps rate and 10% packet loss rate
- We used a 5-minute clip from the short film Big Buck Bunny
- Encoded the video into four representations with bitrates of I Mbps, 2 Mbps, 4 Mbps, and 8 Mbps, with resolutions of 360p, 480p, and 1080p (for the two highest bitrates)
- Frame rate set to 60 fps across all representation with a uniform GoP (Group of Pictures) size of 60 frames

Performance Evaluation: Video Preparation Setup


- One CDN server with 10 Mbps rate and one edge server with 4 Mbps rate and 10% packet loss rate
- We used a 5-minute clip from the short film Big Buck Bunny
- Encoded the video into four representations with bitrates of I Mbps, 2 Mbps, 4 Mbps, and 8 Mbps, with resolutions of 360p, 480p, and 1080p (for the two highest bitrates)
- Frame rate set to 60 fps across all representation with a uniform GoP (Group of Pictures) size of 60 frames
- Client logged bytes received at one-second intervals and recorded any pauses when the received data fell short of the required amount for a single GOP. We then calculated the percentage of pauses over the entire video duration and assessed video quality by computing PSNR values relative to the original video.

Performance Evaluation: Video Performance

- Significant rebuffering (stalls) with minRTT and P-Scheduler
 - 60-90% of pauses in the 5-minute video

Performance Evaluation: Video Performance

- Significant rebuffering (stalls) with minRTT and P-Scheduler
 - 60-90% of pauses in the 5-minute video
 - Large drop in PSNR when streamed through minRTT/P-Scheduler

In Summary

- MPRD is built for multipath transport from multiple servers to a single client
 - Built on top of single path TCP
- Can be used in a pure PCDN system or when CDN architecture is augmented with low-cost edge devices in PCDN
- MPRD is implemented in Linux userspace
- Significant increase in throughput and video quality delivery when servers have large and fluctuating packet losses/delays